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The field of Nash functions
and factorization of polynomials

by Stanis law Spodzieja ( Lódź)

Abstract. The algebraically closed field of Nash functions is introduced. It is shown
that this field is an algebraic closure of the field of rational functions in several variables.
We give conditions for the irreducibility of polynomials with Nash coefficients, a descrip-
tion of factors of a polynomial over the field of Nash functions and a theorem on continuity
of factors.

Introduction. A holomorphic function f in an open connected set Ω⊂
Cm is called a Nash function if there exists an irreducible polynomial P :
Cm×C→ C such that P (λ, f(λ)) = 0 for λ ∈ Ω. In Section 2 of the paper,
the field of Nash functions is introduced (Prop. 2.1). It is an algebraic closure
of the field of rational functions (Thm. 2.4 and Cor. 2.5). In the literature it
is shown that such a closure is embedded in the field of Puiseux power series
([W], Thm. 3.1, Ch. IV). In the definition of the Nash field, the main trouble
is to construct a family of sets {ΩP } with appropriate properties (Thm. 1.1).
The main problem is to obtain the simple connectedness of these sets, which
is the key fact in the proof of the algebraic closedness of the Nash field.

In Section 3, conditions of the irreducibility of polynomials with coeffi-
cients in the Nash field are given (Thm. 3.2) and, as a corollary, a general-
ization of the Krull Theorem in the complex domain (Cor. 3.3).

In Section 5, a theorem on the continuity of factors of a decomposition
of a polynomial as a function of parameters is given (Thm. 5.1). In the proof
of this theorem, the key role is played by an effective interpretation of the
well-known fact that an irreducible polynomial which is reducible over the
algebraic closure of the field of its coefficients is a product of conjugate poly-
nomials (Thm. 4.4). Here, systems of coefficients of conjugate polynomials
form a cycle of Nash mappings.
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For x = (x1, . . . , xn) ∈ Cn, we put |x| = maxi=1,...,n |xi| and x′ =
(x1, . . . , xn−1). If V ⊂ Cn, then by V we denote the closure of V in the
natural topology of Cn, and by V Z the closure of V in the Zariski topology
of Cn.

By K[Λ1, . . . , Λm], K(Λ1, . . . , Λm), K[Λ1, . . . , Λm]∗ we denote the ring of
polynomials in variables Λ = (Λ1, . . . , Λm) with coefficients in K, the residue
field of this ring, and the set of its nonzero polynomials, respectively. We
also write K[Λ], K(Λ) and K[Λ]∗, respectively.

1. The sets ΩP . In this section we shall define a family of subsets of
Cm, which will be the domains of Nash functions needed for construction of
the Nash field.

1.1. Theorem. There exists a mapping which assigns to each polynomial
P ∈ C[Λ1, . . . , Λm]∗ a set ΩP ⊂ Cm in such a manner that the following
conditions are satisfied :

C0. ΩP ⊂ {λ ∈ Cm : P (λ) 6= 0},
C1. ΩP ∩ΩQ = ΩPQ,
C2. ΩP is a dense subset of Cm,
C3. ΩP is an open, connected and simply connected set.

Moreover , one can require that the above mapping satisfy the additional
condition

C4. ΩP = Cm for P = const .

Before the proof we shall make an auxiliary construction and define the
sets ΩP . Let us associate first with each polynomial P ∈ C[Λ1, . . . , Λm]∗ a
set ΓP ⊂ Cm defined by the formula

ΓP := {(λ1, . . . , λm) ∈ Cm : P (λ1, . . . , λm−1, λm + γ) = 0
for some γ ∈ [0,∞)}.

By the above definition we immediately obtain

1.2. Lemma. Let P, Q ∈ C[Λ1, . . . , Λm]∗. Then

(i) ΓPQ = ΓP ∪ ΓQ,
(ii) if (λ1, . . . , λm) ∈ Cm \ ΓP , then, for each γ ∈ [0,∞), we have

(λ1, . . . , λm−1, λm + γ) ∈ Cm \ ΓP ,
(iii) the set Cm \ ΓP is dense in Cm.

Let m > 1, P ∈ C[Λ1, . . . , Λm]∗, and

P = P0Λ
d
m + P1Λ

d−1
m + . . .+ Pd,

where Pi ∈ C[Λ1, . . . , Λm−1] for i = 0, . . . , d, P0 6= 0. We define ω(P ) := P0.
If additionally d = degΛm P > 0, we define in Cm−1 \ V (ω(P )), where
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V (ω(P )) is the set of zeros of ω(P ), a continuous function αP by

αP (λ′) := 2 max
j=1,...,d

∣∣∣∣Pj(λ′)P0(λ′)

∣∣∣∣1/j , λ′ ∈ Cm−1 \ V (ω(P )).

Let us now define inductively the sets ΩP ⊂ Cm for any P ∈
C[Λ1, . . . , Λm]∗ by

(1.3)
ΩP := C \ ΓP ⊂ C1 for m = 1,
ΩP := (Cm \ ΓP ) ∩ (Ωω(P ) × C) ⊂ Cm for m > 1.

1.4. Lemma. If m > 1 and P ∈ C[Λ1, . . . , Λm]∗, degΛm P > 0, then

ΩP ⊃ {(λ′, λm) ∈ Cm : λ′ ∈ Ωω(P ) and Reλm > αP (λ′)}.

P r o o f. Indeed, if (λ′, λm) 6∈ ΩP , then either P (λ′, λm+γ) = 0 for some
γ ≥ 0, so |λm + γ| ≤ αP (λ′), i.e. Reλm ≤ αP (λ′) or λ′ 6∈ Ωω(P ).

P r o o f o f T h e o r e m 1.1. We shall show that the mapping P 7→ΩP
defined by (1.3) satisfies C0–C4. From the definition of ΩP we see that C0

and C4 are satisfied. We shall prove the remaining conditions by induction
with respect to the number of variables m. For m = 1 they are obvious. Let
us take anym ≥ 2. Take arbitrary polynomials P, Q∈C[Λ1, . . . , Λm]∗. Then
ω(P )ω(Q) = ω(PQ). So, by Lemma 1.2(i) and the induction hypothesis, we
get

ΩPQ = (Cm \ (ΓP ∪ ΓQ)) ∩ (Ωω(P )ω(Q) × C)

= (Cm \ ΓP ) ∩ (Cm \ ΓQ) ∩ (Ωω(P ) × C) ∩ (Ωω(Q) × C) = ΩP ∩ΩQ,
which gives C1.

If degΛm P = 0, then, obviously, ΩP = Ωω(P ) × C, so, by the induc-
tion hypothesis, we see that C2, C3 are satisfied. Thus, consider the case
degΛm P > 0.

By the induction hypothesis, we see that Ωω(P ) is an open and dense
subset of Cm−1. Since, by Lemma 1.2(iii), Cm \ΓP is dense in Cm, therefore
ΩP is dense in Cm. This gives C2.

We now prove C3. First, we show thatΩP is open. Note that the following
inclusion holds:

ΓP ⊂ ΓP ∪ (V (ω(P ))× C).
Indeed, take any sequence λn ∈ ΓP convergent to λ0 = (λ0′, λ0

m) ∈ Cm.
Then λn = (λn′, λnm − γn) where P (λn′, λnm) = 0, γn ∈ [0,∞). If λnm is
bounded, then taking a subsequence if necessary, we may assume that λnm →
λ̃m where λ̃m ∈ C. So, there exists γ̃ ∈ [0,∞) such that γn → γ̃. Hence
P (λ0′, λ̃m) = 0, i.e. P (λ0′, λ0

m + γ̃) = 0. This gives λ0 ∈ ΓP . If λnm is
not bounded, then taking a subsequence if necessary, we may assume that
λnm → ∞. Hence αP (λn′) → ∞, therefore ω(P )(λn′) → 0. In consequence,
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λ0′ ∈ V (ω(P )). Summing up, we have obtained the desired inclusion. Since
V (ω(P )) is disjoint from Ωω(P ), therefore, by the above, we obtain

ΩP = (Cm \ ΓP ) ∩ (Ωω(P ) × C).

Hence, by the induction hypothesis, we have the openness of ΩP .
We now prove the connectedness of ΩP . Take any λ0 = (λ0′, λ0

m), λ1 =
(λ1′, λ1

m) ∈ ΩP . We show that these points may be joined by a curve lying in
ΩP . Let r := 1 + max(αP (λ0′), αP (λ1′), Reλ0

m,Reλ1
m). By Lemmas 1.2(ii)

and 1.4, without loss of generality, we may assume that λ0
m = λ1

m = r.
Since λ0′, λ1′ ∈ Ωω(P ), by the induction hypothesis, there exists a curve
τ : [α, β]→ Ωω(P ) joining λ0′ and λ1′. Take the curve

σ(ξ) := (τ(ξ),max(r, αP (τ(ξ)) + 1/2)), ξ ∈ [α, β].

Since max(r, αP (τ(ξ)) + 1/2) > αP (τ(ξ)) for ξ ∈ [α, β], therefore, by Lem-
ma 1.4, we see that σ lies in ΩP and, obviously, joins λ0 and λ1. Summing
up, ΩP is a connected set.

We now prove the simple connectedness of ΩP . Take any loop σ =
(σ′, σm) : [α, β] → ΩP where σ′ : [α, β] → Cm−1, σm : [α, β] → C. Of
course, σ′ is a loop lying in Ωω(P ). Let r := 1 + sup({αP (σ′(ξ)) : ξ ∈
[α, β]} ∪ {Reσm(ξ) : ξ ∈ [α, β]}). By Lemmas 1.2(ii) and 1.4, without loss
of generality, we may assume that σm(ξ) = r for ξ ∈ [α, β]. By the induction
hypothesis, we see that there exists a homotopy H ′ : [α, β]× [0, 1]→ Ωω(P )

of σ′ to a point. Take the mapping

H(ξ, γ) := (H ′(ξ, γ),max(r, αP (H ′(ξ, γ)) + 1/2)), (ξ, γ) ∈ [α, β]× [0, 1].

By Lemma 1.4, we see that H is a homotopy of σ to a constant curve
[α, β] 3 ξ 7→ H(ξ, 1) in ΩP . This gives C3.

The proof of Theorem 1.1 is complete.

2. The field of Nash functions. In this section we define the alge-
braically closed field of Nash functions. The basic properties of Nash func-
tions can be found, for example, in [T].

In the sequel, let m be a fixed positive integer, and Λ a system of m
variables Λ1, . . . , Λm. Let

C[Λ]∗ 3 P 7→ ΩP ⊂ Cm

be a mapping satisfying conditions C0–C3 of Theorem 1.1.
Let P ∈ C[Λ]∗. From conditions C2 and C3 we see that ΩP 6= ∅ is a

connected open set. Consequently, the set NP of all Nash functions in ΩP
is a ring with the usual operations of addition and multiplication (see [T],
Cor. 1.11 or [Sp], Thm. 3.3) and, moreover, it is a domain. In the set⋃

P∈C[Λ]∗

NP
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we introduce a relation “∼” in the following way:

(f1 : ΩP → C) ∼ (f2 : ΩQ → C)
⇔ there exists ΩR ⊂ ΩP ∩ΩQ such that f1|ΩR = f2|ΩR .

From conditions C0–C3 we immediately see that “∼” is an equivalence re-
lation. The equivalence class determined by f : ΩP → C is denoted by [f ]
and the set of all such classes by N .

2.1. Proposition. The set N together with the operations “+”, “·” de-
fined by

[f1] + [f2] := [f1|ΩPQ + f2|ΩPQ ], [f1] · [f2] := [f1|ΩPQf2|ΩPQ ],

where f1 ∈ NP , f2 ∈ NQ, is a field.
Moreover , the field C(Λ) of rational functions is embedded in N by

C(Λ) 3 P

Q
7→
[
P

Q

∣∣∣∣
ΩQ

]
∈ N .

The field N is called the field of Nash functions or, briefly, Nash field .
The proof of the proposition will be preceded by

2.2. Lemma. If f ∈ NP , f 6= 0, then there exists Q ∈ C[Λ]∗ such that the
set of zeros of f is contained in the set of zeros of Q, and 1/f |ΩPQ ∈ NPQ.

P r o o f. Let R ∈ C[Λ,Z], where Z denotes a single variable, be an
irreducible polynomial such that R(λ, f(λ)) = 0 for λ ∈ ΩP . Hence we
conclude that the set of zeros of f is contained in the set of zeros of
Q := R(Λ, 0) ∈ C[Λ] and, obviously, Q 6= 0. So, by condition C0, we have
f(λ) 6= 0 for λ ∈ ΩPQ. This and Thm. 1.10 in [T] or Cor. 4.10 in [Sp] give
1/f |ΩPQ ∈ NPQ, which ends the proof.

P r o o f o f P r o p o s i t i o n 2.1. Since NPQ is a domain, therefore, by
conditions C0–C3, we see that the operations “+” and “·” are well defined
and that N is a domain. By Lemma 2.2 any nonzero element [f ] ∈ N is
invertible. This gives the first part of the proposition. The second part is
obvious.

2.3. R e m a r k. In the above proposition we have used all conditions
C0–C3 except the simple connectedness of ΩP . The last property is the
key fact in the proof that N is algebraically closed. Omitting the simple
connectedness, we could take instead of {ΩP }, for example, the family of
sets {λ ∈ Cm : P (λ) 6= 0}, P ∈ C[Λ]∗. But this would lead us only to the
field of rational functions.

2.4. Theorem. The field N is algebraically closed.
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P r o o f. Take an irreducible polynomial p ∈ N [Z] in one variable Z.
Then

p(Z) = [a0]Zd + [a1]Zd−1 + . . .+ [ad], d ≥ 1, [a0] 6= [0].

By condition C1, there exists P such that aj ∈ NP for j = 0, . . . , d. Take
the pseudopolynomial

g(λ, Z) := a0(λ)Zd + a1(λ)Zd−1 + . . .+ ad(λ), λ ∈ ΩP .

Since p is irreducible, its discriminant is nonzero in N . So, by Lemma 2.2
and conditions C0 and C1, we may assume that the discriminant of g does
not vanish in ΩP . In consequence, by the implicit function theorem, the
projection π : W 3 (λ, z) 7→ λ ∈ ΩP , where W = {(λ, z) ∈ ΩP × C :
g(λ, z) = 0}, is a covering. Since ΩP is simply connected (by condition C3),
so, by the monodromy theorem ([N], Cor., p. 20), there exists a holomorphic
function f : ΩP → C such that g(λ, f(λ)) = 0 for λ ∈ ΩP . Moreover, by
Prop. 1.6 in [T], f is a Nash function. So, we obtain p([f ]) = [0]. Therefore,
N is an algebraically closed field.

Since each element of the field N is algebraic over C(Λ), by the above
theorem and Proposition 2.1 we easily obtain

2.5. Corollary. N is the algebraic closure of the field C(Λ) of rational
functions.

3. Irreducibility of polynomials with Nash coefficients. In the
sequel, let n be a fixed positive integer and X a system of n variables
X1, . . . , Xn.

By I we denote a multiindex (i1, . . . , in) where ij ∈ Z, ij ≥ 0, and
‖I‖ = i1 + . . .+ in. XI denotes the monomial Xi1

1 . . . Xin
n .

By Y we denote the system of variables Y = (YI : ‖I‖ ≤ d) where d is
a positive integer. The number of these variables is equal to

(
d+n
n

)
and it is

the number of n-variable monomials of degree not exceeding d. By Gd we
denote the polynomial from Z[Y,X] of the form

Gd(Y,X) :=
∑
‖I‖≤d

YIX
I .

Let Q ∈ C[Λ]∗ and g ∈ NQ[X]. The set of those λ ∈ ΩQ for which
the polynomial g(λ,X) is reducible in C[X] is called the spectrum of g and
denoted by Spec g (cf. [St]).

3.1. Proposition. Let g ∈ NQ[X]. Then either Spec g is contained in a
proper algebraic subset of Cm, or is a dense subset of ΩQ and then

{λ ∈ ΩQ : deg g(λ,X) = deg g} ⊂ Spec g.
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P r o o f. Let d := deg g and g = Gd(F,X) where F = (fI : ‖I‖ ≤ d) :
ΩQ → C( d+nn ) is a Nash mapping. Then, for any H ∈ Z[Y ], we have H ◦F ∈
NQ. So, by Lemma 2.2, the set of zeros of the function H◦F is identical with
ΩQ or is contained in some proper algebraic subset of Cm. Moreover, the set
{λ ∈ ΩQ : deg g(λ,X) < deg g} is equal to {λ ∈ ΩQ : fI(λ) = 0, ‖I‖ = d}.
So, by Lemma 2.2, it is contained in some proper algebraic subset of Cm.
In consequence, applying the Noether Theorem ([Sc], Sec. 10, Thm. 15), we
easily obtain the assertion.

If F = (fI : ‖I‖ ≤ d) : ΩQ → C( d+nn ) is a Nash mapping, then we put
[F ] := ([fI ] : ‖I‖ ≤ d).

3.2. Theorem. Let F : ΩQ → C( d+nn ), where d ∈ N, be a Nash mapping
and let g ∈ NQ[X] and g ∈ N [X] be the polynomials g(X) := Gd(F,X),
g := Gd([F ], X). Then the following conditions are equivalent :

(i) g is irreducible in N [X],
(ii) there exists R ∈ C[Λ]∗ such that ΩR ⊂ ΩQ and , for each λ ∈ ΩR,

the polynomial g(λ,X) is irreducible in C[X],
(iii) there exists λ ∈ ΩQ such that deg g(λ,X) = deg g and the polynomial

g(λ,X) is irreducible in C[X].

P r o o f. (i)⇒(ii). Let H ∈ Z[Y ]. Then H ◦ F ∈ NQ. So, if H ◦ F 6= 0,
then, by Lemma 2.2, there exists R ∈ C[Λ]∗ such that ΩR ⊂ ΩQ and
H ◦ F (λ) 6= 0 for λ ∈ ΩR. This, together with Thm. 2.4 and the Noether
Theorem, gives (ii).

(ii)⇒(iii). Obvious.
(iii)⇒(i). Otherwise, the set Spec g would be a dense subset of ΩQ, which

would contradict Proposition 3.1.

Let us take Q = 1. Then we may assume that ΩQ = Cm (Thm. 1.1,
C4). Hence for P ∈ C[Λ,X] ⊂ NQ[X] we have SpecP = {λ ∈ Cm : P (λ,X)
is reducible in C[X]}. Hence, from the above theorem and Proposition 3.1,
we immediately obtain the Krull Theorem in the complex domain (see [K]
and [Sc], Sec. 10, Cor. 2).

3.3. Corollary. Let P ∈ C[Λ,X] be a polynomial of positive degree with
respect to X. Then the following conditions are equivalent :

(i) P is irreducible in N [X],
(ii) SpecP is contained in some proper algebraic subset of Cm,
(iii) there exists λ ∈ Cm such that degX P (λ,X) = degX P and the

polynomial P (λ,X) is irreducible in C[X].

4. Cycle of Nash mappings. Let Q ∈ C[Λ]∗, d ∈ N. We say that the
system of Nash mappings Fi = (fi,I : ‖I‖ ≤ d) : ΩQ → C( d+nn ), i = 1, . . . , k,
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is a cycle if

P (X,Z) :=
k∏
i=1

(Z − Gd([Fi], X))

is an irreducible polynomial in C(Λ)[X,Z] (i.e. Gd([Fi], X), i = 2, . . . , k, are
all the conjugates of Gd([F1], X) in N [X] over C(Λ)).

Conjugate polynomials over C(Λ) have the following geometrical inter-
pretation.

4.1. Proposition. Let Fi = (fi,I : ‖I‖ ≤ d) : ΩQ → C( d+nn ), i = 1, 2,
be Nash mappings. Then the polynomials Gd([Fi], X), i = 1, 2, in N [X] are
conjugate over C(Λ) if and only if graphF1

Z = graphF2
Z in Cm×C( d+nn ).

P r o o f. Let Gd([Fi], X), i = 1, 2, be conjugate over C(Λ). Then, there
exists an automorphism ϕ : N → N such that ϕ|C(Λ) : C(Λ) → C(Λ) is
the identity and [F2] = (ϕ([f1,I ]) : ‖I‖ ≤ d). Let Vi := graphFiZ , and Ii
be the ideal of Vi, i = 1, 2. Then, for any polynomial P ∈ I1, P (Λ, [F2]) =
P (Λ, (ϕ([f1,I ]) : ‖I‖≤d)) = 0. This gives that V2⊂V1. Hence, by symmetry
of conditions we have V1 = V2.

Assume now that graphF1
Z = graphF2

Z . By [T], Prop. 1.6, it is an
irreducible algebraic set. Let pi(X) := Gd(Fi, X) ∈ NQ[X], i = 1, 2. Then
we easily see that graph p1

Z = graph p2
Z is an irreducible algebraic set in

Cm×Cn×C. So, there exists an irreducible polynomial P ∈C[Λ,X,Z] such
that P (λ, x, pi(λ, x)) = 0 for (λ, x) ∈ ΩQ × Cn, i = 1, 2. This implies that
Gd([Fi], X), i = 1, 2, are conjugate over C(Λ).

4.2. Proposition. If Fi : ΩQ → C( d+nn ), i = 1, . . . , k is a cycle, then⋃k
i=1 graphFi is a dense subset of the m-dimensional irreducible algebraic

set W := graphF1
Z .

P r o o f. Let π : W 3(λ, y) 7→ λ ∈ Cm be the canonical projection. By the
definition of W , we easily see that it is an irreducible algebraic set, dimW =
m (see [T], Prop. 1.6) and π is a dominating mapping. Consequently, we
may assume that π|U : U → ΩQ, where U := π−1(ΩQ), is a covering (by
conditions C0, C1, [M], Cor. 3.17 and Fundamental Openness Principle 3.10).
Moreover, by the density of the set ΩQ in Cm (condition C2), we see that
U is dense in W (by using additionally e.g. [M], Thm. 2.33).

It suffices to show that

(4.3) U =
k⋃
i=1

graphFi.

Indeed, by the definition of a cycle and Proposition 4.1, we have
⋃k
i=1graphFi

⊂U . Suppose that the equality in (4.3) does not hold. Then, from the above,
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using the facts that ΩQ is an open, connected and simply connected set (con-
dition C3) and π|U is a covering, by the monodromy theorem, there exists
a holomorphic mapping F : ΩQ → C( d+nn ), different from Fi, i = 1, . . . , k,
such that graphF ⊂ W . Thus, by [T], Prop. 1.6, F is a Nash mapping.
Moreover, by Proposition 4.1, Gd([F ], X) is a conjugate to Gd([F1], X) over
C(Λ), and different from all Gd([Fi], X), i = 1, . . . , k. This contradicts the
definition of a cycle. Summing up, we have (4.3).

4.4. Theorem. If P ∈ C[Λ,X] is an irreducible polynomial in C[Λ,X],
monic with respect to X1, whose spectrum is a dense subset of Cm, then P
is reducible in N [X] and there exists a cycle Fi = (fi,I : ‖I‖ ≤ d) : ΩQ →
C( d+nn ), i = 1, . . . , k, where k > 1, such that

P (λ,X) =
k∏
i=1

Gd(Fi(λ), X) for λ ∈ ΩQ

is a decomposition of P (λ,X) into distinct irreducible factors in C[X], monic
with respect to X1. In particular ,

P (X) =
k∏
i=1

Gd([Fi], X)

is a decomposition of P into distinct irreducible factors in N [X].

P r o o f. The reducibility of P in N [X] follows from Corollary 3.3. Let
p1 be an irreducible factor of P in N [X] monic with respect to X1. Let
p2, . . . , pk be all the conjugates of p1 in N [X] over C(Λ). Then pi are ir-
reducible, monic with respect to X1 and p1 . . . pk ∈ C(Λ)[X]. Moreover,
pi are divisors of P in N [X]. In consequence, from irreducibility of P in
C[Λ,X], we have P = p1 . . . pk. Then there exists a cycle Fi : ΩQ → C( d+nn ),
i = 1, . . . , k, such that pi = Gd([Fi], X), i = 1, . . . , k. By conditions C0, C1

and Theorem 3.2, we may assume that Gd(Fi(λ), X), i = 1, . . . , k, are irre-
ducible in C[X] for λ ∈ ΩQ. Moreover, by the irreducibility of P in C[Λ,X],
one can assume that, for λ ∈ ΩQ, the discriminant of P (λ,X) with respect
to X1 does not vanish, i.e. Gd(Fi(λ), X), i = 1, . . . , k, are distinct in C[X]
for λ ∈ ΩQ. Hence we easily conclude that pi, i = 1, . . . , k, are distinct in
N [X]. Summing up, we have the assertion of the theorem.

5. Continuous dependence of factors of a decomposition of a
polynomial on parameters. We now give a theorem on the continuous
dependence of factors of a decomposition of a polynomial on parameters.

The definition of the multiplicity of a mapping and the notation are
taken from [M], Def. 3.12.
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5.1. Theorem. If P ∈ C[Λ,X] is an irreducible polynomial in C[Λ,X]
whose spectrum is dense in Cm, then there exist a positive integer d, an m-
dimensional irreducible algebraic set W ⊂ Cm × C( d+nn ) and a polynomial
G ∈ C[Λ]∗ such that the canonical projection π : W 3 (λ, y) 7→ λ ∈ Cm is
proper and

(5.2) G(λ)P (λ,X) =
∏

(λ,y)∈π−1(λ)

Gmult(λ,y)(π)

d (y,X), λ ∈ Cm.

Moreover , there exists an algebraic set V  Cm such that , for (λ, y) ∈
π−1(λ), λ ∈ Cm \ V , we have mult(λ,y)(π) = 1 and the right-hand side
of (5.2) is a decomposition of G(λ)P (λ,X) into nonassociated irreducible
factors in C[X].

What is more, if P is monic with respect to one of the variables Xi,
i = 1, . . . , n, then one can take G = 1.

5.3. R e m a r k. The continuity mentioned in the title of the section fol-
lows from the fact that π is a branched covering.

5.4. Example. The polynomial P (Λ1, Λ2, X1) := Λ1X
2
1 − Λ2 is irre-

ducible in C[Λ1, Λ2, X1] and its spectrum is dense in C2. We shall show that
in decomposition (5.2) we cannot take G(Λ1, Λ2) = 1. In fact, otherwise, for
some W and V ,

λ1X
2
1 − λ2 = (y1X1 + y2)(y∗1X1 + y∗2)

for (λ1, λ2, y1, y2), (λ1, λ2, y
∗
1 , y
∗
2) ∈ W , (λ1, λ2) 6∈ V . Then y1, y

∗
1 would

satisfy the equation Y 2 + α(Λ1, Λ2)Y + Λ1 = 0, and y2, y
∗
2 would satisfy

the equation Y 2 + β(Λ1, Λ2)Y − Λ2 = 0, for some α, β ∈ C[Λ1, Λ2]. Us-
ing the Viète formulae, we would easily obtain 4Λ1Λ2 + Λ1β

2(Λ1, Λ2) −
Λ2α

2(Λ1, Λ2) = 0, which is impossible.
TakingG(Λ1, Λ2) := Λ1, W := {(λ1, λ2, y1, y2) ∈ C2×C2 : y1 = λ1, y

2
2 =

λ1λ2}, V := {(λ1, λ2) ∈ C2 : λ1λ2 = 0} we have decomposition (5.2)

G(λ1, λ2)P (λ1, λ2, X1) = (λ1X1 +
√
λ1λ2)(λ1X1 −

√
λ1λ2).

The proof of Theorem 5.1 will be preceded by two lemmas.

5.5. Lemma. Let P ∈ C[X] be a polynomial monic with respect to X1,
d := degP > 0. Then, if the coefficients of P are bounded by r ≥ 1, then the
coefficients of any factor of P monic with respect to X1 are bounded by

Bd,n(r) := max
1≤k≤j≤d

(
j

k

)
(2(d+ 1)n−1r)k.

P r o o f. The proof is by induction on the number n of variables. If n = 1,
then the zeros of P are bounded by 2r (since r≥1). Hence from the Viète
formulae we have the assertion for n = 1. Let P ∈ C[X,Xn+1] be a polyno-
mial satisfying the assumptions of the lemma, and let E be its factor, monic
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with respect to X1. Let

(5.6) P (X,Xn+1) =
∑
‖I‖≤d

(α0,IX
d
n+1 + α1,IX

d−1
n+1 + . . .+ αd,I)XI

and

(5.7) E(X,Xn+1) =
∑
‖I‖≤d

(β0,IX
d
n+1 + β1,IX

d−1
n+1 + . . .+ βd,I)XI ,

where αi,I , βi,I ∈ C for ‖I‖ ≤ d, i = 1, . . . , d. Let ε be a (d+ 1)th primitive
root of unity. Put Pi(X) = P (X, εi), Ei(X) = E(X, εi), for i = 1, . . . , d+ 1.
Then, by (5.6), we see that the coefficients of Pi are bounded by (d+1)r, and
that Ei is a factor of Pi monic with respect to X1, i = 1, . . . , d+1. So, by the
induction hypothesis, the coefficients of Ei are bounded by BdegPi,n((d +
1)r) ≤ Bd,n((d + 1)r) = Bd,n+1(r). Let Ei(X) =

∑
‖I‖≤d γi,IX

I , i =
1, . . . , d+1, where γi,I ∈ C for ‖I‖ ≤ d, i = 1, . . . , d+1. Let L : Cd+1 → Cd+1

be a linear mapping represented by the matrix A := [εi(d+1−j)]i,j=1,...,d+1.
By (5.7), we have L(β0,I , . . . , βd,I) = (γ1,I , . . . , γd+1,I) for ‖I‖ ≤ d. It is
easy to see that A−1 = [ 1

d+1ε
ij ]i,j=1,...,d+1. So, for each (γ1, . . . , γn) ∈ Cd+1,

|L−1(γ1, . . . , γd+1)| ≤ |(γ1, . . . , γd+1)|. Hence and from the above we have
the assertion.

5.8. Lemma. If W is an m-dimensional irreducible algebraic subset of
Cm × C( d+nn ) such that the natural projection π : W 3 (λ, y) 7→ λ ∈ Cm is
proper , then the function

(λ, x) 7→
∏

(λ,y)∈π−1(λ)

Gmult(λ,y)(π)

d (y, x), λ ∈ Cm, x ∈ Cn,

is continuous.

P r o o f. By the definition of multiplicity and the properties of π, we ob-
tain

∑
(λ,y)∈π−1(λ) mult(λ,y)(π) = const. So, using once again the definition

of multiplicity, we obtain the assertion.

P r o o f o f T h e o r e m 5.1. First, let us consider the case when P is
monic with respect to X1 and take G = 1. By Theorem 4.4 and Propo-
sition 4.2, we immediately see that there exist a positive integer d, an m-
dimensional irreducible algebraic set W1 ⊂ Cm ×C( d+nn ), and a polynomial
Q ∈ C[Λ]∗, such that the projection π1 : W1 → Cm is dominating and

(5.9) P (λ,X) =
∏

(λ,y)∈π−1
1 (λ)

Gd(y,X) for λ ∈ ΩQ

is a decomposition of P (λ,X) into nonassociated irreducible factors in C[X]
monic with respect to X1, where Gd(y,X) has degree d. In particular,
π1|π−1

1 (ΩQ) : π−1
1 (ΩQ) → ΩQ is a covering, so mult(λ,y)(π1) = 1 for (λ, y) ∈
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π−1
1 (ΩQ). Thus, we have (5.2) for λ ∈ ΩQ. Note that the projection π1 is

proper. Indeed, otherwise by the density of π−1
1 (ΩQ) inW1 (Prop. 4.2), there

would exist a sequence {(λn, yn)} ⊂ π−1
1 (ΩQ) such that |(λn, yn)| −−→

n→∞
∞

and {λn} ⊂ Cm is bounded. Then all the coefficients of P (λn, X) are
bounded and |yn| −−→

n→∞
∞. This gives a contradiction with Lemma 5.5.

So, by the properness of π1 and Lemma 5.8, we conclude that the right-
hand side of (5.2) is a continuous function in Cm ×Cn. This, together with
the density of ΩQ in Cm, gives (5.2) for any λ ∈ Cm.

We now show the existence of an algebraic set V satisfying the second
part of the theorem. Let l := degX P . Take the algebraic set

A := {(λ, y1, y2)∈ Cm × C( l+nn ) × C( l+nn ) : P (λ,X) = Gl(y1, X)Gl(y2, X),
Gl(y1, X), Gl(y2, X) are monic with respect to X1

and 0 < deg Gl(y1, X) < d}.

Since the factors Gd(y,X) in (5.9) are irreducible for λ ∈ ΩQ, the projection
of A on Cm is contained in Cm \ΩQ. Hence by the Chevalley Theorem [ L],
Cor., p. 395, it is contained in a proper algebraic set V ⊂ Cm. Consequently,
for λ ∈ Cm \ V the right-hand side of (5.2) is a decomposition of P (λ,X)
into irreducible factors in C[X] monic with respect to X1. Moreover, by the
irreducibility of P , we may assume that, for λ ∈ Cm \V , the discriminant of
P with respect to X1 is a nonzero polynomial. This implies that the factors
on the right-hand side of (5.2) are not associated and mult(λ,y)(π1) = 1 for
each (λ, y) ∈ π−1

1 (λ), λ ∈ Cm \ V .
Summing up, we have the assertion in this case.
Changing variables if necessary, we obtain the assertion in the case when

P is monic with respect to one of the variables Xi, i = 1, . . . , n.
Let us consider the general case. It is easy to show that there exists a

linear change of variables L : Cn → Cn such that, for the polynomial

(5.10) P̃ (Λ, X) := P (Λ, L(X)),

we have l = degX1
P̃ = degX P̃ . Then the coefficient G0 ∈ C[Λ] of X l

1 in P̃
is nonzero. So, there exists a polynomial R ∈ C[Λ,X] such that

(5.11) Gl−1
0 (Λ)P̃ (Λ,X) = R(Λ,G0(Λ)X1, X

′)

where X ′ = (X2, . . . , Xn). Hence R is monic with respect to X1 and degX1
R

= degX R. By the assumption on SpecP , we get that SpecR is dense in Cm.
By (5.10) and (5.11), R is irreducible in C[Λ,X]. Then, by the first part
of the proof, there exist d, an m-dimensional irreducible algebraic subset
W1 ⊂ Cm×C( d+nn ) and an algebraic subset V  Cm such that the projection
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π1 : W1 3 (λ, y) 7→ λ ∈ Cm is proper and

(5.12) R(λ,X) =
∏

(λ,y)∈π−1
1 (λ)

Gd(y,X) for λ ∈ Cm \ V

is a decomposition of R(λ,X) into nonassociated irreducible factors in C[X].
Without loss of generality we may assume that V (G0) ⊂ V .

Let F = (PI : ‖I‖ ≤ d) : Cm × C( d+nn ) → C( d+nn ) be the polynomial
mapping defined by PI(Λ, Y ) := Gi10 (Λ)YI where I = (i1, . . . , in). By the
Chevalley Theorem W2 := {(λ, F (λ, y)) ∈ Cm ×C( d+nn ) : (λ, y) ∈W1} is an
algebraically constructible set. By the properness of the projection π1, we
easily see that it is a closed set, and thus, algebraic. Moreover, the projection
π2 : W2 3 (λ, y) 7→λ∈Cm is proper and dominating, so dimW2 = m. What
is more, by (5.10)–(5.12), we find that

(5.13) Gl−1
0 (λ)P (λ, L(X)) =

∏
(λ,y)∈π−1

2 (λ)

Gd(y,X) for λ ∈ Cm \ V

is a decomposition of the left-hand side into nonassociated irreducible factors
in C[X].

Let Gd(Y,L−1(X)) =
∑
‖I‖≤d L̃I(Y )XI . It is easy to see that the map-

ping L̃ := (L̃I : ‖I‖ ≤ d) : C( d+nn ) → C( d+nn ) is linear and Gd(Y,L−1(X)) =
Gd(L̃(Y ), X). Let us take the algebraic set W = {(λ, L̃(y)) ∈ Cm×C( d+nn ) :
(λ, y) ∈W2}. Since π2 is proper and dominating, so is π : W 3 (λ, y) 7→ λ ∈
Cm, and hence dimW = m. Thus, taking G = Gl−1

0 , by (5.13), we obtain
that

G(λ)P (λ,X) =
∏

(λ,y)∈π−1(λ)

Gd(y,X) for λ ∈ Cm \ V

is a decomposition of the left-hand side into nonassociated irreducible factors
in C[X]. Hence, by Lemma 5.8, analogously as before we obtain (5.2).

This ends the proof of Theorem 5.1.
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