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Partial differential equations in Banach spaces

involving nilpotent linear operators

by Antonia Chinǹi and Paolo Cubiotti (Messina)

Abstract. Let E be a Banach space. We consider a Cauchy problem of the type
{

Dkt u+
∑k−1
j=0

∑

|α|≤mAj,α(D
j
tD
α
xu) = f in Rn+1,

D
j
tu(0, x) = ϕj(x) in Rn, j = 0, . . . , k − 1,

where each Aj,α is a given continuous linear operator from E into itself. We prove that if
the operators Aj,α are nilpotent and pairwise commuting, then the problem is well-posed

in the space of all functions u ∈ C∞(Rn+1, E) whose derivatives are equi-bounded on
each bounded subset of Rn+1.

Introduction. Let k,m, n ∈ N and let (E, ‖ · ‖E) be a real or complex
Banach space. Following [4], we denote by V (Rn, E) the space of all functions
u ∈ C∞(Rn, E) such that, for every non-empty bounded set Ω ⊆ Rn, one
has

‖u‖Ω,E := sup
α∈Nn

0

sup
x∈Ω

‖Dαu(x)‖E < ∞,

where Dαu = ∂α1+...+αnu/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) and N0 =
N ∪ {0}.

In the present paper, we are interested in the well-posedness in the space
V (Rn, E) of the Cauchy problem

(1)

{
Dk

t u +
∑k−1

j=0

∑
|α|≤m Aj,α(Dj

t D
α
x u) = f in Rn+1,

Dj
t u(0, x) = ϕj(x) in Rn, j = 0, . . . , k − 1,

where each Aj,α is a given continuous linear operator from E into itself. We
denote by L(E) the space of all continuous linear operators from E into
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itself, endowed with the usual norm

‖A‖L(E) = sup
‖v‖E≤1

‖A(v)‖E .

Apparently, the only previous result on this subject is Theorem 1 of [4],
where one assumes that

k−1∑

j=0

∑

|α|≤m

‖Aj,α‖L(E) < 1.

We wish here to prove another, independent result supposing that the oper-
ators Aj,α are nilpotent and pairwise commuting. However, a complete char-
acterization of the well-posedness of the problem (1) in the space V (Rn, E)
remains still unknown.

We believe that such a characterization should be quite difficult. To
support this, we now discuss a particularly simple case which shows the
peculiarity of working in the space V (Rn, E) rather than in the other spaces
usually considered in the theory of linear partial differential equations.

Let σ be a non-negative real number. Denote by Γ (σ)(R2) the (real)
Gevrey class in R2 of index σ. That is to say, Γ (σ)(R2) is the class of all real
functions u ∈ C∞(R2) such that, for every non-empty bounded set Ω ⊆ R2,
one has

inf
λ>0

sup
(α,β)∈N2

0

sup
(t,x)∈Ω

(
1

(α + β)!

)σ

λα+β

∣∣∣∣
∂α+βu(t, x)

∂tα∂xβ

∣∣∣∣ < ∞.

Recall, in particular, that Γ (1)(R2) coincides with the class of analytic func-
tions in R2. Also, observe that V (R2, R) ⊆ Γ (0)(R2).

Given a real number a, consider now the differential operator Pa : C∞(R2)
→ C∞(R2) defined by

Pa(u) =
∂ku

∂tk
+ a

∂mu

∂xm
.

Then, according to the classical work of Malgrange [3], we have

Pa(C∞(R2)) = C∞(R2) for every a ∈ R.

Analogously, we have

Pa(Γ (σ)(R2)) = Γ (σ)(R2) for every a ∈ R and σ ∈ [0, 1[ ∪ ([1,∞[∩Q).

Precisely, this follows from Theorems 9.4 and 9.6 of [5] (see also p. 408 and
pp. 467–468) when σ ∈ [0, 1[, and from Theorem 4.1 of [1] when σ∈ [1,∞[∩Q

(in the case σ = 1 the result was previously proved in [2]).
Now, we come to the space V (R2, R) (for short V (R2)). On the basis of

Theorem 4 of [4], we have

Pa(V (R2)) = V (R2) if and only if a 6= ±1.
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1. The result. Our result is the following.

Theorem 1. Let k, n,m ∈ N, and let {Aj,α}j=0,...,k−1, α∈Nn
0 , |α|≤m be a

family of pairwise commuting elements of L(E) such that for some q ∈ N

one has

‖Aq̄
j,α‖L(E) = 0 for each j = 0, 1, . . . , k − 1 and α ∈ Nn

0 with |α| ≤ m.

Then for each f ∈ V (Rn+1, E) and each ϕ0, ϕ1, . . . , ϕk−1 ∈ V (Rn, E) there

exists a unique function u ∈ V (Rn+1, E) such that for each t ∈ R and each

x ∈ Rn one has

(2)

{
Dk

t u(t, x) +
∑k−1

j=0

∑
|α|≤m Aj,α(Dj

t D
α
xu(t, x)) = f(t, x),

Dj
t u(0, x) = ϕj(x), j = 0, . . . , k − 1.

Moreover , if p is the cardinality of the set {Aj,α : Aj,α 6= 0, j = 0, . . . , k − 1,
α ∈ Nn

0 , |α| ≤ m} and s := k2pq, then for each bounded set Ω ⊆ Rn, and

each r ≥ 0 and λ > 0, if one puts

σ := max
{

λ,

k−1∑

j=0

∑

|α|≤m

λj−k+1‖Aj,α‖L(E)

}
,

one has the following inequality :

max
0≤i≤k−1

λ−i‖Di
tu‖[−r,r]×Ω,E

≤ min
{

( max
0≤j≤s̄−1

σj) max
0≤i≤k−1

(λ−i‖ϕi‖Ω,E)erσ

+
(
( max
0≤j≤s̄−1

σj)rerσ +
s̄−1∑

j=0

σj
)
λ1−k‖f‖[−r,r]×Ω,E,

er
(
( max
0≤j≤s̄−1

σj)( max
0≤i≤k−1

λ−i‖ϕi‖Ω,E)

+
( s̄−1∑

j=0

σj
)

λ1−k‖f‖{0}×Ω,E

)}
.

Before giving the proof of Theorem 1, we need some preliminary results.

Proposition 2. Let A ∈ L(E), B ∈ V (R, E) and v ∈ C1(R, E) be such

that
∑∞

n=1 ‖A
n‖L(E) < ∞ and

v′(t) = A(v(t)) + B(t) in R.

Then v ∈ V (R, E) and for each r ≥ 0 the following inequality holds:
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(3) ‖v‖[−r,r],E ≤ min
{
( sup
n∈N0

‖An‖L(E))‖v(0)‖Eer‖A‖L(E)

+
(
( sup
n∈N0

‖An‖L(E))re
r‖A‖L(E) +

∞∑

n=0

‖An‖L(E)

)
‖B‖[−r,r],E,

er
(
( sup
n∈N0

‖An‖L(E))‖v(0)‖E +
( ∞∑

n=0

‖An‖L(E)

)
‖B‖0,E

)}
,

where we put ‖A0‖L(E) = 1.

P r o o f. First, observe that supn∈N ‖An‖L(E) ≤
∑∞

n=1 ‖A
n‖L(E) < ∞.

Since B ∈ C∞(R, E) we get v ∈ C∞(R, E) and, arguing by induction, we
have

v(m)(t) = Am(v(t)) +

m−1∑

j=1

Aj(B(m−j−1)(t)) + B(m−1)(t)

for all t ∈ R and m ∈ N with m ≥ 2. Now, fix any r ≥ 0. We get

‖v(m)(t)‖E

≤ ‖Am‖L(E)‖v(t)‖E +
m−1∑

j=1

‖Aj‖L(E)‖B
(m−j−1)(t)‖E + ‖B(m−1)(t)‖E

≤ sup
n∈N

‖An‖L(E) sup
t∈[−r,r]

‖v(t)‖E +
( ∞∑

n=1

‖An‖L(E) + 1
)
‖B‖[−r,r],E

for each t ∈ [−r, r] and m ≥ 2. It is easy to see that the last inequality also
holds for t ∈ [−r, r] and m = 1. Hence

‖v(m)(t)‖E

≤ max{1, sup
n∈N

‖An‖L(E)} sup
t∈[−r,r]

‖v(t)‖E +
( ∞∑

n=0

‖An‖L(E)

)
‖B‖[−r,r],E

for each t ∈ [−r, r] and m ∈ N0. Consequently, v ∈ V (R, E) and

(4) ‖v‖[−r,r],E

≤ sup
n∈N0

‖An‖L(E) sup
t∈[−r,r]

‖v(t)‖E +
( ∞∑

n=0

‖An‖L(E)

)
‖B‖[−r,r],E

for each r ≥ 0. In particular, by (4) we get

‖v‖0,E ≤ ( sup
n∈N0

‖An‖L(E))‖v(0)‖E +
( ∞∑

n=0

‖An‖L(E)

)
‖B‖0,E .

By Proposition 2 of [4] we have ‖v‖[−r,r],E ≤ er‖v‖0,E , hence
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(5) ‖v‖[−r,r],E

≤ er
(
( sup
n∈N0

‖An‖L(E))‖v(0)‖E +
( ∞∑

n=0

‖An‖L(E)

)
‖B‖0,E

)
.

On the other hand, since v(t) = v(0) +
Tt
0
A(v(τ)) dτ +

Tt
0
B(τ) dτ we get

‖v(t)‖E ≤ ‖v(0)‖E + r‖B‖[−r,r],E + ‖A‖L(E)

∣∣∣
t\
0

‖v(τ)‖E dτ
∣∣∣

for every t ∈ [−r, r]. By Gronwall’s lemma, we get

(6) ‖v(t)‖E ≤ (‖v(0)‖E + r‖B‖[−r,r],E) er‖A‖L(E)

for all t ∈ [−r, r]. By (4) and (6) we get

(7) ‖v‖[−r,r],E

≤ ( sup
n∈N0

‖An‖L(E)

)
‖v(0)‖E er‖A‖L(E)

+
(
( sup
n∈N0

‖An‖L(E))re
r‖A‖L(E) +

∞∑

n=0

‖An‖L(E)

)
‖B‖[−r,r],E.

Our claim follows easily from (5) and (7).

We point out that the operator A satisfies
∑∞

n=1 ‖A
n‖L(E) < ∞ if, for

instance, ‖A‖L(E) < 1 or if there is some m ∈ N such that Am = 0 for
all m ≥ m. When the former situation occurs, Proposition 2 reduces to
Proposition 4 of [4], while in the latter case from Proposition 2 we get

(8) ‖v‖[−r,r],E

≤ min
{

( max
0≤j≤m̄−1

‖Aj‖L(E))‖v(0)‖E er‖A‖L(E)

+
(
( max
0≤j≤m̄−1

‖Aj‖L(E))re
r‖A‖L(E) +

m̄−1∑

j=0

‖Aj‖L(E)

)
‖B‖[−r,r],E,

er
(
( max
0≤j≤m̄−1

‖Aj‖L(E))‖v(0)‖E +
( m̄−1∑

j=0

‖Aj‖L(E)

)
‖B‖0,E

)}
.

Proposition 3. Let k ∈ N with k ≥ 2, and let A0, A1, . . . , Ak−1 ∈ L(E)
be pairwise commuting operators. Assume that there exists m∗∈N such that

Am∗

j = 0 for each j = 0, 1, . . . , k − 1. Let λ > 0, and consider the operator

A : Ek → Ek defined by

A(y) =
(
λy1, λy2, . . . , λyk−1,

k−1∑

j=0

λj−k+1Aj(yj)
)

for each y = (y0, y1, . . . , yk−1) ∈ Ek. Then Am̄ = 0 for m = k2m∗.
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P r o o f. We divide the proof into several steps.

F i r s t s t e p. Let y = (y0, y1, . . . , yk−1) ∈ Ek and s ∈ {1, . . . , k} be
fixed. Let us show that if one puts As(y) = (x0, x1, . . . , xk−1), then the
vector xj can be represented in the following way:

(9) xj =

mj∑

m=1

µj,m(λ)A
nj,m,0

0 A
nj,m,1

1 . . . A
nj,m,k−1

k−1 (yr(j,m))

if j = k − s, . . . , k − 1 (with mj ≥ 1, and
∑k−1

l=0 nj,m,l ≥ 1, r(j,m) ∈
{0, 1, . . . , k − 1} for each m = 1, . . . ,mj), and

xj = λsyj+s

if j = 0, . . . , k − s− 1 (if s < k). To prove our claim, we argue by induction
on s. Of course, our claim is true for s = 1. Now, assume that it is true for
s = i (with i < k) and let us show that it remains true for s = i + 1. By
assumption, if we put Ai(y) = (x̃0, x̃1, . . . , x̃k−1), then we have

x̃j =

m̃j∑

m=1

µ̃j,m(λ)A
ñj,m,0

0 A
ñj,m,1

1 . . . A
ñj,m,k−1

k−1 (yr̃(j,m))

if j = k − i, . . . , k − 1 (with m̃j ≥ 1, and
∑k−1

l=0 ñj,m,l ≥ 1, r̃(j,m) ∈
{0, 1, . . . , k − 1} for each m = 1, . . . , m̃j), and

x̃j = λiyj+i

if j = 0, . . . , k − i − 1. Put Ai+1(y) = (w0, w1, . . . , wk−1). We get

wk−1 =

k−1∑

d=0

λd−k+1Ad(x̃d)

=

k−i−1∑

d=0

λd−k+1Ad(λ
iyd+i)

+

k−1∑

d=k−i

λd−k+1Ad

( m̃d∑

m=1

µ̃d,m(λ)A
ñd,m,0

0 A
ñd,m,1

1 . . .A
ñd,m,k−1

k−1 (yr̃(d,m))
)

=

k−i−1∑

d=0

λd−k+i+1Ad(yd+i)

+

k−1∑

d=k−i

m̃d∑

m=1

λd−k+1µ̃d,m(λ)Ad(A
ñd,m,0

0 A
ñd,m,1

1 . . .A
ñd,m,k−1

k−1 (yr̃(d,m))),

hence it is easily seen that wk−1 is of the form (9). Now, let j ∈ {k − i − 1,
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. . . , k − 2}. We get

wj = λx̃j+1 = λ

m̃j+1∑

m=1

µ̃j+1,m(λ)A
ñj+1,m,0

0 A
ñj+1,m,1

1 . . . A
ñj+1,m,k−1

k−1 (yr̃(j+1,m)),

hence wj is of the form (9) even for j = k−i−1, . . . , k−2. Thus, if i = k−1,
our claim follows. If i < k − 1, for each j = 0, . . . , k − i − 2 we have

wj = λx̃j+1 = λi+1yj+i+1,

as desired.

S e c o n d s t e p. We prove that for each fixed y = (y0, y1, . . . , yk−1) ∈
Ek and s ∈ N, if we put Ask(y) = (z0, z1, . . . , zk−1), then for each j ∈
{0, 1, . . . , k − 1} the vector zj can be represented in the following way:

zj =

bj∑

m=1

σj,m(λ)A
pj,m,0

0 A
pj,m,1

1 . . . A
pj,m,k−1

k−1 (yv(j,m))

with bj ≥ 1 and
∑k−1

l=0 pj,m,l ≥ s, v(j,m) ∈ {0, 1, . . . , k − 1} for each m =
1, . . . , bj . Again, we argue by induction. First, we observe that by the first
part of the proof, if we put Ak(y) = (u0, u1, . . . , uk−1), then for each j =
0, 1, . . . , k − 1 the vector uj can be represented in the form

uj =

m̄j∑

m=1

µj,m(λ)A
n̄j,m,0

0 A
n̄j,m,1

1 . . . A
n̄j,m,k−1

k−1 (yr̄(j,m))

with mj ≥ 1 and
∑k−1

l=0 nj,m,l ≥ 1, r(j,m) ∈ {0, 1, . . . , k − 1} for each
m = 1, . . . ,mj , hence our claim is true for s = 1. Assume that it is true
for s = i, and let us show that it is true for s = i + 1. Thus, if we put
Aik(y) = (ẑ0, ẑ1, . . . , ẑk−1), then for each j = 0, 1, . . . , k − 1 the vector ẑj

can be represented in the following way:

(10) ẑj =

b̂j∑

m=1

σ̂j,m(λ)A
p̂j,m,0

0 A
p̂j,m,1

1 . . . A
p̂j,m,k−1

k−1 (yv̂(j,m))

with b̂j ≥ 1 and
∑k−1

l=0 p̂j,m,l ≥ i, v̂(j,m) ∈ {0, 1, . . . , k − 1} for each

m = 1, . . . , b̂j . From the first part of the proof, if we put A(i+1)k(y) =
Ak(Aik(y)) = (ŵ0, ŵ1, . . . , ŵk−1), then for each j = 0, 1, . . . , k − 1 we have

ŵj =

m̂j∑

m=1

µ̂j,m(λ)A
n̂j,m,0

0 A
n̂j,m,1

1 . . . A
n̂j,m,k−1

k−1 (ẑr̂(j,m))

with m̂j ≥ 1 and
∑k−1

l=0 n̂j,m,l ≥ 1, r̂(j,m) ∈ {0, 1, . . . , k − 1} for each
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m = 1, . . . , m̂j . By (10), for each j = 0, 1, . . . , k − 1 we get

ŵj =

m̂j∑

m=1

b̂r̂(j,m)∑

d=1

µ̂j,m(λ) σ̂r̂(j,m),d(λ)

·A
n̂j,m,0+p̂r̂(j,m),d,0

0 A
n̂j,m,1+p̂r̂(j,m),d,1

1 . . . A
n̂j,m,k−1+p̂r̂(j,m),d,k−1

k−1 (yv̂(r̂(j,m),d)).

Since for each m ∈ {1, . . . , m̂j} and d ∈ {1, . . . , br̂(j,m)} we have
∑k−1

l=0 n̂j,m,l

+ p̂r̂(j,m),d,l ≥ i + 1, our claim follows.

T h i r d s t e p. We claim that Ak2m∗

= 0. To see this, choose any y =
(y0, y1, . . . , yk−1) ∈ Ek. If we put Ak2m∗

(y) = (w̃0, w̃1, . . . , w̃k−1), from the
second part of the proof we see that for each j = 0, 1, . . . , k − 1 the vector
w̃j can be represented in the following way:

w̃j =

b̃j∑

m=1

σ̃j,m(λ)A
p̃j,m,0

0 A
p̃j,m,1

1 . . . A
p̃j,m,k−1

k−1 (yṽ(j,m))

with b̃j ≥ 1 and
∑k−1

l=0 p̃j,m,l ≥ km∗, ṽ(j,m) ∈ {0, 1, . . . , k − 1} for each

m = 1, . . . , b̃j . Now, it is easy to see that for each fixed j ∈ {0, 1, . . . , k − 1}

and m ∈ {1, . . . , b̃j} there exists l̃ ∈ {0, 1, . . . , k − 1} such that p̃j,m,l̃ ≥ m∗.
Hence, we conclude that w̃j = 0 for all j = 0, 1, . . . , k − 1. This completes
the proof.

Proposition 4. Let k ∈ N and let A0, A1, . . . , Ak−1 ∈ L(E) be pairwise

commuting operators. Assume that there exists m∗ ∈ N such that Am∗

j =
0 for each j = 0, 1, . . . , k − 1. Then for each B ∈ V (R, E) and for each

w0, w1, . . . , wk−1 ∈ E, there exists a unique v ∈ V (R, E) such that

(11)

{
v(k)(t) =

∑k−1
j=0 Aj(v

(j)(t)) + B(t) for all t ∈ R,

v(j)(0) = wj for j = 0, 1, . . . , k − 1.

Moreover , if m := k2m∗, then for each fixed r ≥ 0 and λ > 0, if one puts

cA = max
{
λ,

k−1∑

j=0

λj−k+1‖Aj‖L(E)

}
,

one has

(12) max
0≤i≤k−1

λ−i‖v(i)‖[−r,r],E

≤ min
{

( max
0≤j≤m̄−1

cj
A) max

0≤i≤k−1
λ−i‖wi‖E ercA
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+
(
( max
0≤j≤m̄−1

cj
A)rercA +

m̄−1∑

j=0

cj
A

)
λ1−k‖B‖[−r,r],E,

er
(
( max
0≤j≤m̄−1

cj
A) max

0≤i≤k−1
λ−i‖wi‖E +

( m̄−1∑

j=0

cj
A

)
λ1−k‖B‖0,E

)}
.

P r o o f. If k = 1, our claim follows by Picard–Lindelöf’s theorem and
Proposition 2. Now, let k ≥ 2, and consider the space Ek endowed with the
norm

‖y‖Ek = max
0≤j≤k−1

‖yi‖E ,

where y = (y0, y1, . . . , yk−1). Fix λ > 0, and let A : Ek → Ek be defined by
setting

A(y0, y1, . . . , yk−1) =
(
λy1, λy2, . . . , λyk−1,

k−1∑

j=0

λj−k+1Aj(yj)
)

for each y ∈ Ek. Now, observe that for each y ∈ Ek one has

‖A(y)‖Ek ≤ max
{
λ,

k−1∑

j=0

λj−k+1‖Aj‖L(E)

}
‖y‖Ek = cA‖y‖Ek .

Thus, A ∈ L(Ek) and ‖A‖L(Ek ) ≤ cA. By Proposition 3 one has Am̄ = 0,
where m = k2m∗. By Picard–Lindelöf’s theorem, there exists a unique v∈
Ck(R, E) such that

{
v(k)(t) =

∑k−1
j=0 Aj(v

(j)(t)) + B(t) for t ∈ R,

v(j)(0) = wj for all j = 0, 1, . . . , k − 1.

Let Γ : R → Ek and ω : R → Ek be defined by setting for each t ∈ R,

Γ (t) = (0, 0, . . . , λ1−kB(t)),

ω(t) = (v(t), λ−1v′(t), λ−2v′′(t), . . . , λ1−kv(k−1)(t)).

It is easy to see that Γ ∈ V (R, Ek), ω ∈ C1(R, Ek) and

ω′(t) = A(ω(t)) + Γ (t) for all t ∈ R.

By Proposition 2 we get ω ∈ V (R, Ek), hence v ∈ V (R, E). Moreover, (8)
gives

max
0≤i≤k−1

λ−i‖v(i)‖[−r,r],E = ‖ω‖[−r,r],Ek

≤ min
{
( max
0≤j≤m̄−1

‖Aj‖L(Ek))‖ω(0)‖Ek er‖A‖
L(Ek)
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+
(
( max
0≤j≤m̄−1

‖Aj‖L(Ek))re
r‖A‖

L(Ek) +

m̄−1∑

j=0

‖Aj‖L(Ek)

)
‖Γ‖[−r,r],Ek ,

er
(
( max
0≤j≤m̄−1

‖Aj‖L(Ek))‖ω(0)‖Ek +
( m̄−1∑

j=0

‖Aj‖L(Ek)

)
‖Γ‖0,Ek

)}

for every r ≥ 0. Since ‖Aj‖L(Ek) ≤ ‖A‖j

L(Ek )
≤ cj

A for each j = 1, . . . ,m−1,

our claim follows at once.

P r o o f o f T h e o r e m 1. First, we denote by F1, . . . , Fp the elements
of the set {Aj,α : Aj,α 6= 0, j = 0, . . . , k − 1, α ∈ Nn

0 , |α| ≤ m}. Fix f ∈
V (Rn+1, E) and ϕ0, ϕ1, . . . , ϕk−1 ∈ V (Rn, E), where the space V (Rn, E)
will be considered with any norm ‖ · ‖Ω,E . For each j = 0, 1, . . . , k − 1,
v ∈ V (Rn, E) and x ∈ Rn, let

Tj(v)(x) = −
∑

|α|≤m

Aj,α(Dαv(x)).

By Proposition 6 of [4] we have Tj ∈ L(V (Rn, E)) and ‖Tj‖L(V (Rn,E)) ≤∑
|α|≤m ‖Aj,α‖L(E). Consider the problem

(13)

{
ω(k)(t) =

∑k−1
j=0 Tj(ω

(j)(t)) + Ψ−1(f)(t) in R,

ω(j)(0) = ϕj for j = 0, 1, . . . , k − 1,

where Ψ : V (R, V (Rn, E)) → V (Rn+1, E) is the function defined as in
Proposition 3 of [4]. Namely, Ψ(g)(t, x) = g(t)(x) for g ∈ V (R, V (Rn, E)),
t ∈ R, and x ∈ Rn. Now, it is easily seen that the operators Tj are pairwise
commuting. We claim that

‖T pq̄
j ‖L(V (Rn,E)) = 0 for each j = 0, 1, . . . , k − 1.

To see this, let j ∈ {0, 1, . . . , k − 1}, v ∈ V (Rn, E) and x ∈ Rn be fixed,
and let {Aj,α(j,i)}

sj

i=1 be the elements of the family {Aj,α}α∈Nn
0 ,|α|≤m that

are different from the origin of L(E). Thus, we have

Tj(v)(x) = −

sj∑

i=1

Aj,α(j,i)(D
α(j,i)v(x)).

Now we show that for each h ∈ N the vector T h
j (v)(x) can be represented

as follows:

(14) T h
j (v)(x) = (−1)h

b(h)∑

l=1

A
r(h,l,1)
j,α(j,1)A

r(h,l,2)
j,α(j,2) . . .

. . . A
r(h,l,sj)

j,α(j,sj)
(Dr(h,l,1)α(j,1)+r(h,l,2)α(j,2)+...+r(h,l,sj)α(j,sj)v(x))
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for suitable b(h) ∈ N and r(h, l, 1), r(h, l, 2), . . . , r(h, l, sj) ∈ N with

sj∑

i=1

r(h, l, i) = h for each l ∈ {1, . . . , b(h)}.

We argue by induction. Of course, our claim is true for h=1, with r(1, l, d)=
1 if d = l, while r(1, l, d) = 0 if d 6= l. Now, assume that our claim is true
for some h ∈ N. We have

T h+1
j (v)(x)

= Tj(T
h
j (v))(x) = −

sj∑

i=1

Aj,α(j,i)(D
α(j,i)T h

j (v)(x))

=

sj∑

i=1

(−1)h+1

b(h)∑

l=1

A
r(h,l,1)
j,α(j,1)A

r(h,l,2)
j,α(j,2) . . .

. . . A
r(h,l,sj)

j,α(j,sj)
Aj,i(D

α(j,i)Dr(h,l,1)α(j,1)+r(h,l,2)α(j,2)+...+r(h,l,sj)α(j,sj)v(x)).

Now, it is easy to see that T h+1
j (v)(x) is also of the form (14). Hence, our

claim is true for h + 1, hence it is true for all h ∈ N. In particular, if
h = pq, the representation (14) holds, with

∑sj

i=1 r(h, l, i) = pq for each
fixed l ∈ {1, . . . , b(pq)}. Observe that, for each fixed l ∈ {1, . . . , b(pq)}, we
have

A
r(pq̄,l,1)
j,α(j,1) A

r(pq̄,l,2)
j,α(j,2) . . . A

r(pq̄,l,sj)

j,α(j,sj)
= F q1

1 . . . F qp
p

with
p∑

i=1

qi =

sj∑

d=1

r(pq, l, d) = pq.

Of course, this implies that there exists i ∈ {1, . . . , p} such that qi ≥ q,
hence F qi

i = 0. Therefore, for each fixed l ∈ {1, . . . , b(qh)}, the operator

A
r(pq̄,l,1)
j,α(j,1) A

r(pq̄,l,2)
j,α(j,2) . . . A

r(pq̄,l,sj)

j,α(j,sj)

identically vanishes, hence T h
j (v)(x)=0E . The arbitrariness of v ∈ V (Rn, E)

and x ∈ Rn gives

‖T pq̄
j ‖L(V (Rn,E)) = 0 for each j = 0, 1, . . . , k − 1.

By Proposition 4 there exists a unique ω ∈ V (R, V (Rn, E)) satisfying (13).
Now, if t ∈ R and x ∈ Rn, we have
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ω(k)(t)(x) = Ψ(ω(k))(t, x) =

k−1∑

j=0

Ψ(Tj ◦ ω(j))(t, x) + f(t, x)

= −

k−1∑

j=0

∑

|α|≤m

Aj,α(Dαω(j)(t)(x)) + f(t, x),

ω(j)(0)(x) = ϕj(x) for all j = 0, 1, . . . , k − 1.

If we put u = Ψ(ω), observing that by Proposition 3 of [4] we have Dj
t Ψ(ω) =

Ψ(Djω), for each t ∈ R and x ∈ Rn we get
{

Dk
t u(t, x) +

∑k−1
j=0

∑
|α|≤m Aj,α(Dj

t D
α
xu(t, x)) = f(t, x),

Dj
t u(0, x) = ϕj(x) for all j = 0, 1, . . . , k − 1.

Hence, u is a solution of problem (2). Conversely, reasoning as in [4] one can
show that if ũ solves (2), then ũ = u. By Proposition 4, if s := k2pq, r ≥ 0
and λ > 0, we get

max
0≤i≤k−1

λ−i ‖ω(i)‖[−r,r],V (Rn,E)

≤ min
{

( max
0≤j≤s̄−1

σj) max
0≤i≤k−1

(λ−i‖ϕi‖V (Rn,E))e
rσ

+
(
( max
0≤j≤s̄−1

σj)rerσ +

s̄−1∑

j=0

σj
)
λ1−k‖Ψ−1(f)‖[−r,r],V (Rn,E),

er
(
( max
0≤j≤s̄−1

σj) max
0≤i≤k−1

(λ−i‖ϕi‖V (Rn,E))

+
( s̄−1∑

j=0

σj
)
λ1−k‖Ψ−1(f)‖0,V (Rn,E)

)}

≤ min
{

( max
0≤j≤s̄−1

σj) max
0≤i≤k−1

(λ−i‖ϕi‖Ω,E)erσ

+
(
( max
0≤j≤s̄−1

σj)rerσ +

s̄−1∑

j=0

σj
)
λ1−k‖f‖[−r,r]×Ω,E,

er
(
( max
0≤j≤s̄−1

σj) max
0≤i≤k−1

(λ−i‖ϕi‖Ω,E)

+
( s̄−1∑

j=0

σj
)
λ1−k‖f‖{0}×Ω,E

)}
,

where Ω is any non-empty bounded subset of Rn. Since

‖Di
t u‖[−r,r]×Ω,E = ‖ω(i)‖[−r,r],V (Rn,E),

our claim follows.
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To conclude, we now present a simple example of application of The-
orem 1 to integro-differential equations. Let Y ⊆ Rm (m ∈ N) be a non-
empty compact set. Following [4], denote by V0(R

n × Y ) the space of all
functions u : Rn × Y → R such that u( · , y) ∈ C∞(Rn) for each y ∈ Y ,
Dα

x u ∈ C0(Rn × Y ) for each α ∈ Nn
0 and

sup
α∈Nn

0

sup
(x,y)∈Ω×Y

|Dα
x u(x, y)| < ∞

for each bounded set Ω ⊆ Rn. Also recall ([4], Proposition 8) that if, for
u ∈ V (Rn, C0(Y )) (C0(Y ) is endowed with the usual sup-norm), Ψn(u)
denotes the function, from Rn × Y into R, defined by

Ψn(u)(x, y) = u(x)(y) (x ∈ Rn, y ∈ Y ),

then Ψn(u) ∈ V0(R
n × Y ), the mapping u → Ψn(u) is surjective, and, for

each α ∈ Nn
0 , one has Dα

xΨn(u) = Ψn(Dαu).

Theorem 2. Let k, n,m ∈ N and let {gj,α}j=0,...,k−1, α∈Nn
0 ,|α|≤m be a

family of continuous real functions on Y each of which satisfies
T
Y

gj,α(y) dy
= 0. Then, for each f ∈ V0(R

n+1 × Y ) and ϕ0, ϕ1, . . . , ϕk−1 ∈ V0(R
n × Y ),

there exists a unique function u ∈ V0(R
n+1 × Y ) such that , for each t ∈ R,

x ∈ Rn and y ∈ Y , one has
{

Dk
t u(t, x, y) +

∑k−1
j=0

∑
|α|≤m

(T
Y

Dj
t D

α
x u(t, x, ξ) dξ

)
gj,α(y) = f(t, x, y),

Dj
t u(0, x, y) = ϕj(x, y), j = 0, . . . , k − 1.

P r o o f. For each j = 0, . . . , k − 1, α ∈ Nn
0 , let Aj,α be the element of

L(C0(Y )) defined by putting

Aj,α(v)(y) =
( \

Y

v(ξ) dξ
)
gj,α(y)

for all v ∈ C0(Y ) and y ∈ Y . Clearly, Aj,α◦Aj′,α′ = Aj′,α′◦Aj,α = 0. Conse-
quently, by Theorem 1, there exists a unique function w ∈ V (Rn+1, C0(Y ))
such that, for each t ∈ R and x ∈ Rn, one has

{
Dk

t w(t, x) +
∑k−1

j=0

∑
|α|≤m Aj,α(Dj

t D
α
xw(t, x)) = Ψ−1

n+1(f)(t, x),

Dj
t w(0, x) = Ψ−1

n (ϕj)(x), j = 0, . . . , k − 1.

Then the function u = Ψn+1(w) satisfies the conclusion.
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