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Partial differential equations in Banach spaces
involving nilpotent linear operators

by ANTONIA CHINNI and PAoLO CUBIOTTI (Messina)

Abstract. Let E be a Banach space. We consider a Cauchy problem of the type

k—1 j .
DEu+ 3520 Y |aj<m Aja(DIDEu) = f in R*,
Diu(0,z) = ¢;(z) mR" j=0,...,k—1,
where each A; , is a given continuous linear operator from E into itself. We prove that if

the operators A; , are nilpotent and pairwise commuting, then the problem is well-posed

in the space of all functions v € C* (]R"+17E) whose derivatives are equi-bounded on
each bounded subset of R™ 11,

Introduction. Let k,m,n € N and let (E, || - ||g) be a real or complex
Banach space. Following [4], we denote by V(R", E) the space of all functions
ue C°(R™, E) such that, for every non-empty bounded set 2 C R™, one
has

|lul| 2. = sup sup ||DYu(z)||r < oo,
€Ny zef?
where DY = 91t +any /9xft ... 028", a = (aq,...,a,) and Ny =
Nu {0}.

In the present paper, we are interested in the well-posedness in the space

V(R", E) of the Cauchy problem

k—1 ‘ .
(1) Dfu + Zj:O Z\a|§m Aj7a(Dngu) =f in Rn+1’
D]u(0,z) = ¢;(x) inR", j=0,...,k—1,

where each A; , is a given continuous linear operator from F into itself. We
denote by L(FE) the space of all continuous linear operators from E into
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itself, endowed with the usual norm

[Allzmy = sup  [[A(v)|e-
vl <1
Apparently, the only previous result on this subject is Theorem 1 of [4],
where one assumes that

k-1
Z Z |Ajallem) < 1.

7=0 |a|<m

We wish here to prove another, independent result supposing that the oper-
ators A; , are nilpotent and pairwise commuting. However, a complete char-
acterization of the well-posedness of the problem (1) in the space V(R", E)
remains still unknown.

We believe that such a characterization should be quite difficult. To
support this, we now discuss a particularly simple case which shows the
peculiarity of working in the space V(R", E) rather than in the other spaces
usually considered in the theory of linear partial differential equations.

Let o be a non-negative real number. Denote by I'(°)(R?) the (real)
Cevrey class in R? of index 0. That is to say, I'(?)(R?) is the class of all real
functions v € C°°(R?) such that, for every non-empty bounded set 2 C R?,
one has

0t Pul(t, )

dto0zh | <

1 g
inf  sup  sup <7> N+
A>0 (o pyenz (Layen \ (o + )]

Recall, in particular, that I"Y) (R?) coincides with the class of analytic func-
tions in R2. Also, observe that V(R2,R) C I"(O)(R?).

Given a real number a, consider now the differential operator P, : C°°(R?)
— C°°(R?) defined by

oFu 0" u
Ea + aax—m.
Then, according to the classical work of Malgrange [3], we have
P,(C*®(R?)) = C=(R?) for every a € R.
Analogously, we have
P, (I (R?)) = ') (R?)  for every a € R and o € [0,1[U ([1, 00[NQ).

Precisely, this follows from Theorems 9.4 and 9.6 of [5] (see also p. 408 and
pp. 467-468) when o € [0, 1], and from Theorem 4.1 of [1] when o € [1, co[NQ
(in the case o = 1 the result was previously proved in [2]).

Now, we come to the space V(R?,R) (for short V(R?)). On the basis of
Theorem 4 of [4], we have

P,(V(R*) = V(R?) if and only if a # +1.

P,(u) =
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1. The result. Our result is the following.

THEOREM 1. Let k,n,m € N, and let {Aj,a}jzo,...,k—l,aeNg,|a\§m be a
family of pairwise commuting elements of L(E) such that for some ¢ € N
one has

HA?,aHz:(E) =0 foreachj=0,1,...,k—1 and a € Ny with |a| < m.

Then for each f € V(R" ™ E) and each g, 1, .., 051 € V(R", E) there
exists a unique function u € V(R" ™1, E) such that for each t € R and each
x € R™ one has

@ { Dfult, 2) + 32520 Xiaj<m Aj.a( DI DEult, 2)) = f(t, @),
Diu(0,z) = pi(x), j=0,....,k—1.

Moreover, if p is the cardinality of the set {Aj o :Ajo #0, j=0,...,k—1,
a € N2, |a| < m} and 5 := k*pq, then for each bounded set 2 C R", and
each v > 0 and X > 0, if one puts

k—1
cimmax { >0 S N A alem) |

J=0 la|<m
one has the following inequality:

ogl?gazil AT ”DzuH [=rr]xQ2,E

< : ] —1 . ro
< min {( max o?) max (A leia.e)e

s—1
j o i\ \1—k
+ ((2max ol)rer +Z%JJ)A £l = 2.2
]:

e”(( max o’)( max A |gille.r)

0<j<s—1 0<i<k—1
-1

+ (ZU]> Alik”f”{O}XQ,E) }
=0

Before giving the proof of Theorem 1, we need some preliminary results.

PROPOSITION 2. Let A € L(E), B V(R,E) and v € C1(R,E) be such
that Y07 1 [|A™ || zpy < o0 and

v'(t) = A(v(t)) + B(t) inR.
Then v € V(R, E) and for each r > 0 the following inequality holds:
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3) vl < min {( Séléﬁ ”AnHc(E))HU(O)HEe’"”A”u@
n&lNo

+ ((S;g 1A™ || oy Jrer e 43 IIA"Hc(E))||B\|[—mLEv
nelNo n=0

e ((sup 147 e llo@)]1 + (Z 1A e ) IBllo.s) |-

where we put ||A°|| gy = 1.

Proof. First, observe that sup,cy [|A"]z(5) < Yooy |A™ ]| 2(r) < 0.
Since B € C*(R, E) we get v € C°(R, E) and, arguing by induction, we
have

m—1

oM (t) = A" (u(t) + Y AN(BITN () + BT (1)
j=1
for all t € R and m € N with m > 2. Now, fix any » > 0. We get
[ (#)]| 2

m—1

1A™ |2y llo@) e + Y 1472 |B D (@) |5 + 1BV (#)lle

Jj=1

IN

< sup 4"y sup o)l + (314 eqw) + 1) 1Bli-ror.o

el—r,r ne1

for each t € [—r,r] and m > 2. It is easy to see that the last inequality also
holds for ¢ € [—r,r] and m = 1. Hence

o™ @)l
< max{1,sup [ A"y} s Jo®)lle + (3 14 e ) 1Bl rm.m
neN te[—r,r] n—0

for each t € [—r,r] and m € Ny. Consequently, v € V(R, E) and
@) lolli=—rre

< swp 147 eqm) swp [oe + (314" ) 1Bli-ro.e
n€Ng

el—r,r n=0

for each r > 0. In particular, by (4) we get
[vllos < (sup 147 L) 0OV + (3 14" e ) 1Bl
nelo n=0

By Proposition 2 of [4] we have |[v|[(—, ],z < €"[|v]|o,, hence
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) Ioli-ros i
§€T sup A" (0 + A" B '
((sup 14" o) IOl + (32 147 e ) 1Bl

On the other hand, since v(t) = v(0) + Sg A(v(T))dr + Sg B(7) dr we get

t
@)z < vO)le +7[[Blli—rm.e + HAIIaE)( Vvl dT(
0

for every t € [—r,r]. By Gronwall’s lemma, we get

(6) lo@)lle < (0Ol + 71 Bll—r..z) e 14
for all t € [—r,r]. By (4) and (6) we get

(M Moll=rm,e

< (sup |4 z(g)) [0(0) || g €7l ecm
neNg

o0
+ <(SH£ |A™ | iy JreIAlee 3 HAnHL(E)>HB”[—r,r},E
nelo n=0

Our claim follows easily from (5) and (7). =

We point out that the operator A satisfies Y | [|A"||z(g) < oo if, for
instance, ||Aflzg) < 1 or if there is some m € N such that A™ = 0 for
all m > m. When the former situation occurs, Proposition 2 reduces to
Proposition 4 of [4], while in the latter case from Proposition 2 we get

@) Mollrm.e

< : J Tl Allz ()
< min {(|_max 47|z [0(0)1 e

+ (( max HA]HL(E) yreriidllece 4+ Z ”Aj”ﬁ(E)) | Bll{=rr.E5
7=0

0<j<m
' m—1 '
e ((, ma 147]Lcqe)lwO) 1+ ( > 147 es) ) 1Bllo.x) }-
=

PROPOSITION 3. Let k € N with k > 2, and let Ag, Ay, ..., Ap—1 € L(E)
be pairwise commuting operators. Assume that there exists m* €N such that
A}”* =0 for each j =0,1,...,k— 1. Let A\ > 0, and consider the operator
A: EF — E* defined by

k—1
A(y) = <Ay17 >\y27 ERE) )\yk—ly Z Aj7k+1"4j (y])>
j=0
for each y = (Yo, Y1, .., yx—1) € E¥. Then A™ =0 for m = k*m
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Proof. We divide the proof into several steps.

First step. Let y = (vo,¥1,.--,%x_1) € E¥ and s € {1,...,k} be
fixed. Let us show that if one puts A*(y) = (zo,z1,...,2Z5—1), then the
vector z; can be represented in the following way:

(9) Z ,U] m n] m, OAn] m,1 N AZﬁan,k—l (yr(j,m))

m=1

if j =k—s,....,k—1 (with m; > 1, and z;:olnjmJ > 1, r(j,m) €
{0,1,...,k — 1} for each m =1,...,m;), and

s
a:j = )\ yj+s

ifj=0,...,k—s—1 (if s < k). To prove our claim, we argue by induction
on s. Of course, our claim is true for s = 1. Now, assume that it is true for
s =1 (with ¢ < k) and let us show that it remains true for s = i + 1. By
assumption, if we put A(y) = (Zo,T1,...,Tx_1), then we have

Zugm AT AT AT (Y o)

if j =k —1, k—l(w1thm]21andzlon]ml>1 r(j,m) €
{0,1,...,k —1}f0reachm—1 m;), and
@‘:)\iyjﬂ'

if j=0,...,k—i—1. Put A" (y) = (wo,ws,...,wr_1). We get
-1
Wy_1 = AR A 4 (Fg)
=0
i—1 A
= AR A (N yayi)
d=0

N

A

md

= kHAd(ZMd ()AL ATt ATk (yf(d,m)))

5>
d=k—1i
k—i—1
— Z )\d—k+i+1Ad(yd+i)
d=0
5>
d=k—

md

S AR i () Ag (AT AT AR (),

im=1

hence it is easily seen that wy_; is of the form (9). Now, let j € {k —i — 1,
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ook —2}. We get
41

e~ o ~ Njt+1,m,0 ATj+1,m,1 i1, m, k—1
wj = AT =AY fem(A)AgT A AT Wr(+1,m))s
m=1

hence wj is of the form (9) even for j = k—i—1,...,k—2. Thus, ifi = k-1,
our claim follows. If ¢ < k — 1, for each 7 =0,...,k — 7 — 2 we have

w; = )\%j+1 = )\i+1yj+i+1a
as desired.

Second step. We prove that for each fixed y = (yo,91,.-.,Yk—1) €
E*¥ and s € N, if we put A%*(y) = (20,21,...,2k_1), then for each j €
{0,1,...,k — 1} the vector z; can be represented in the following way:

bj
z =Y 0jm(NAGT AP A (Y om))
m=1
with b; > 1 and z;:ol Pjm,i > S, v(j,m) € {0,1,...,k — 1} for each m =
1,...,b;. Again, we argue by induction. First, we observe that by the first
part of the proof, if we put A*(y) = (uo,uy,...,ux_1), then for each j =
0,1,...,k — 1 the vector u; can be represented in the form

m;
uj; = Z ﬁj,m()\)Agj’m’OA?j’m’l o Azﬁqhk_l(yf(j,m))

m=1
with m; > 1 and Z;:ol jmag > 1, 7(j,m) € {0,1,...,k — 1} for each
m = 1,...,m;, hence our claim is true for s = 1. Assume that it is true

for s = 4, and let us show that it is true for s = i + 1. Thus, if we put
A*(y) = (20,21, ..,2k-1), then for each j = 0,1,...,k — 1 the vector Z;
can be represented in the following way:

b
(10) 2= Grm(NAG AT AT (i m))
m=1
with Ej > 1 and Zf;olﬁjm,l > 4, v(j,m) € {0,1,...,k — 1} for each
m = 1,...,b;. From the first part of the proof, if we put AGTV¥(y) =
AR (A (y)) = (W, Wy, . .., Wk_1), then for each 5 =0,1,...,k — 1 we have
By = 3 (N AP AT ATE B )
m=1

with m; > 1 and Z;:ol Njma > 1, 7(j,m) € {0,1,...,k — 1} for each
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m=1,...,m;. By (10), for each j =0,1,...,k — 1 we get

T(J m)

Z Z ,u]m Uﬁ(j,m),d()‘)

m=1

n],m,O"l'pr(g,m),d,O j,m,1+Pa(j,m),d,1 Ajm, k—1FPa(j,m),d,k—1
Ay Ay AL (Yo (jm).d))-
Since for each m € {1,...,m;} and d € {1,...,b;(j,m)} We have Zl o0 Mjm,l
+ Di(jm),de = 1+ 1, our clalm follows.

Third step. We claim that Akjm* = 0. To see this, choose any y =
(y07y17 s ayk—l) € Ek If we put Ak " (y) = ({&07&;17 s awk—1)7 from the
second part of the proof we see that for each j = 0,1,...,k — 1 the vector
w; can be represented in the following way:

i
By = D Fym(WAG ™ AP AP (Y
m=1

with Ej > 1 and Zfz_olfpvj,m,l > km*, v(j,m) € {0,1,...,k — 1} for each
m=1,... ,gj. Now, it is easy to see that for each fixed j € {0,1,. -1}
and m € {1,... ,gj} there exists | € {0,1,...,k — 1} such that p; . 7 > m*
Hence, we conclude that w; = 0 for all j = 0,1,...,k — 1. ThlS completes
the proof. m

PROPOSITION 4. Let k € N and let Ay, Ay, ..., Ax_1 € L(E) be pairwise
commuting operators. Assume that there exists m* € N such that AT =
0 for each 5 = 0,1,...,k — 1. Then for each B € V(R,E) and for each

wo, W1, ..., wWg—1 € E, there exists a unique v € V(R, E) such that
k— .
(1) v(’f)(t) = Zj:[} A;j(wD () + B(t) forallt € R,
v (0) = w; forj=0,1,...,k—1.

Moreover, if m := k*>m*, then for each fized v > 0 and X > 0, if one puts
k—1
cA = max {A, > AJ—’f+1|ijH£(E)},
j=0
one has

(12) osglgaﬁi—l)‘ﬁ””(i)”[fm,E

< mi C] )\—i ) rca
= i {(ogrg%a%{fl 4) 0<isho1 lwill e e
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—_

m

[ \ppTCA —~ 1-k| g
(g W™+ 2 )N Bl
m—1
" ' iy i\ \1—F
(s b 2me Ao+ (3 AN I}
]:

Proof. If K = 1, our claim follows by Picard-Lindel6f’s theorem and
Proposition 2. Now, let k£ > 2, and consider the space E* endowed with the
norm

il = max lyille,

where y = (yo,y1,...,Yk—1). Fix A >0, and let A : E¥ — E* be defined by
setting

k—1
A(y07 Y1, .- ayk—l) = <)‘y17 >\y27 e a/\yk—ly Z AJ?kJrlA](y]))
7=0

for each y € E*. Now, observe that for each y € E* one has
k—1
[l <max {A SN 4, e Hivlle = eallyllzn.
j=0

Thus, A € L(E*) and [|A||zgr) < ca. By Proposition 3 one has A™ = 0,
where m = k*>m*. By Picard-Lindel6f’s theorem, there exists a unique v €
Ck(R, E) such that

{v(k)(t) = Y0 A0 () + B(t) for t € R,
09 (0) = w; forall j =0,1,...,k— 1.
Let I' : R — E* and w : R — E* be defined by setting for each t € R,
I'(t) =(0,0,..., A% B(1)),
w(t) = (), \"2' (), \720" (1), ..., A Ru=D (1)),
It is easy to see that I' € V(R, E¥), w € CY(R, E¥) and
W(t)=Aw(t))+ I'(t) forallteR.

By Proposition 2 we get w € V(R, E¥), hence v € V(R, E). Moreover, (8)
gives

o208 A0 o = ol

< 3 J 7’||A||L(Ek>
< min {(_max [ 47]|gpn) |(0)] g ¢
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0<j<m—1

+ ((_max HAJ'ul;(Ek))re’“”A”w%+ZHAJuL(Ek)) Pl 0
0

H

m—

" ((, max [147]l el (0) 1 + ( > 147 ey ) 1T Mo, ) }
]:
for every > 0. Since || A7 || z(pry < HA”g(Ek <, foreach j=1,...,m—1,

our claim follows at once. m

Proof of Theorem 1. First, we denote by F1,..., F), the elements
of the set {Aj o :Ajoa#0, j=0,....,k—1, a € Nj, || <m}. Fix f €
V(R E) and @g, 1,-..,0k-1 € V(R E), where the space V(R", E)
will be considered with any norm || - || g. For each j = 0,1,...,k — 1,
veV(R" E) and z € R", let

— Y Aja(D(x)).

laf<m

By Proposition 6 of [4] we have T; € L(V(R",E)) and ||T}|z(v®r gy <
ngm | Aj.allz(p)- Consider the problem

wU)(O):@j for j =0,1,...,k—1,
where ¥ : V(R,V(R",E)) — V(R""! E) is the function defined as in
Proposition 3 of [4]. Namely, ¥(g)(t,z) = g(t)(z) for ¢ € V(R,V(R™, E)),
t € R, and x € R". Now, it is easily seen that the operators T} are pairwise
commuting. We claim that

||ijq||L(V(Rn7E)) =0 foreachj=0,1,...,k— 1.

To see this, let j € {0,1,...,k — 1}, v € V(R™, E) and z € R" be fixed,
and let {Aj7a(j7i)}fil be the elements of the family {Aj,a}aeNg,|a\§m that
are different from the origin of £(E). Thus, we have

Tj(v)(z) = — Z Aj (i (D0 Du()).

i=1
Now we show that for each h € N the vector T]h(v)(a:) can be represented
as follows:
b(h)
h o h r(h,l,1) 47(h,l,2)
(14) T} ()@) = (1" 3 AT ATl
=1

r(h,l,s; r(h,l,1)a(j, r(h,l,2)x r(n,t,85)al],8;
AL (Dr(nDaGa) (a2 riisalios)y(z))
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for suitable b(h) € N and r(h,l,1),r(h,1,2),...,7(h,l,s;) € N with
> r(hli)=h foreach I €{1,...,b(h)}.

i=1

We argue by induction. Of course, our claim is true for h=1, with r(1,1,d)=
1if d = 1, while r(1,1,d) = 0 if d # [. Now, assume that our claim is true
for some h € N. We have

T+ (v) ()

=T (Tgh(?f))(x) == Z Aj,a(j,i)(Da(j’i)Tjh(’U)(x))

i1
Sj b(h) (h,1,1) (h,1,2)

. h+1 r(h,t, T{h,t,

= D (DM Y A ATy
i=1 =1

_Agj%vz))AjJ(Dam‘)Dr(h,l,1)a<ay1)+r<h,l,2)a(j,2)+...+r<h,l,sj)a<j,sj)v(x))_
Now, it is easy to see that Tjhﬂ(v)(a:) is also of the form (14). Hence, our
claim is true for h + 1, hence it is true for all h € N. In particular, if
h = pg, the representation (14) holds, with >_77, r(h,l,i) = pg for each
fixed I € {1,...,b(pq)}. Observe that, for each fixed [ € {1,...,b(pq)}, we
have

A’r‘(pqylyl)Af(p‘Zlvz) AT(pq’l’Sj) = Ffl e ng

G000 AaG2)  Aates) T
with
p Sj
Y 4= r(pgl,d) = pg.
=1 d=1

Of course, this implies that there exists ¢ € {1,...,p} such that ¢; > 7,
hence F'* = 0. Therefore, for each fixed [ € {1,...,b(gh)}, the operator

’F(p(j,l,l) 'r(p(j,l,2) T(pfilv*g )
Ajaa(]vl) Ajva(j=2) e Ajaa(]vsjj)

identically vanishes, hence Tjh(v) (£)=0g. The arbitrariness of v € V(R", E)
and x € R" gives

HT]pq”L(v(Rn,E)) =0 foreachj=0,1,...,k—1.

By Proposition 4 there exists a unique w € V(R, V(R", E)) satisfying (13).
Now, if t € R and x € R”, we have
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k-1
w® (t)(2) = TPt 2) =D (T 0wD)(t,x) + f(t,x)
k-1 = A
= =3 Y A (DD () (@) + f(t, ),

=0 |a|<m
w(0)(z) = pj(x) forall j=0,1,...,k— 1.

If we put u = ¥(w), observing that by Proposition 3 of [4] we have DJ¥(w) =
¥ (D’w), for each t € R and z € R™ we get

k—1 j

Dfu(t’ T) + Zj:[] Z\odgm AJ',a(DiDg’LL(t, z)) = f(t, x),
Du(0,z) = p;(xz) forall j=0,1,...,k—1.

Hence, u is a solution of problem (2). Conversely, reasoning as in [4] one can

show that if u solves (2), then u = u. By Proposition 4, if 5 := k?pg, r > 0

and A > 0, we get

OSIanalg{—l AT Hw(l) H[fr,r},V(R”,E)

< . J —1 . " ro
< mm{(ogg_lff ) o max (A gillvee.m)e

5—1
+(( max ol + 3 0 NN TFOT v,
=0

0<j<s—1

T ] —Z ' .
¢ ((max %), maxe O gl )

+ (52_:1 Jj)Al_k||¥7_1(f)‘|0,V(R”,E)>}

J=0

< . j —1 . ro
< min {(, max o7) max (A lilo.p)e

5—1
VAP o4 APl
+ <(0§I§l§a§{710 )Te +]Z_:OU > Hf”[—r,r]xQ,Ea

T ] i '
c <(0§1§§(_1J )OSI?galil(/\ lpille,z)

+ (faj)xl—k||f||{owﬂ)},

§=0
where {2 is any non-empty bounded subset of R™. Since
HDz“uH[fT,r}XQ,E = Hw(i)H[fr,r],V(R”,E)a

our claim follows. m
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To conclude, we now present a simple example of application of The-
orem 1 to integro-differential equations. Let Y C R™ (m € N) be a non-
empty compact set. Following [4], denote by Vo(R™ x Y) the space of all
functions u : R™ x Y — R such that u(-,y) € C*(R") for each y € Y,
D¢y e C°(R™ x Y) for each o € NI and

sup  sup  [Dju(z,y)| < oo
€N (z,y)eN2xY

for each bounded set 2 C R™. Also recall ([4], Proposition 8) that if, for
u € V(R™",CY)) (C°(Y) is endowed with the usual sup-norm), ¥, (u)
denotes the function, from R™ x Y into R, defined by

Un(u)(z,y) =u(@)(y) (¢eR", yeY),
then ¥, (u) € Vp(R™ x Y), the mapping u — ¥, (u) is surjective, and, for
each o € N{J, one has D, (u) = ¥, (D%u).

THEOREM 2. Let k,n,m € N and let {gj.a}j=0,...k—1,aeNy |a|<m be @
family of continuous real functions on'Y each of which satisfies SY 9j,a(y) dy
= 0. Then, for each f € Vo(R"™ xY) and o, ¢1,...,0x-1 € Vo(R*" x Y),
there exists a unique function u € Vo(R"! x Y) such that, for each t € R,
z€R™ andy €Y, one has

{ Dfu(t,x,y) + Zf;é z|o¢\§m <SY D{Dgu(t7xa£) d£>gj,a(y) = f(t,x,y),
Diu(O,:E,y):go](x,y), ]:07>k_1

Proof. For each j =0,...,k -1, a € N, let A;, be the element of
L(C°(Y)) defined by putting

Aia®)w) = ([ v(©) d€)gjalv)

Y

forallv € C°(Y) and y € Y. Clearly, Aja0Aj o = Aji qr0Aj o =0. Conse-
quently, by Theorem 1, there exists a unique function w € V(R"*1, C°(Y))
such that, for each t € R and « € R", one has

Dfw(t,2) + S52 Xjajem Ara(DIDZw(t, ) = Wk (£)(t, ),
Diw(0,2) = 0, (,)(w), 5 =0,... .k —1.

Then the function u = ¥, 11 (w) satisfies the conclusion. m
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