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Oscillatory behaviour of solutions of forced

neutral differential equations

by N. Parhi and P. K. Mohanty (Berhampur)

Abstract. Sufficient conditions are obtained for oscillation of all solutions of a class of
forced nth order linear and nonlinear neutral delay differential equations. Also, asymptotic
behaviour of nonoscillatory solutions of a class of forced first order neutral equations is
studied.

1. This paper is concerned with oscillatory behaviour of solutions of
forced neutral delay differential equations (NDDE) of the form

(1.1)
[

x(t) +

l
∑

i=1

pi(t)x(t − τi)
](n)

+ δ

m
∑

j=1

qj(t)x(t − σj) = f(t)

and

(1.2)
[

x(t) +

l
∑

i=1

pi(t)gi(x(t − τi))
](n)

+ δ

m
∑

j=1

qj(t)hj(x(t − σj)) = f(t),

where pi, qj , f ∈ C([t0,∞), R) and gi, hj ∈ C(R, R) are such that pi(t) ≥ 0,
qj(t) ≥ 0, xgi(x) > 0 for x 6= 0, xhj(x) > 0 for x 6= 0, τi ≥ 0 and σj ≥ 0 for
i = 1, . . . , l and j = 1, . . . ,m.

Let φ ∈ C([t0 − ̺, t0], R), where ̺ = max{τi, σj | i = 1, . . . , l and j =
1, . . . ,m}. By a solution of (1.2) on [t0,∞) with initial function φ we mean
a function x ∈ C([t0 − ̺,∞), R) such that x(t) = φ(t) for t ∈ [t0 − ̺, t0],

x(t)+
∑l

i=1 pi(t)gi(x(t−τi)) is n times continuously differentiable for t ≥ t0
and x(t) satisfies (1.2) for t ≥ t0. Such a solution is said to be oscillatory if
it has arbitrarily large zeros; otherwise, it is said to be nonoscillatory . These
statements also hold good for the equation (1.1).
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In recent years there has been a growing interest in oscillation theory of
NDDE. However, most of the literature is concerned with linear homoge-
neous equations (see for example [1, 2, 3, 6, 7] and the references therein).
Some authors [4, 5] have considered the nonlinear NDDE of the form

[x(t) + p(t)x(t − τ)](n) + f(t, x(t − σ)) = 0.

But their conditions are such that the results they have obtained are not
applicable to the equations considered here.

2. In this section we study the oscillatory behaviour of solutions of (1.1)
and (1.2).

Theorem 1. Suppose that each pi(t) is bounded and for some j = k,
qk(t) 6= 0 in any neighbourhood of infinity and qk(t) is τ -periodic, where

Niτ = τi and the Ni’s are positive integers. Further , assume that

(A1) there exists a function F ∈ Cn([t0 − σ,∞), R) such that F (n)(t) =
f(t) for t ≥ t0, and

(A2)
T∞
t0

qk(t)F±(t − σk) dt = ∞

where σ= max{σ1, . . . , σm}, F+(t)= max{F (t), 0}, F−(t)= max{−F (t), 0}.
Then (a) all solutions of (1.1) oscillate for δ = 1, and (b) all bounded solu-

tions of (1.1) oscillate for δ = −1 and bounded F (t).

P r o o f. Assume on the contrary that x(t) is a nonoscillatory solution of
(1.1). Let x(t) > 0 ultimately. The case x(t) < 0 for large t may be treated
similarly. So there exists a t1 > t0 such that x(t) > 0, x(t − τi) > 0 and
x(t − σj) > 0 for t ≥ t1, i = 1, . . . , l and j = 1, . . . ,m. Setting, for t ≥ t1,

(2.1) z(t) = x(t) +

l
∑

i=1

pi(t)x(t − τi) − F (t)

we obtain

(2.2) z(n)(t) = −δ
m

∑

j=1

qj(t)x(t − σj).

Consequently, z(r)(t) > 0 or < 0 for large t, and r = 0, 1, . . . , n − 1. If
z(t) < 0 for t ≥ t2 > t1, then by (2.1), F (t) > 0 and hence

∞\
t0

qk(t)F−(t − σk) dt =

t2+σk\
t0

qk(t)F−(t − σk) dt +

∞\
t2+σk

qk(t)F−(t − σk) dt

=

t2+σk\
t0

qk(t)F (t − σk) dt < ∞,
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a contradiction to (A2). So z(t) > 0 for t ≥ t2 and hence

F+(t) < x(t) +

l
∑

i=1

pi(t)x(t − τi).

Let δ = 1. Then z(n)(t) ≤ −qk(t)x(t−σk) for t ≥ t2. Clearly, z(n−1)(t) >
0 for large t; otherwise z(t) < 0 for large t, a contradiction. So integration
of (2.2) for t ≥ t3 > t2 + σk yields

(2.3)

∞\
t3

qk(t)x(t − σk) dt ≤ z(n−1)(t3) < ∞.

Moreover, for each i and for t ≥ t4 > t3 + max{τ1, . . . , τl},

(2.4)

∞\
t4

pi(t − σk)qk(t)x(t − τi − σk) dt

≤ L

∞\
t4−τi

qk(t + τi)x(t − σk) dt ≤ L

∞\
t4−τi

qk(t)x(t − σk) dt < ∞,

where L > 0 is the bound of each pi(t). Consequently,

∞\
t0

qk(t)F+(t − σk) dt ≤

t4\
t0

qk(t)F+(t − σk) dt(2.5)

+

∞\
t4

qk(t)x(t − σk) dt

+
l

∑

i=1

∞\
t4

qk(t)pi(t − σk)x(t − σk − τi) dt

in view of (2.3) and (2.4). This contradiction completes the proof in case
δ = 1.

Let δ = −1 and F (t) be bounded. In this case, for t ≥ t1, (2.2) gives
z(n)(t) ≥ qk(t)x(t − σk) ≥ 0. If x(t) is bounded, then so is z(t), and since
z(n−1)(t) is strictly increasing, it is bounded. Therefore,

(2.6)

∞\
t3

qk(t)x(t − σk) dt < ∞

and hence the inequality (2.4) holds. Thus the required contradiction follows
from (2.4), (2.5) and (2.6).

Hence the theorem is proved.

The following example shows that the conditions of Theorem 1(b) are
not sufficient for all solutions of (1.1) with δ = −1 to be oscillatory.
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Example 1. Consider the equation

(2.7) [x(t) + x(t − π)]′ − eπ/2(1 + e−π)x(t − π/2) = eπ/2(1 + e−π) cos t

for t≥π. Here all the conditions of Theorem 1(b) are satisfied, with F (t) =
eπ/2(1 + e−π) sin t, but (2.7) admits an unbounded nonoscillatory solution
x(t) = et + sin t.

Theorem 2. Assume that (A1) is satisfied and

(A3) lim inf
t→∞

[F (t)/tn−1] = −∞ and lim sup
t→∞

[F (t)/tn−1] = ∞.

Then (a) all solutions of (1.2) oscillate for δ = 1, and (b) all bounded solu-

tions of (1.2) oscillate for δ = −1 and bounded pi(t).

P r o o f. Suppose that x(t) is an eventually positive solution of (1.2).
Parallel arguments hold when x(t) < 0 eventually. Then x(t) > 0, x(t−τi) >
0 and x(t − σj) > 0 for t ≥ t1 > max{t0, 0}, i = 1, . . . , l and j = 1, . . . ,m.
We set, for t ≥ t1,

(2.8) z(t) = x(t) +

l
∑

i=1

pi(t)gi(x(t − τi)) > 0.

Hence the equation (1.2) yields

(2.9) z(n)(t) = f(t) − δ

m
∑

j=1

qj(t)hj(x(t − σj)).

Let δ = 1. Then z(n)(t) ≤ f(t) for t ≥ t1. Repeated integration from t1
to t of this inequality gives

z(t) ≤ µn + µn−1(t − t1) + . . . +
µ1

(n − 1)!
(t − t1)

n−1 + F (t),

where µ1, . . . , µn are constants. Therefore, for t ≥ t1,

z(t)

tn−1
≤ µn

1

tn−1
+ µn−1

(1 − t1/t)

tn−1
+ . . . + µ1

(1 − t1/t)
n−1

(n − 1)!
+

F (t)

tn−1
.

Using the first condition of (A3), it follows that

0 ≤ lim inf
t→∞

z(t)/tn−1 = −∞,

a contradiction.

Let δ = −1 and pi(t) be bounded for i = 1, . . . , l. Hence x(t) bounded
implies z(t) bounded. Integrating the inequality z(n)(t) ≥ f(t) for t ≥ t1
n times successively we get

z(t) ≥ µn + µn−1(t − t1) + . . . +
µ1

(n − 1)!
(t − t1)

n−1 + F (t)
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for some constants µ1, . . . , µn. Consequently, from the second condition of
(A3), we obtain

∞ ≤ lim sup
t→∞

z(t)/tn−1 = 0,

a contradiction.
This completes the proof of the theorem.

R e m a r k 1. Theorem 2(a) generalizes the following result due to Erbe
and Zhang [2]: If there exists a function F (t) such that F ′(t) = f(t),
lim inft→∞ F (t) = −∞ and lim supt→∞ F (t) = ∞, then every solution of

[x(t) + p(t)x(t − τ)]′ + q(t)y(t − σ) = f(t)

oscillates, where p and q are nonnegative continuous functions and τ and σ
are positive constants.

R e m a r k 2. We may note that Theorem 1(a) is applicable to the equa-
tion

(2.10) [x(t) + x(t − π)]′ + x(t − π/2) = cos t, t ≥ π,

but it fails to hold true for the equation

(2.11) [x(t) + x(t − π)]′ + tx(t − π/2) = −t cos t, t ≥ π.

On the other hand, Theorem 2(a) cannot be applied to (2.10), but is appli-
cable to (2.11). In particular, x(t) = − sin t and x(t) = sin t are oscillatory
solutions of (2.10) and (2.11) respectively.

Example 2. It is easy to see that all the conditions of Theorem 2(b) are
satisfied for

(2.12) [x(t) + x(t − π/2)]′ − (eπ/2 sin t + 1 + eπ/2)y(t − π/2) = −et sin t,

t≥π/2. Clearly, x(t)=et is an unbounded nonoscillatory solution of (2.12).
Thus the conditions of Theorem 2(b) do not ensure the oscillation of all
solutions of (1.2).

R e m a r k 3. Consider the equations

(2.13)

(2.14)

[x(t) + x(t − π)]′ − x(t − π/2) = cos t, t ≥ π,

[x(t) + 2x(t − π)]′ − tx(t − π/2) = (t − 1) cos t, t ≥ π.

Clearly, the bounded solutions of (2.13) and (2.14) oscillate by Theorems 1(b)
and 2(b) respectively. But Theorem 1(b) fails to hold for (2.14) and Theo-
rem 2(b) cannot be applied to (2.13).

Theorem 3. Assume that

(A4) lim inf
t→∞

t\
t0

f(s) ds = −∞, lim sup
t→∞

t\
t0

f(s) ds = ∞
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and

(A5)
1

tn−1

t\
t0

(t − s)n−1f+(s) ds ≤ α,
1

tn−1

t\
t0

(t − s)n−1f−(s) ds ≤ β

for t ≥ t0, where f+(t) = max{f(t), 0}, f−(t) = max{−f(t), 0} and α > 0
and β > 0 are constants. Then (a) all solutions of (1.2) with δ = 1 oscillate,
and (b) all bounded solutions of (1.2) with δ = −1 oscillate provided that

each pi(t) is bounded.

P r o o f. Assuming x(t) to be an eventually positive solution of (1.2) and
setting z(t) as in (2.8), we obtain (2.9) for t ≥ t1 > t0. If δ = 1, then (2.9)
gives, for t ≥ t1,

(2.15) z(n)(t) ≤ f(t),

which on integration yields

z(n−1)(t) ≤ z(n−1)(t1) +

t\
t1

f(s) ds.

Hence lim inft→∞ z(n−1)(t) = −∞. Consequently, for every L > 0, there
exists a t2 > t1 such that z(n−1)(t2) < −L. We choose L > α. Repeated
integration of (2.15) from t2 to t yields

z(t) ≤

n−1
∑

k=0

z(k)(t2)(t − t2)
k

k!
+

1

(n − 1)!

t\
t2

(t − s)n−1f(s) ds

≤
n−1
∑

k=0

z(k)(t2)(t − t2)
k

k!
+

1

(n − 1)!

t\
t2

(t − s)n−1f+(s) ds,

which implies that

0 ≤ lim sup
t→∞

z(t)

tn−1
≤

α − L

(n − 1)!
< 0,

a contradiction.

Let δ = −1 and pi(t), i = 1, . . . , l, be bounded. If x(t) is bounded, then
so is z(t). In this case (2.9) implies that

(2.16) z(n)(t) ≥ f(t), t ≥ t1.

Integrating (2.16) from t1 to t and using the second condition of (A4) we
have lim supt→∞ z(n−1)(t) = ∞. So, for every M > β > 0, there exists a
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t3 > t1 such that z(n−1)(t3) > M . Therefore, from (2.16) we obtain

z(t) ≥

n−1
∑

k=0

z(k)(t3)(t − t3)
k

k!
+

1

(n − 1)!

t\
t3

(t − s)n−1f(s) ds

≥
n−1
∑

k=0

z(k)(t3)(t − t3)
k

k!
−

1

(n − 1)!

t\
t3

(t − s)n−1f−(s) ds,

which implies that

0 ≥ lim inf
t→∞

z(t)

tn−1
≥

M − β

(n − 1)!
> 0,

a contradiction.

The case x(t) < 0 may be dealt with similarly, hence the proof of the
theorem is complete.

R e m a r k 4. If all the conditions of Theorem 3(a) are satisfied, every
solution of

(2.17) [x(t) + x(t − π)]′′ + tx(t − π/2) = −t cos t, t ≥ π,

oscillates. Clearly, x(t) = sin t is such a solution of (2.17). We may note
that Theorem 3(a) cannot be applied to equation (2.10), because in this
case hypothesis (A4) is not satisfied. It also fails to hold for (2.11) sinceTt
t0

f+(s) ds and
Tt
t0

f−(s) ds are not bounded. Further, Theorem 1(a) fails

to work for (2.17) as q(t) = t is not π-periodic and Theorem 2(a) is not
applicable to (2.17) as (A3) does not hold.

In the following, two results concerning the asymptotic behaviour of
solutions of (1.1) are proved.

Theorem 4. Suppose that n = 1, δ = 1, pi(t) is bounded , i = 1, . . . , l,
qk(t) ≥ q > 0 for some k ∈ {1, . . . ,m} and f(t) ≥ 0 is such that

(2.18)

∞\
t0

sf(s) ds < ∞.

Then all nonoscillatory solutions of (1.1) tend to zero as t → ∞.

P r o o f. Let x(t) be a nonoscillatory solution of (1.1). If x(t) > 0 for
t ≥ t1 > t0, then there exists a t2 > t1 such that x(t − τi) > 0, i = 1, . . . , l,
and x(t − σj) > 0, j = 1, . . . ,m, for t ≥ t2. Setting

(2.19) z(t) = x(t) +

l
∑

i=1

pi(t)x(t − τi)
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for t ≥ t2, we see that z(t) > 0 and

(2.20) z′(t) = f(t) −

m
∑

j=1

qj(t)x(t − σj) ≤ f(t) − qk(t)x(t − σk).

Integration of the above inequality gives

t\
t2

x(s − σk) ds ≤
1

q

[

t\
t2

f(s) ds + z(t2)
]

,

which, due to (2.18), shows that x ∈ L1([t2,∞), R), the space of Lebesgue
measurable functions whose absolute values are integrable. Hence z ∈
L1([t2,∞), R). Thus, z′(t) ≤ f(t) for t ≥ t2 implies that

tz(t) ≤ t2z(t2) +

t\
t2

sf(s) ds +

t\
t2

z(s) ds ≤ α

where α > 0 is a constant. Consequently, z(t) → 0 as t → ∞ and therefore
x(t) → 0 as t → ∞.

Next let x(t) < 0 for t ≥ t1 > t0. So z(t) < 0 and z′(t) > 0 for t ≥ t2.
Hence −∞ < limt→∞ z(t) ≤ 0. If limt→∞ z(t) 6= 0, then z 6∈ L1([t2,∞), R).
However, from (2.20) we get

t\
t2

x(s − σk) ds ≥
1

q
z(t2),

which implies that x ∈ L1([t2,∞), R) and hence z ∈ L1([t2,∞), R), a con-
tradiction. Thus z(t) → 0 as t → ∞ and therefore x(t) → 0 as t → ∞.

Hence the theorem is proved.

Example 3. By Theorem 4, all nonoscillatory solutions of

[x(t) + e−t−1x(t − 1)]′ + te−2x(t − 2) = e−t(t − 1) − 2e−2t,

t > 3, tend to zero as t → ∞. In particular, x(t) = e−t is such a solution.

Theorem 5. Assume that δ = 1, n = 1, each pi(t) is bounded ,

∞\
t0

(

m
∑

j=1

qj(t)
)

dt < ∞

and f(t) ≥ 0. Then all nonoscillatory solutions of (1.1) are unbounded if

and only if
T∞
t0

f(t) dt = ∞.

P r o o f. Let x(t) be a nonoscillatory solution of (1.1). Suppose that x(t)
is unbounded. Setting z(t) as in (2.19), we see that it is unbounded. Clearly,
x(t) < 0 eventually is not possible, because in this case we have z(t) < 0
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and z′(t) > 0 for t ≥ t2 > t0 and hence z(t) is bounded, a contradiction.
Thus x(t) > 0 eventually and hence z′(t) < f(t) for t ≥ t2. Consequently,

z(t) < z(t2) +

t\
t2

f(s) ds,

which in turn implies, in view of the unboundedness of z(t), thatT∞
t2

f(s) ds = ∞.

Conversely, suppose that
T∞
t2

f(s) ds = ∞. If x(t) is bounded, then so is

z(t) and there exists a t3 > t0 such that |x(t − σj)| ≤ β, j = 1, . . . ,m, for
t ≥ t3. Therefore (2.20) implies that

z′(t) ≥ f(t) −

m
∑

j=1

qj(t)|x(t − σj)| > f(t) − β

m
∑

j=1

qj(t).

Thus, for t ≥ t3,

z(t) > z(t3) +

t\
t3

f(s) ds − β

t\
t3

(

m
∑

j=1

qj(s)
)

ds.

Consequently, z(t) → ∞ as t → ∞, contradicting the fact that z(t) is
bounded.

Hence the theorem is established.

Acknowledgements. The authors are thankful to the referee for his
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