ANNALES POLONICI MATHEMATICI LXV.1 (1996)

Partial differential equations in Banach spaces involving nilpotent linear operators

by ANTONIA CHINNÌ and PAOLO CUBIOTTI (Messina)

Abstract. Let E be a Banach space. We consider a Cauchy problem of the type

$$\begin{cases} D_t^k u + \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} A_{j,\alpha} (D_t^j D_x^{\alpha} u) = f & \text{in } \mathbb{R}^{n+1}, \\ D_t^j u(0,x) = \varphi_j(x) & \text{in } \mathbb{R}^n, \ j = 0, \dots, k-1, \end{cases}$$

where each $A_{j,\alpha}$ is a given continuous linear operator from E into itself. We prove that if the operators $A_{j,\alpha}$ are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions $u \in C^{\infty}(\mathbb{R}^{n+1}, E)$ whose derivatives are equi-bounded on each bounded subset of \mathbb{R}^{n+1} .

Introduction. Let $k, m, n \in \mathbb{N}$ and let $(E, \|\cdot\|_E)$ be a real or complex Banach space. Following [4], we denote by $V(\mathbb{R}^n, E)$ the space of all functions $u \in C^{\infty}(\mathbb{R}^n, E)$ such that, for every non-empty bounded set $\Omega \subseteq \mathbb{R}^n$, one has

$$||u||_{\Omega,E} := \sup_{\alpha \in \mathbb{N}_0^n} \sup_{x \in \Omega} ||D^{\alpha}u(x)||_E < \infty,$$

where $D^{\alpha}u = \partial^{\alpha_1 + \ldots + \alpha_n} u / \partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}$, $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

In the present paper, we are interested in the well-posedness in the space $V(\mathbb{R}^n, E)$ of the Cauchy problem

(1)
$$\begin{cases} D_t^k u + \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} A_{j,\alpha} (D_t^j D_x^{\alpha} u) = f & \text{in } \mathbb{R}^{n+1}, \\ D_t^j u(0,x) = \varphi_j(x) & \text{in } \mathbb{R}^n, \ j = 0, \dots, k-1, \end{cases}$$

where each $A_{j,\alpha}$ is a given continuous linear operator from E into itself. We denote by $\mathcal{L}(E)$ the space of all continuous linear operators from E into

¹⁹⁹¹ Mathematics Subject Classification: Primary 35G10.

Key words and phrases: partial differential equations in Banach spaces, nilpotent operators.

^[67]

itself, endowed with the usual norm

$$||A||_{\mathcal{L}(E)} = \sup_{||v||_E \le 1} ||A(v)||_E.$$

Apparently, the only previous result on this subject is Theorem 1 of [4], where one assumes that

$$\sum_{j=0}^{\kappa-1} \sum_{|\alpha| \le m} \|A_{j,\alpha}\|_{\mathcal{L}(E)} < 1$$

We wish here to prove another, independent result supposing that the operators $A_{j,\alpha}$ are nilpotent and pairwise commuting. However, a complete characterization of the well-posedness of the problem (1) in the space $V(\mathbb{R}^n, E)$ remains still unknown.

We believe that such a characterization should be quite difficult. To support this, we now discuss a particularly simple case which shows the peculiarity of working in the space $V(\mathbb{R}^n, E)$ rather than in the other spaces usually considered in the theory of linear partial differential equations.

Let σ be a non-negative real number. Denote by $\Gamma^{(\sigma)}(\mathbb{R}^2)$ the (real) Gevrey class in \mathbb{R}^2 of index σ . That is to say, $\Gamma^{(\sigma)}(\mathbb{R}^2)$ is the class of all real functions $u \in C^{\infty}(\mathbb{R}^2)$ such that, for every non-empty bounded set $\Omega \subseteq \mathbb{R}^2$, one has

$$\inf_{\lambda>0} \sup_{(\alpha,\beta)\in\mathbb{N}_0^2} \sup_{(t,x)\in\Omega} \left(\frac{1}{(\alpha+\beta)!}\right)^{\sigma} \lambda^{\alpha+\beta} \left|\frac{\partial^{\alpha+\beta}u(t,x)}{\partial t^{\alpha}\partial x^{\beta}}\right| < \infty.$$

Recall, in particular, that $\Gamma^{(1)}(\mathbb{R}^2)$ coincides with the class of analytic functions in \mathbb{R}^2 . Also, observe that $V(\mathbb{R}^2, \mathbb{R}) \subseteq \Gamma^{(0)}(\mathbb{R}^2)$.

Given a real number a, consider now the differential operator $P_a: C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$ defined by

$$P_a(u) = \frac{\partial^k u}{\partial t^k} + a \frac{\partial^m u}{\partial x^m}$$

Then, according to the classical work of Malgrange [3], we have

$$P_a(C^{\infty}(\mathbb{R}^2)) = C^{\infty}(\mathbb{R}^2)$$
 for every $a \in \mathbb{R}$.

Analogously, we have

$$P_a(\Gamma^{(\sigma)}(\mathbb{R}^2)) = \Gamma^{(\sigma)}(\mathbb{R}^2) \quad \text{for every } a \in \mathbb{R} \text{ and } \sigma \in [0, 1] \cup ([1, \infty[\cap \mathbb{Q}).$$

Precisely, this follows from Theorems 9.4 and 9.6 of [5] (see also p. 408 and pp. 467–468) when $\sigma \in [0, 1[$, and from Theorem 4.1 of [1] when $\sigma \in [1, \infty[\cap \mathbb{Q}])$ (in the case $\sigma = 1$ the result was previously proved in [2]).

Now, we come to the space $V(\mathbb{R}^2, \mathbb{R})$ (for short $V(\mathbb{R}^2)$). On the basis of Theorem 4 of [4], we have

$$P_a(V(\mathbb{R}^2)) = V(\mathbb{R}^2)$$
 if and only if $a \neq \pm 1$.

1. The result. Our result is the following.

THEOREM 1. Let $k, n, m \in \mathbb{N}$, and let $\{A_{j,\alpha}\}_{j=0,\ldots,k-1, \alpha \in \mathbb{N}_0^n, |\alpha| \leq m}$ be a family of pairwise commuting elements of $\mathcal{L}(E)$ such that for some $\overline{q} \in \mathbb{N}$ one has

$$\|A_{j,\alpha}^q\|_{\mathcal{L}(E)} = 0 \quad \text{for each } j = 0, 1, \dots, k-1 \text{ and } \alpha \in \mathbb{N}_0^n \text{ with } |\alpha| \le m.$$

Then for each $f \in V(\mathbb{R}^{n+1}, E)$ and each $\varphi_0, \varphi_1, \ldots, \varphi_{k-1} \in V(\mathbb{R}^n, E)$ there exists a unique function $u \in V(\mathbb{R}^{n+1}, E)$ such that for each $t \in \mathbb{R}$ and each $x \in \mathbb{R}^n$ one has

(2)
$$\begin{cases} D_t^k u(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} A_{j,\alpha} (D_t^j D_x^{\alpha} u(t,x)) = f(t,x), \\ D_t^j u(0,x) = \varphi_j(x), \quad j = 0, \dots, k-1. \end{cases}$$

Moreover, if p is the cardinality of the set $\{A_{j,\alpha} : A_{j,\alpha} \neq 0, j = 0, \dots, k-1, \alpha \in \mathbb{N}_0^n, |\alpha| \leq m\}$ and $\overline{s} := k^2 p \overline{q}$, then for each bounded set $\Omega \subseteq \mathbb{R}^n$, and each $r \geq 0$ and $\lambda > 0$, if one puts

$$\sigma := \max\left\{\lambda, \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} \lambda^{j-k+1} \|A_{j,\alpha}\|_{\mathcal{L}(E)}\right\},\$$

one has the following inequality:

$$\begin{aligned} \max_{0 \le i \le k-1} \lambda^{-i} \| D_t^i u \|_{[-r,r] \times \Omega, E} \\ &\le \min \left\{ \left(\max_{0 \le j \le \bar{s}-1} \sigma^j \right) \max_{0 \le i \le k-1} (\lambda^{-i} \| \varphi_i \|_{\Omega, E}) e^{r\sigma} \right. \\ &+ \left(\left(\max_{0 \le j \le \bar{s}-1} \sigma^j \right) r e^{r\sigma} + \sum_{j=0}^{\bar{s}-1} \sigma^j \right) \lambda^{1-k} \| f \|_{[-r,r] \times \Omega, E}, \\ &e^r \left(\left(\max_{0 \le j \le \bar{s}-1} \sigma^j \right) \left(\max_{0 \le i \le k-1} \lambda^{-i} \| \varphi_i \|_{\Omega, E} \right) \right. \\ &+ \left(\sum_{j=0}^{\bar{s}-1} \sigma^j \right) \lambda^{1-k} \| f \|_{\{0\} \times \Omega, E} \right) \right\}. \end{aligned}$$

Before giving the proof of Theorem 1, we need some preliminary results.

PROPOSITION 2. Let $A \in \mathcal{L}(E)$, $B \in V(\mathbb{R}, E)$ and $v \in C^1(\mathbb{R}, E)$ be such that $\sum_{n=1}^{\infty} \|A^n\|_{\mathcal{L}(E)} < \infty$ and

$$v'(t) = A(v(t)) + B(t) \quad in \mathbb{R}.$$

Then $v \in V(\mathbb{R}, E)$ and for each $r \ge 0$ the following inequality holds:

$$(3) \quad \|v\|_{[-r,r],E} \leq \min\left\{ (\sup_{n \in \mathbb{N}_{0}} \|A^{n}\|_{\mathcal{L}(E)}) \|v(0)\|_{E} e^{r\|A\|_{\mathcal{L}(E)}} + \left((\sup_{n \in \mathbb{N}_{0}} \|A^{n}\|_{\mathcal{L}(E)}) r e^{r\|A\|_{\mathcal{L}(E)}} + \sum_{n=0}^{\infty} \|A^{n}\|_{\mathcal{L}(E)} \right) \|B\|_{[-r,r],E},$$
$$e^{r} \Big((\sup_{n \in \mathbb{N}_{0}} \|A^{n}\|_{\mathcal{L}(E)}) \|v(0)\|_{E} + \Big(\sum_{n=0}^{\infty} \|A^{n}\|_{\mathcal{L}(E)} \Big) \|B\|_{0,E} \Big) \Big\},$$

where we put $||A^0||_{\mathcal{L}(E)} = 1$.

Proof. First, observe that $\sup_{n \in \mathbb{N}} ||A^n||_{\mathcal{L}(E)} \leq \sum_{n=1}^{\infty} ||A^n||_{\mathcal{L}(E)} < \infty$. Since $B \in C^{\infty}(\mathbb{R}, E)$ we get $v \in C^{\infty}(\mathbb{R}, E)$ and, arguing by induction, we have

$$v^{(m)}(t) = A^m(v(t)) + \sum_{j=1}^{m-1} A^j(B^{(m-j-1)}(t)) + B^{(m-1)}(t)$$

for all $t \in \mathbb{R}$ and $m \in \mathbb{N}$ with $m \ge 2$. Now, fix any $r \ge 0$. We get $\|v^{(m)}(t)\|_E$

$$\leq \|A^{m}\|_{\mathcal{L}(E)} \|v(t)\|_{E} + \sum_{j=1}^{m-1} \|A^{j}\|_{\mathcal{L}(E)} \|B^{(m-j-1)}(t)\|_{E} + \|B^{(m-1)}(t)\|_{E}$$
$$\leq \sup_{n \in \mathbb{N}} \|A^{n}\|_{\mathcal{L}(E)} \sup_{t \in [-r,r]} \|v(t)\|_{E} + \Big(\sum_{n=1}^{\infty} \|A^{n}\|_{\mathcal{L}(E)} + 1\Big) \|B\|_{[-r,r],E}$$

for each $t \in [-r, r]$ and $m \ge 2$. It is easy to see that the last inequality also holds for $t \in [-r, r]$ and m = 1. Hence

$$\|v^{(m)}(t)\|_E$$

$$\leq \max\{1, \sup_{n \in \mathbb{N}} \|A^n\|_{\mathcal{L}(E)}\} \sup_{t \in [-r,r]} \|v(t)\|_E + \Big(\sum_{n=0}^{\infty} \|A^n\|_{\mathcal{L}(E)}\Big) \|B\|_{[-r,r],E}$$

for each $t \in [-r, r]$ and $m \in \mathbb{N}_0$. Consequently, $v \in V(\mathbb{R}, E)$ and

(4)
$$\|v\|_{[-r,r],E}$$

 $\leq \sup_{n \in \mathbb{N}_0} \|A^n\|_{\mathcal{L}(E)} \sup_{t \in [-r,r]} \|v(t)\|_E + \Big(\sum_{n=0}^\infty \|A^n\|_{\mathcal{L}(E)}\Big) \|B\|_{[-r,r],E}$

for each $r \ge 0$. In particular, by (4) we get

$$\|v\|_{0,E} \le (\sup_{n \in \mathbb{N}_0} \|A^n\|_{\mathcal{L}(E)}) \|v(0)\|_E + \Big(\sum_{n=0}^\infty \|A^n\|_{\mathcal{L}(E)}\Big) \|B\|_{0,E}.$$

By Proposition 2 of [4] we have $||v||_{[-r,r],E} \leq e^r ||v||_{0,E}$, hence

(5) $||v||_{[-r,r],E}$

$$\leq e^{r} \Big((\sup_{n \in \mathbb{N}_{0}} \|A^{n}\|_{\mathcal{L}(E)}) \|v(0)\|_{E} + \Big(\sum_{n=0}^{\infty} \|A^{n}\|_{\mathcal{L}(E)} \Big) \|B\|_{0,E} \Big).$$

On the other hand, since $v(t) = v(0) + \int_0^t A(v(\tau)) d\tau + \int_0^t B(\tau) d\tau$ we get

$$\|v(t)\|_{E} \le \|v(0)\|_{E} + r\|B\|_{[-r,r],E} + \|A\|_{\mathcal{L}(E)} \left|\int_{0}^{s} \|v(\tau)\|_{E} d\tau\right|$$

for every $t \in [-r, r]$. By Gronwall's lemma, we get

(6)
$$\|v(t)\|_E \le (\|v(0)\|_E + r\|B\|_{[-r,r],E}) e^{r\|A\|_{\mathcal{L}(E)}}$$

- for all $t \in [-r, r]$. By (4) and (6) we get
- (7) $||v||_{[-r,r],E}$

$$\leq (\sup_{n \in \mathbb{N}_{0}} \|A^{n}\|_{\mathcal{L}(E)}) \|v(0)\|_{E} e^{r\|A\|_{\mathcal{L}(E)}} + \left((\sup_{n \in \mathbb{N}_{0}} \|A^{n}\|_{\mathcal{L}(E)}) r e^{r\|A\|_{\mathcal{L}(E)}} + \sum_{n=0}^{\infty} \|A^{n}\|_{\mathcal{L}(E)} \right) \|B\|_{[-r,r],E}.$$

Our claim follows easily from (5) and (7). \blacksquare

We point out that the operator A satisfies $\sum_{n=1}^{\infty} ||A^n||_{\mathcal{L}(E)} < \infty$ if, for instance, $||A||_{\mathcal{L}(E)} < 1$ or if there is some $\overline{m} \in \mathbb{N}$ such that $A^m = 0$ for all $m \geq \overline{m}$. When the former situation occurs, Proposition 2 reduces to Proposition 4 of [4], while in the latter case from Proposition 2 we get

$$(8) \|v\|_{[-r,r],E} \le \min\left\{ (\max_{0 \le j \le \bar{m}-1} \|A^{j}\|_{\mathcal{L}(E)}) \|v(0)\|_{E} e^{r\|A\|_{\mathcal{L}(E)}} + \left((\max_{0 \le j \le \bar{m}-1} \|A^{j}\|_{\mathcal{L}(E)}) r e^{r\|A\|_{\mathcal{L}(E)}} + \sum_{j=0}^{\bar{m}-1} \|A^{j}\|_{\mathcal{L}(E)} \right) \|B\|_{[-r,r],E}, \\ e^{r} \left((\max_{0 \le j \le \bar{m}-1} \|A^{j}\|_{\mathcal{L}(E)}) \|v(0)\|_{E} + \left(\sum_{j=0}^{\bar{m}-1} \|A^{j}\|_{\mathcal{L}(E)} \right) \|B\|_{0,E} \right) \right\}.$$

PROPOSITION 3. Let $k \in \mathbb{N}$ with $k \geq 2$, and let $A_0, A_1, \ldots, A_{k-1} \in \mathcal{L}(E)$ be pairwise commuting operators. Assume that there exists $m^* \in \mathbb{N}$ such that $A_j^{m^*} = 0$ for each $j = 0, 1, \ldots, k-1$. Let $\lambda > 0$, and consider the operator $A : E^k \to E^k$ defined by

$$A(y) = \left(\lambda y_1, \lambda y_2, \dots, \lambda y_{k-1}, \sum_{j=0}^{k-1} \lambda^{j-k+1} A_j(y_j)\right)$$

for each $y = (y_0, y_1, \dots, y_{k-1}) \in E^k$. Then $A^{\overline{m}} = 0$ for $\overline{m} = k^2 m^*$.

Proof. We divide the proof into several steps.

First step. Let $y = (y_0, y_1, \ldots, y_{k-1}) \in E^k$ and $s \in \{1, \ldots, k\}$ be fixed. Let us show that if one puts $A^s(y) = (x_0, x_1, \ldots, x_{k-1})$, then the vector x_j can be represented in the following way:

(9)
$$x_j = \sum_{m=1}^{m_j} \mu_{j,m}(\lambda) A_0^{n_{j,m,0}} A_1^{n_{j,m,1}} \dots A_{k-1}^{n_{j,m,k-1}}(y_{r(j,m)})$$

if $j = k - s, \ldots, k - 1$ (with $m_j \ge 1$, and $\sum_{l=0}^{k-1} n_{j,m,l} \ge 1$, $r(j,m) \in \{0, 1, \ldots, k-1\}$ for each $m = 1, \ldots, m_j$), and

$$x_j = \lambda^s y_{j+s}$$

if $j = 0, \ldots, k - s - 1$ (if s < k). To prove our claim, we argue by induction on s. Of course, our claim is true for s = 1. Now, assume that it is true for s = i (with i < k) and let us show that it remains true for s = i + 1. By assumption, if we put $A^i(y) = (\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_{k-1})$, then we have

$$\widetilde{x}_j = \sum_{m=1}^{m_j} \widetilde{\mu}_{j,m}(\lambda) A_0^{\widetilde{n}_{j,m,0}} A_1^{\widetilde{n}_{j,m,1}} \dots A_{k-1}^{\widetilde{n}_{j,m,k-1}}(y_{\widetilde{r}(j,m)})$$

if $j = k - i, \ldots, k - 1$ (with $\widetilde{m}_j \ge 1$, and $\sum_{l=0}^{k-1} \widetilde{n}_{j,m,l} \ge 1$, $\widetilde{r}(j,m) \in \{0, 1, \ldots, k-1\}$ for each $m = 1, \ldots, \widetilde{m}_j$), and

$$\widetilde{x}_j = \lambda^i y_{j+i}$$

if $j = 0, \ldots, k - i - 1$. Put $A^{i+1}(y) = (w_0, w_1, \ldots, w_{k-1})$. We get

$$\begin{split} w_{k-1} &= \sum_{d=0}^{k-1} \lambda^{d-k+1} A_d(\widetilde{x}_d) \\ &= \sum_{d=0}^{k-i-1} \lambda^{d-k+1} A_d(\lambda^i y_{d+i}) \\ &+ \sum_{d=k-i}^{k-1} \lambda^{d-k+1} A_d \Big(\sum_{m=1}^{\tilde{m}_d} \widetilde{\mu}_{d,m}(\lambda) A_0^{\tilde{n}_{d,m,0}} A_1^{\tilde{n}_{d,m,1}} \dots A_{k-1}^{\tilde{n}_{d,m,k-1}}(y_{\tilde{r}(d,m)}) \Big) \\ &= \sum_{d=0}^{k-i-1} \lambda^{d-k+i+1} A_d(y_{d+i}) \\ &+ \sum_{d=k-i}^{k-1} \sum_{m=1}^{\tilde{m}_d} \lambda^{d-k+1} \widetilde{\mu}_{d,m}(\lambda) A_d(A_0^{\tilde{n}_{d,m,0}} A_1^{\tilde{n}_{d,m,1}} \dots A_{k-1}^{\tilde{n}_{d,m,k-1}}(y_{\tilde{r}(d,m)})), \end{split}$$

hence it is easily seen that w_{k-1} is of the form (9). Now, let $j \in \{k - i - 1, \dots, j \in j , j \in \{k - i - 1, \dots, j \in \{k - i - 1, \dots, j \in \{k - i - 1, \dots, j \in j , j \in i , j \in j , j \in j$

 $\ldots, k-2$. We get

$$w_j = \lambda \widetilde{x}_{j+1} = \lambda \sum_{m=1}^{m_{j+1}} \widetilde{\mu}_{j+1,m}(\lambda) A_0^{\widetilde{n}_{j+1,m,0}} A_1^{\widetilde{n}_{j+1,m,1}} \dots A_{k-1}^{\widetilde{n}_{j+1,m,k-1}} (y_{\widetilde{r}(j+1,m)}),$$

hence w_j is of the form (9) even for j = k - i - 1, ..., k - 2. Thus, if i = k - 1, our claim follows. If i < k - 1, for each j = 0, ..., k - i - 2 we have

$$w_j = \lambda \widetilde{x}_{j+1} = \lambda^{i+1} y_{j+i+1},$$

as desired.

Second step. We prove that for each fixed $y = (y_0, y_1, \ldots, y_{k-1}) \in E^k$ and $s \in \mathbb{N}$, if we put $A^{sk}(y) = (z_0, z_1, \ldots, z_{k-1})$, then for each $j \in \{0, 1, \ldots, k-1\}$ the vector z_j can be represented in the following way:

$$z_j = \sum_{m=1}^{o_j} \sigma_{j,m}(\lambda) A_0^{p_{j,m,0}} A_1^{p_{j,m,1}} \dots A_{k-1}^{p_{j,m,k-1}}(y_{v(j,m)})$$

with $b_j \geq 1$ and $\sum_{l=0}^{k-1} p_{j,m,l} \geq s$, $v(j,m) \in \{0, 1, \ldots, k-1\}$ for each $m = 1, \ldots, b_j$. Again, we argue by induction. First, we observe that by the first part of the proof, if we put $A^k(y) = (u_0, u_1, \ldots, u_{k-1})$, then for each $j = 0, 1, \ldots, k-1$ the vector u_j can be represented in the form

$$u_j = \sum_{m=1}^{m_j} \overline{\mu}_{j,m}(\lambda) A_0^{\overline{n}_{j,m,0}} A_1^{\overline{n}_{j,m,1}} \dots A_{k-1}^{\overline{n}_{j,m,k-1}} (y_{\overline{r}(j,m)})$$

with $\overline{m}_j \geq 1$ and $\sum_{l=0}^{k-1} \overline{n}_{j,m,l} \geq 1$, $\overline{r}(j,m) \in \{0,1,\ldots,k-1\}$ for each $m = 1,\ldots,\overline{m}_j$, hence our claim is true for s = 1. Assume that it is true for s = i, and let us show that it is true for s = i + 1. Thus, if we put $A^{ik}(y) = (\hat{z}_0, \hat{z}_1, \ldots, \hat{z}_{k-1})$, then for each $j = 0, 1, \ldots, k-1$ the vector \hat{z}_j can be represented in the following way:

(10)
$$\widehat{z}_{j} = \sum_{m=1}^{b_{j}} \widehat{\sigma}_{j,m}(\lambda) A_{0}^{\widehat{p}_{j,m,0}} A_{1}^{\widehat{p}_{j,m,1}} \dots A_{k-1}^{\widehat{p}_{j,m,k-1}}(y_{\widehat{v}(j,m)})$$

with $\widehat{b}_j \geq 1$ and $\sum_{l=0}^{k-1} \widehat{p}_{j,m,l} \geq i$, $\widehat{v}(j,m) \in \{0,1,\ldots,k-1\}$ for each $m = 1,\ldots,\widehat{b}_j$. From the first part of the proof, if we put $A^{(i+1)k}(y) = A^k(A^{ik}(y)) = (\widehat{w}_0,\widehat{w}_1,\ldots,\widehat{w}_{k-1})$, then for each $j = 0, 1,\ldots,k-1$ we have

$$\widehat{w}_j = \sum_{m=1}^{\hat{m}_j} \widehat{\mu}_{j,m}(\lambda) A_0^{\hat{n}_{j,m,0}} A_1^{\hat{n}_{j,m,1}} \dots A_{k-1}^{\hat{n}_{j,m,k-1}} (\widehat{z}_{\hat{r}(j,m)})$$

with $\widehat{m}_j \geq 1$ and $\sum_{l=0}^{k-1} \widehat{n}_{j,m,l} \geq 1$, $\widehat{r}(j,m) \in \{0,1,\ldots,k-1\}$ for each

 $m = 1, ..., \hat{m}_j$. By (10), for each j = 0, 1, ..., k - 1 we get

$$\widehat{w}_{j} = \sum_{m=1}^{\widehat{m}_{j}} \sum_{d=1}^{\widehat{p}_{\hat{f}(j,m)}} \widehat{\mu}_{j,m}(\lambda) \,\widehat{\sigma}_{\hat{f}(j,m),d}(\lambda) \cdot A_{0}^{\widehat{n}_{j,m,0} + \widehat{p}_{\hat{f}(j,m),d,0}} A_{1}^{\widehat{n}_{j,m,1} + \widehat{p}_{\hat{f}(j,m),d,1}} \dots A_{k-1}^{\widehat{n}_{j,m,k-1} + \widehat{p}_{\hat{f}(j,m),d,k-1}} (y_{\hat{v}(\hat{f}(j,m),d)})$$

Since for each $m \in \{1, \ldots, \widehat{m}_j\}$ and $d \in \{1, \ldots, b_{\widehat{r}(j,m)}\}$ we have $\sum_{l=0}^{k-1} \widehat{n}_{j,m,l} + \widehat{p}_{\widehat{r}(j,m),d,l} \ge i+1$, our claim follows.

Third step. We claim that $A^{k^2m^*} = 0$. To see this, choose any $y = (y_0, y_1, \ldots, y_{k-1}) \in E^k$. If we put $A^{k^2m^*}(y) = (\widetilde{w}_0, \widetilde{w}_1, \ldots, \widetilde{w}_{k-1})$, from the second part of the proof we see that for each $j = 0, 1, \ldots, k-1$ the vector \widetilde{w}_j can be represented in the following way:

$$\widetilde{w}_j = \sum_{m=1}^{b_j} \widetilde{\sigma}_{j,m}(\lambda) A_0^{\widetilde{p}_{j,m,0}} A_1^{\widetilde{p}_{j,m,1}} \dots A_{k-1}^{\widetilde{p}_{j,m,k-1}}(y_{\widetilde{v}(j,m)})$$

with $\tilde{b}_j \geq 1$ and $\sum_{l=0}^{k-1} \tilde{p}_{j,m,l} \geq km^*$, $\tilde{v}(j,m) \in \{0, 1, \dots, k-1\}$ for each $m = 1, \dots, \tilde{b}_j$. Now, it is easy to see that for each fixed $j \in \{0, 1, \dots, k-1\}$ and $m \in \{1, \dots, \tilde{b}_j\}$ there exists $\tilde{l} \in \{0, 1, \dots, k-1\}$ such that $\tilde{p}_{j,m,\tilde{l}} \geq m^*$. Hence, we conclude that $\tilde{w}_j = 0$ for all $j = 0, 1, \dots, k-1$. This completes the proof.

PROPOSITION 4. Let $k \in \mathbb{N}$ and let $A_0, A_1, \ldots, A_{k-1} \in \mathcal{L}(E)$ be pairwise commuting operators. Assume that there exists $m^* \in \mathbb{N}$ such that $A_j^{m^*} =$ 0 for each $j = 0, 1, \ldots, k - 1$. Then for each $B \in V(\mathbb{R}, E)$ and for each $w_0, w_1, \ldots, w_{k-1} \in E$, there exists a unique $v \in V(\mathbb{R}, E)$ such that

(11)
$$\begin{cases} v^{(k)}(t) = \sum_{j=0}^{k-1} A_j(v^{(j)}(t)) + B(t) & \text{for all } t \in \mathbb{R}, \\ v^{(j)}(0) = w_j & \text{for } j = 0, 1, \dots, k-1. \end{cases}$$

Moreover, if $\overline{m} := k^2 m^*$, then for each fixed $r \ge 0$ and $\lambda > 0$, if one puts

$$c_A = \max\left\{\lambda, \sum_{j=0}^{k-1} \lambda^{j-k+1} \|A_j\|_{\mathcal{L}(E)}\right\},\$$

 $one\ has$

(12)
$$\max_{0 \le i \le k-1} \lambda^{-i} \| v^{(i)} \|_{[-r,r],E} \\ \le \min \left\{ (\max_{0 \le j \le \bar{m}-1} c_A^j) \max_{0 \le i \le k-1} \lambda^{-i} \| w_i \|_E e^{rc_A} \right\}$$

$$+ \left((\max_{0 \le j \le \bar{m}-1} c_A^j) r e^{rc_A} + \sum_{j=0}^{\bar{m}-1} c_A^j \right) \lambda^{1-k} \|B\|_{[-r,r],E},$$
$$e^r \left((\max_{0 \le j \le \bar{m}-1} c_A^j) \max_{0 \le i \le k-1} \lambda^{-i} \|w_i\|_E + \left(\sum_{j=0}^{\bar{m}-1} c_A^j \right) \lambda^{1-k} \|B\|_{0,E} \right) \right\}.$$

Proof. If k = 1, our claim follows by Picard–Lindelöf's theorem and Proposition 2. Now, let $k \ge 2$, and consider the space E^k endowed with the norm

$$\|y\|_{E^k} = \max_{0 \le j \le k-1} \|y_i\|_E,$$

where $y = (y_0, y_1, \dots, y_{k-1})$. Fix $\lambda > 0$, and let $A : E^k \to E^k$ be defined by setting

$$A(y_0, y_1, \dots, y_{k-1}) = \left(\lambda y_1, \lambda y_2, \dots, \lambda y_{k-1}, \sum_{j=0}^{k-1} \lambda^{j-k+1} A_j(y_j)\right)$$

for each $y \in E^k$. Now, observe that for each $y \in E^k$ one has

$$||A(y)||_{E^{k}} \le \max\left\{\lambda, \sum_{j=0}^{k-1} \lambda^{j-k+1} ||A_{j}||_{\mathcal{L}(E)}\right\} ||y||_{E^{k}} = c_{A} ||y||_{E^{k}}$$

Thus, $A \in \mathcal{L}(E^k)$ and $||A||_{\mathcal{L}(E^k)} \leq c_A$. By Proposition 3 one has $A^{\overline{m}} = 0$, where $\overline{m} = k^2 m^*$. By Picard–Lindelöf's theorem, there exists a unique $v \in C^k(\mathbb{R}, E)$ such that

$$\begin{cases} v^{(k)}(t) = \sum_{j=0}^{k-1} A_j(v^{(j)}(t)) + B(t) & \text{for } t \in \mathbb{R}, \\ v^{(j)}(0) = w_j & \text{for all } j = 0, 1, \dots, k-1 \end{cases}$$

Let $\Gamma : \mathbb{R} \to E^k$ and $\omega : \mathbb{R} \to E^k$ be defined by setting for each $t \in \mathbb{R}$,

$$\Gamma(t) = (0, 0, \dots, \lambda^{1-k} B(t)),$$

$$\omega(t) = (v(t), \lambda^{-1} v'(t), \lambda^{-2} v''(t), \dots, \lambda^{1-k} v^{(k-1)}(t)).$$

It is easy to see that $\Gamma \in V(\mathbb{R}, E^k)$, $\omega \in C^1(\mathbb{R}, E^k)$ and

$$\omega'(t) = A(\omega(t)) + \Gamma(t)$$
 for all $t \in \mathbb{R}$.

By Proposition 2 we get $\omega \in V(\mathbb{R}, E^k)$, hence $v \in V(\mathbb{R}, E)$. Moreover, (8) gives

$$\max_{0 \le i \le k-1} \lambda^{-i} \|v^{(i)}\|_{[-r,r],E} = \|\omega\|_{[-r,r],E^k}$$
$$\leq \min \left\{ (\max_{0 \le j \le \bar{m}-1} \|A^j\|_{\mathcal{L}(E^k)}) \|\omega(0)\|_{E^k} e^{r\|A\|_{\mathcal{L}(E^k)}} \right\}$$

$$+ \left(\left(\max_{0 \le j \le \bar{m}-1} \|A^{j}\|_{\mathcal{L}(E^{k})} \right) r e^{r\|A\|_{\mathcal{L}(E^{k})}} + \sum_{j=0}^{\bar{m}-1} \|A^{j}\|_{\mathcal{L}(E^{k})} \right) \|\Gamma\|_{[-r,r],E^{k}}$$
$$e^{r} \left(\left(\max_{0 \le j \le \bar{m}-1} \|A^{j}\|_{\mathcal{L}(E^{k})} \right) \|\omega(0)\|_{E^{k}} + \left(\sum_{j=0}^{\bar{m}-1} \|A^{j}\|_{\mathcal{L}(E^{k})} \right) \|\Gamma\|_{0,E^{k}} \right) \right\}$$

for every $r \ge 0$. Since $||A^j||_{\mathcal{L}(E^k)} \le ||A||_{\mathcal{L}(E^k)}^j \le c_A^j$ for each $j = 1, \ldots, \overline{m} - 1$, our claim follows at once.

Proof of Theorem 1. First, we denote by F_1, \ldots, F_p the elements of the set $\{A_{j,\alpha} : A_{j,\alpha} \neq 0, j = 0, \ldots, k-1, \alpha \in \mathbb{N}_0^n, |\alpha| \leq m\}$. Fix $f \in V(\mathbb{R}^{n+1}, E)$ and $\varphi_0, \varphi_1, \ldots, \varphi_{k-1} \in V(\mathbb{R}^n, E)$, where the space $V(\mathbb{R}^n, E)$ will be considered with any norm $\|\cdot\|_{\Omega,E}$. For each $j = 0, 1, \ldots, k-1$, $v \in V(\mathbb{R}^n, E)$ and $x \in \mathbb{R}^n$, let

$$T_j(v)(x) = -\sum_{|\alpha| \le m} A_{j,\alpha}(D^{\alpha}v(x)).$$

By Proposition 6 of [4] we have $T_j \in \mathcal{L}(V(\mathbb{R}^n, E))$ and $||T_j||_{\mathcal{L}(V(\mathbb{R}^n, E))} \leq \sum_{|\alpha| \leq m} ||A_{j,\alpha}||_{\mathcal{L}(E)}$. Consider the problem

(13)
$$\begin{cases} \omega^{(k)}(t) = \sum_{j=0}^{k-1} T_j(\omega^{(j)}(t)) + \Psi^{-1}(f)(t) & \text{in } \mathbb{R}, \\ \omega^{(j)}(0) = \varphi_j & \text{for } j = 0, 1, \dots, k-1, \end{cases}$$

where $\Psi : V(\mathbb{R}, V(\mathbb{R}^n, E)) \to V(\mathbb{R}^{n+1}, E)$ is the function defined as in Proposition 3 of [4]. Namely, $\Psi(g)(t, x) = g(t)(x)$ for $g \in V(\mathbb{R}, V(\mathbb{R}^n, E))$, $t \in \mathbb{R}$, and $x \in \mathbb{R}^n$. Now, it is easily seen that the operators T_j are pairwise commuting. We claim that

$$||T_{j}^{p\bar{q}}||_{\mathcal{L}(V(\mathbb{R}^{n},E))} = 0$$
 for each $j = 0, 1, \dots, k-1$.

To see this, let $j \in \{0, 1, \ldots, k-1\}$, $v \in V(\mathbb{R}^n, E)$ and $x \in \mathbb{R}^n$ be fixed, and let $\{A_{j,\alpha(j,i)}\}_{i=1}^{s_j}$ be the elements of the family $\{A_{j,\alpha}\}_{\alpha \in \mathbb{N}_0^n, |\alpha| \le m}$ that are different from the origin of $\mathcal{L}(E)$. Thus, we have

$$T_{j}(v)(x) = -\sum_{i=1}^{s_{j}} A_{j,\alpha(j,i)}(D^{\alpha(j,i)}v(x)).$$

Now we show that for each $h \in \mathbb{N}$ the vector $T_j^h(v)(x)$ can be represented as follows:

(14)
$$T_{j}^{h}(v)(x) = (-1)^{h} \sum_{l=1}^{b(h)} A_{j,\alpha(j,1)}^{r(h,l,1)} A_{j,\alpha(j,2)}^{r(h,l,2)} \dots \dots \dots A_{j,\alpha(j,s_{j})}^{r(h,l,s_{j})} (D^{r(h,l,1)\alpha(j,1)+r(h,l,2)\alpha(j,2)+\dots+r(h,l,s_{j})\alpha(j,s_{j})} v(x))$$

for suitable $b(h) \in \mathbb{N}$ and $r(h, l, 1), r(h, l, 2), \dots, r(h, l, s_j) \in \mathbb{N}$ with

$$\sum_{i=1}^{s_j} r(h,l,i) = h \quad \text{for each } l \in \{1,\ldots,b(h)\}.$$

We argue by induction. Of course, our claim is true for h=1, with r(1,l,d)=1 if d=l, while r(1,l,d)=0 if $d\neq l$. Now, assume that our claim is true for some $h \in \mathbb{N}$. We have

$$T_{j}^{h+1}(v)(x)$$

$$= T_{j}(T_{j}^{h}(v))(x) = -\sum_{i=1}^{s_{j}} A_{j,\alpha(j,i)}(D^{\alpha(j,i)}T_{j}^{h}(v)(x))$$

$$= \sum_{i=1}^{s_{j}} (-1)^{h+1} \sum_{l=1}^{b(h)} A_{j,\alpha(j,1)}^{r(h,l,1)} A_{j,\alpha(j,2)}^{r(h,l,2)} \dots$$

$$\dots A_{j,\alpha(j,s_{j})}^{r(h,l,s_{j})} A_{j,i}(D^{\alpha(j,i)}D^{r(h,l,1)\alpha(j,1)+r(h,l,2)\alpha(j,2)+\dots+r(h,l,s_{j})\alpha(j,s_{j})}v(x)).$$

Now, it is easy to see that $T_j^{h+1}(v)(x)$ is also of the form (14). Hence, our claim is true for h + 1, hence it is true for all $h \in \mathbb{N}$. In particular, if $h = p\overline{q}$, the representation (14) holds, with $\sum_{i=1}^{s_j} r(h, l, i) = p\overline{q}$ for each fixed $l \in \{1, \ldots, b(p\overline{q})\}$. Observe that, for each fixed $l \in \{1, \ldots, b(p\overline{q})\}$, we have

$$A_{j,\alpha(j,1)}^{r(p\bar{q},l,1)}A_{j,\alpha(j,2)}^{r(p\bar{q},l,2)}\dots A_{j,\alpha(j,s_j)}^{r(p\bar{q},l,s_j)} = F_1^{q_1}\dots F_p^{q_p}$$

with

$$\sum_{i=1}^{p} q_i = \sum_{d=1}^{s_j} r(p\overline{q}, l, d) = p\overline{q}.$$

Of course, this implies that there exists $i \in \{1, \ldots, p\}$ such that $q_i \geq \overline{q}$, hence $F_i^{q_i} = 0$. Therefore, for each fixed $l \in \{1, \ldots, b(\overline{q}h)\}$, the operator

$$A_{j,\alpha(j,1)}^{r(p\bar{q},l,1)} A_{j,\alpha(j,2)}^{r(p\bar{q},l,2)} \dots A_{j,\alpha(j,s_j)}^{r(p\bar{q},l,s_j)}$$

identically vanishes, hence $T_j^h(v)(x) = 0_E$. The arbitrariness of $v \in V(\mathbb{R}^n, E)$ and $x \in \mathbb{R}^n$ gives

$$||T_j^{p\bar{q}}||_{\mathcal{L}(V(\mathbb{R}^n, E))} = 0$$
 for each $j = 0, 1, \dots, k-1$.

By Proposition 4 there exists a unique $\omega \in V(\mathbb{R}, V(\mathbb{R}^n, E))$ satisfying (13). Now, if $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$, we have

$$\omega^{(k)}(t)(x) = \Psi(\omega^{(k)})(t, x) = \sum_{j=0}^{k-1} \Psi(T_j \circ \omega^{(j)})(t, x) + f(t, x)$$
$$= -\sum_{j=0}^{k-1} \sum_{|\alpha| \le m} A_{j,\alpha}(D^{\alpha} \omega^{(j)}(t)(x)) + f(t, x),$$
$$\omega^{(j)}(0)(x) = \varphi_j(x) \quad \text{for all } j = 0, 1, \dots, k-1.$$

If we put $u = \Psi(\omega)$, observing that by Proposition 3 of [4] we have $D_t^j \Psi(\omega) = \Psi(D^j \omega)$, for each $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$ we get

$$\begin{cases} D_t^k u(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} A_{j,\alpha}(D_t^j D_x^{\alpha} u(t,x)) = f(t,x), \\ D_t^j u(0,x) = \varphi_j(x) \quad \text{for all } j = 0, 1, \dots, k-1. \end{cases}$$

Hence, u is a solution of problem (2). Conversely, reasoning as in [4] one can show that if \tilde{u} solves (2), then $\tilde{u} = u$. By Proposition 4, if $\bar{s} := k^2 p \bar{q}$, $r \ge 0$ and $\lambda > 0$, we get

$$\begin{split} \max_{0 \le i \le k-1} \lambda^{-i} \| \omega^{(i)} \|_{[-r,r], V(\mathbb{R}^{n}, E)} \\ &\le \min \left\{ \left(\max_{0 \le j \le \bar{s}-1} \sigma^{j} \right) \max_{0 \le i \le k-1} (\lambda^{-i} \| \varphi_{i} \|_{V(\mathbb{R}^{n}, E)}) e^{r\sigma} \right. \\ &+ \left(\left(\max_{0 \le j \le \bar{s}-1} \sigma^{j} \right) r e^{r\sigma} + \sum_{j=0}^{\bar{s}-1} \sigma^{j} \right) \lambda^{1-k} \| \Psi^{-1}(f) \|_{[-r,r], V(\mathbb{R}^{n}, E)}, \\ &e^{r} \left(\left(\max_{0 \le j \le \bar{s}-1} \sigma^{j} \right) \max_{0 \le i \le k-1} (\lambda^{-i} \| \varphi_{i} \|_{V(\mathbb{R}^{n}, E)}) \right) \\ &+ \left(\sum_{j=0}^{\bar{s}-1} \sigma^{j} \right) \lambda^{1-k} \| \Psi^{-1}(f) \|_{0, V(\mathbb{R}^{n}, E)} \right) \right\} \\ &\le \min \left\{ \left(\max_{0 \le j \le \bar{s}-1} \sigma^{j} \right) \max_{0 \le i \le k-1} (\lambda^{-i} \| \varphi_{i} \|_{\Omega, E}) e^{r\sigma} \\ &+ \left(\left(\max_{0 \le j \le \bar{s}-1} \sigma^{j} \right) r e^{r\sigma} + \sum_{j=0}^{\bar{s}-1} \sigma^{j} \right) \lambda^{1-k} \| f \|_{[-r,r] \times \Omega, E}, \\ &e^{r} \left(\left(\max_{0 \le j \le \bar{s}-1} \sigma^{j} \right) \max_{0 \le i \le k-1} (\lambda^{-i} \| \varphi_{i} \|_{\Omega, E}) \right. \\ &+ \left(\sum_{j=0}^{\bar{s}-1} \sigma^{j} \right) \lambda^{1-k} \| f \|_{\{0\} \times \Omega, E} \right) \right\}, \end{split}$$

where Ω is any non-empty bounded subset of \mathbb{R}^n . Since

$$\|D_t^i u\|_{[-r,r] \times \Omega, E} = \|\omega^{(i)}\|_{[-r,r], V(\mathbb{R}^n, E)},$$

our claim follows. \blacksquare

To conclude, we now present a simple example of application of Theorem 1 to integro-differential equations. Let $Y \subseteq \mathbb{R}^m$ $(m \in \mathbb{N})$ be a nonempty compact set. Following [4], denote by $V_0(\mathbb{R}^n \times Y)$ the space of all functions $u : \mathbb{R}^n \times Y \to \mathbb{R}$ such that $u(\cdot, y) \in C^{\infty}(\mathbb{R}^n)$ for each $y \in Y$, $D_x^{\alpha} u \in C^0(\mathbb{R}^n \times Y)$ for each $\alpha \in \mathbb{N}_0^n$ and

$$\sup_{\alpha \in \mathbb{N}^n_0} \sup_{(x,y) \in \Omega \times Y} |D^{\alpha}_x u(x,y)| < \infty$$

for each bounded set $\Omega \subseteq \mathbb{R}^n$. Also recall ([4], Proposition 8) that if, for $u \in V(\mathbb{R}^n, C^0(Y))$ ($C^0(Y)$ is endowed with the usual sup-norm), $\Psi_n(u)$ denotes the function, from $\mathbb{R}^n \times Y$ into \mathbb{R} , defined by

$$\Psi_n(u)(x,y) = u(x)(y) \quad (x \in \mathbb{R}^n, \ y \in Y),$$

then $\Psi_n(u) \in V_0(\mathbb{R}^n \times Y)$, the mapping $u \to \Psi_n(u)$ is surjective, and, for each $\alpha \in \mathbb{N}_0^n$, one has $D_x^{\alpha} \Psi_n(u) = \Psi_n(D^{\alpha} u)$.

THEOREM 2. Let $k, n, m \in \mathbb{N}$ and let $\{g_{j,\alpha}\}_{j=0,\ldots,k-1,\alpha\in\mathbb{N}_0^n,|\alpha|\leq m}$ be a family of continuous real functions on Y each of which satisfies $\int_Y g_{j,\alpha}(y) dy = 0$. Then, for each $f \in V_0(\mathbb{R}^{n+1} \times Y)$ and $\varphi_0, \varphi_1, \ldots, \varphi_{k-1} \in V_0(\mathbb{R}^n \times Y)$, there exists a unique function $u \in V_0(\mathbb{R}^{n+1} \times Y)$ such that, for each $t \in \mathbb{R}$, $x \in \mathbb{R}^n$ and $y \in Y$, one has

$$\begin{cases} D_t^k u(t, x, y) + \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} \left(\int_Y D_t^j D_x^{\alpha} u(t, x, \xi) \, d\xi \right) g_{j,\alpha}(y) = f(t, x, y), \\ D_t^j u(0, x, y) = \varphi_j(x, y), \quad j = 0, \dots, k-1. \end{cases}$$

Proof. For each $j = 0, ..., k - 1, \alpha \in \mathbb{N}_0^n$, let $A_{j,\alpha}$ be the element of $\mathcal{L}(C^0(Y))$ defined by putting

$$A_{j,\alpha}(v)(y) = \left(\int_{Y} v(\xi) \, d\xi\right) g_{j,\alpha}(y)$$

for all $v \in C^0(Y)$ and $y \in Y$. Clearly, $A_{j,\alpha} \circ A_{j',\alpha'} = A_{j',\alpha'} \circ A_{j,\alpha} = 0$. Consequently, by Theorem 1, there exists a unique function $w \in V(\mathbb{R}^{n+1}, C^0(Y))$ such that, for each $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$, one has

$$\begin{cases} D_t^k w(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha| \le m} A_{j,\alpha} (D_t^j D_x^{\alpha} w(t,x)) = \Psi_{n+1}^{-1}(f)(t,x), \\ D_t^j w(0,x) = \Psi_n^{-1}(\varphi_j)(x), \quad j = 0, \dots, k-1. \end{cases}$$

Then the function $u = \Psi_{n+1}(w)$ satisfies the conclusion.

References

 L. Cattabriga, On the surjectivity of differential polynomials on Gevrey spaces, Rend. Sem. Mat. Univ. Politec. Torino (1983), special issue on "Linear partial and pseudodifferential operators", 81–89.

- [2] L. Cattabriga and E. De Giorgi, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015–1027.
- B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955–56), 271–355.
- B. Ricceri, On the well-posedness of the Cauchy problem for a class of linear partial differential equations of infinite order in Banach spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), 623–640.
- [5] F. Trèves, *Linear Partial Differential Equations with Constant Coefficients*, Gordon and Breach, 1966.

Department of Mathematics University of Messina 98166 Sant'Agata-Messina, Italy E-mail: cubiotti@mat520.unime.it

Reçu par la Rédaction le 30.9.1995