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Abstract. It is well known that the Jacobian conjecture follows if it is proved for the
special polynomial mappings f : Cn → Cn of the Yagzhev type: f(x) = x − G(x, x, x),
where G is a trilinear form and det f ′(x) ≡ 1. Drużkowski and Rusek [7] showed that if
we take the local inverse of f at the origin and expand it into a Taylor series

∑
k≥1 Φk of

homogeneous terms Φk of degree k, we find that Φ2m+1 is a linear combination of certain
m-fold “nested compositions” of G with itself. If the Jacobian Conjecture were true, f−1

should be a polynomial mapping of degree ≤ 3n−1 and the terms Φk ought to vanish iden-
tically for k > 3n−1. We may wonder whether the reason why Φ2m+1 vanishes is that each
of the nested compositions is somehow zero for large m. In this note we show that this is
not at all the case, using a polynomial mapping found by van den Essen for other purposes.

A famous problem on which many mathematicians have worked is the
Jacobian conjecture, originated by Keller in [10]: is a polynomial mapping
f : Cn → Cn with nonzero constant Jacobian determinant necessarily one-
to-one? As such the problem is still open, although many interesting re-
sults have been obtained in connection with it. One of them is specially
nice and easy to state: a polynomial mapping Cn → Cn that is one-to-one
must always be onto and the inverse is itself a polynomial mapping, that is
to say, it is a polynomial automorphism of Cn. This fact was proved by
Bia lynicki-Birula and Rosenlicht [2], and alternative proofs can be found in
Drużkowski [6] and Rudin [11]. The degree of the inverse (the maximum of
the degrees of the components) is also estimated by the (n− 1)th power of
the degree of f (Bass, Connell and Wright [1]).

One line of approach to the Jacobian conjecture is to look for the Taylor
series of the local inverse of f around, say, the origin, which exists and is
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analytic in a neighbourhood of f(0) because the Jacobian determinant does
not vanish. The terms in the Taylor expansion can in principle be computed
from f by repeatedly differentiating the identity f(f−1

loc (x)) ≡ x, for x near
the origin of Cn. The formulas become of course terribly complicated very
quickly, as one can imagine. The amazing thing is that, if the Jacobian
conjecture is true, those complicated formulas should vanish identically after
a finite number of steps, because f−1

loc must be a polynomial.
However, at least for a special case there used to be a faint hope to find

arguments from within the Taylor approach that may account for the van-
ishing of the high-order terms. This was the case of the polynomial mapping
of the special Yagzhev type: maps of the form

(1) f(x) = x+ g(x)

where g : Cn → Cn is a polynomial mapping homogeneous of degree 3. It
can be verified that the constant Jacobian condition is equivalent to the
Jacobian matrix g′(x) being nilpotent: g′(x)n = 0 for all x ∈ Cn. By the
reduction of degree theorem (Yagzhev [12], Bass, Connell and Wright [1], and
Drużkowski [5]) it is known that the Jacobian conjecture is true if and only
if it holds for the Yagzhev case.

Let us see how the Yagzhev form might simplify the iterated differentials
of the identity f(f−1(x)) ≡ x. First of all write g(x) = −G(x, x, x) for a
trilinear symmetric G : Cn × Cn × Cn → Cn. The identity becomes

(2) f−1(x)−G(f−1(x), f−1(x), f−1(x)) ≡ x.

We use the notation ∂mh(x)[u1, . . . , um] for the mth differential of h at x
applied to the m-tuple of vectors (u1, . . . , um). The first three successive
differentials of the identity are

(3)

∂1f−1(x)[u1]− 3G(∂1f−1(x)[u1], f−1(x), f−1(x)) ≡ u1,

∂2f−1(x)[u1, u2]− 3G(∂2f−1(x)[u1, u2], f−1(x), f−1(x))

− 6G(∂1f−1(x)[u1], ∂1f−1(x)[u2], f−1(x)) ≡ 0,

∂3f−1(x)[u1, u2, u3]− 3G(∂3f−1(x)[u1, u2, u3], f−1(x), f−1(x))

− 6G(∂2f−1(x)[u1, u2], ∂1f−1(x)[u3], f−1(x))

− 6G(∂2f−1(x)[u1, u3], ∂1f−1(x)[u2], f−1(x))

− 6G(∂1f−1(x)[u1], ∂2f−1(x)[u2, u3], f−1(x))

− 6G(∂1f−1(x)[u1], ∂1f−1(x)[u2], ∂1f−1(x)[u3])

≡ 0.
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If we bear in mind that f(0) = 0 we see that the first of these identities
gives ∂f−1(0)[u1] ≡ u1, whilst the second gives ∂2f−1(0)[u1, u2] ≡ 0. The
third one gives ∂3f−1(0) = 6G. If we go on this way we see that the highest
order differential of f−1 appears always twice, first by itself and then as the
first argument of a G. But the other arguments of G in that term are always
f−1(x), which vanishes for x= 0. Then the mth differential of f−1 at the
origin can always be expressed in terms of sums of G’s having lower-order
differentials of f−1 as arguments. The following explicit recursive formula
has been proved by Drużkowski and Rusek [7], expressed in terms of the
homogeneous terms Φm(u) := m!−1∂mf−1(0)[u, u, . . . , u] of the Taylor ex-
pansion of f−1 at the origin:

(4)

Φ1 = I,

Φ2m+1 =
∑

p+q+r=m−1

G(Φ2p+1, Φ2q+1, Φ2r+1),

Φ2m = 0 for m ∈ N.

We then find that ∂2m+1f−1(0) is a linear combination of terms, each of
which is a nested composition in which G appears exactly m times. For
example, Φ7(u) is a linear combination of the two nestings

(5) G(G(G(u, u, u)u, u), u, u) and G(G(u, u, u), G(u, u, u), u),

Φ9(u) is a linear combination of the four nestings

(6)
G(G(G(G(u, u, u), u, u)u, u), u, u), G(G(G(u, u, u), G(u, u, u), u), u, u),

G(G(G(u, u, u), u, u), G(u, u, u), u), G(G(u, u, u), G(u, u, u), G(u, u, u)),

and so on.
Here came the encouraging observation: the nilpotency condition g′(u)n

≡ 0 means that when we nest the function G( · , u, u) at least n times we
get zero. Thus we have got rid of infinitely many of the nestings that make
up the Taylor expansion of f−1. What about the other nestings, the ones
where at least two G’s show up at the same level? One was drawn to wonder
whether there may be some reason for all of them but finitely many to vanish
too.

The point of this paper is to show that such hunch is wrong: there are
polynomial automorphisms of Yagzhev form for which there are nonvanishing
nestings beyond any arbitrary level.

The ground for our claim is a by-product of the following question related
to the Jacobian conjecture, that was introduced in [4]. Given a real number
λ > 1 and a polynomial mapping f not necessarily of Yagzhev type but
with f(0) = 0, f ′(0) = I and det f ′(x) = 1 everywhere, it was proved that
there exists a global analytic function kλ : Cn → Cn such that kλ(0) = 0,
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k′λ(0) = I and

(7) λf(kλ(y)) = kλ(λy) for all y ∈ Cn.

This is a consequence of the Poincaré–Siegel theorem or of a sharper ad-hoc
argument, as was done in [4]. Such a kλ “conjugates” λf to its linear part
in a neighbourhood of the origin or even on the whole Cn if kλ is one-to-one
and onto. The original motivation of considering kλ was that whenever it is
one-to-one and onto then f is too.

What concerns us here is the fact that, when f is of Yagzhev form, the
successive differentials of kλ are obtained in pretty much the same way as
the differentials of f−1, because the relation (7) can be written as

(8)
λkλ(y)− kλ(λy)

λ
−G(kλ(y), kλ(y), kλ(y)) ≡ 0.

To perform the same calculations as for f−1 we just have to keep in mind
that kλ(0) = 0 and that λ 6= 1, so that at every step we can isolate the
highest order differential as a function of the lower-order differentials.

Lemma. The following recursion holds for the homogeneous terms
Ψm(u) := m!−1∂mkλ(0)[u, u, . . . , u] of the Taylor expansion of kλ:

(9)

Ψ1 : = I,

Ψ2m+1 =
1

1− λ2m

∑
p+q+r=m−1

G(Ψ2p+1, Ψ2q+1, Ψ2r+1),

Ψ2m = 0 for m ∈ N.

The function Ψ2m+1 is then a linear combination of the very same nested
compositions that make up Φ2m+1.

Next, Arno van den Essen [8] has given the following example of a bijec-
tive polynomial mapping of C4:

f(x) := (x1 + p(x)x4, x2 − p(x)x3, x3 + x3
4, x4), where(10)

p(x) := x3x1 + x4x2,

for which the mapping kλ is not a polynomial. Later in [9] we proved that
this kλ is one-to-one and onto, a result that Bo Deng has reobtained with a
different approach in [3]. In [9] we also explicitly calculated the power series
of kλ.

Anyway, since this particular kλ is not a polynomial, there are integers m
beyond any arbitrary bound for which Ψ2m+1 does not vanish identically.
Hence for those m there must be some m-fold nestings of G that do not
vanish either, because a linear combination of them is nonzero.

We can now put to rest the hope to explain the polynomiality of f−1 by
proving that all nestings with sufficiently many G’s inside were identically
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zero. This observation may possibly comfort the people who are skeptical
about the Jacobian Conjecture itself.

We conclude with a formal statement of our result, preceded by a precise
definition of the set Nest∆(G,n) of “nested compositions” of G.

Definition. Given a set V , functions T : V × V × V → V and
M : V 2n+1 → V and an index i ∈ {1, . . . , 2n + 1} we define the function
M̂i : V 2n+3 → V as

(11) M̂i(x1, . . . , x2n+3)
:= M(x1, . . . , xi−1, T (xi, x2n+2, x2n+3), xi+1, . . . , x2n+1).

Then we define by induction

(12)
Nest(T, 1) := {T},

Nest(T, n+ 1) := {M̂i : M ∈ Nest(T, n), i = 1, . . . , 2n+ 1}.
Then Nest∆(T, n) will be the set of functions V → V of the form x 7→
M(x, . . . , x), where M ∈ Nest(T, n).

Theorem. Let G : Cn×Cn×Cn → Cn be the symmetric trilinear form
associated with the homogeneous third-degree term of the mapping f of (10).
Then there are infinitely many n for which Nest∆(G,n) 6= {0}.
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[5] L. M. Dru żkowski, An effective approach to Keller’s Jacobian conjecture, Math.
Ann. 264 (1983), 303–313.

[6] —, The Jacobian conjecture, Institute of Mathematics, Polish Academy of Sciences,
preprint 492 (1991).
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Università di Udine Università di Messina
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