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On a universal axiomatization
of the real closed fields

by Krzysztof Jan Nowak (Kraków and Amsterdam)

Abstract. This paper presents a natural axiomatization of the real closed fields. It
is universal and admits quantifier elimination.

1. Introduction. In model theory there are two ways to reduce axioms
of a theory T only to some patterns for blocks of quantifiers, as well as to
emphasize the set of quantifier-free formulae (through elimination) and the
set of existential formulae (by model completeness). They both consist in
adding extra symbols; namely, Skolem relations in order to obtain the Mor-
ley expansion of T , and Skolem functions to construct the iterated Skolem
expansion of T (cf. [6]). Whereas the former expansion is inductive (i.e. has
axioms of the form ∀∃φ) and admits quantifier elimination, the latter is
universal (i.e. has axioms of the form ∀φ) and model complete.

The theory of real closed fields is inductive (which is very frequent within
abstract algebra) and admits quantifier elimination (due to Tarski [10]; also
cf. [3] or [4]). In Section 2 we expand the language of ordered fields by adding
new function symbols for each global Nash function and for all arithmetic
roots. In this fashion we are able to formulate some natural, universal pos-
tulates which turn out to admit quantifier elimination. In order to prove
that those universal axioms describe exactly the real closed fields containing
R, we make use of valuation theory and Hensel’s lemma for Nash germs.
Finally, Section 3 illustrates the above by an application to a problem of
definability concerning semialgebraic functions.

A broad exposition of semialgebraic geometry, including the theory of
Nash functions and sets, is presented in [3]. For the essentials of model
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theory, we refer the reader to e.g. [4] and [6]. A sufficient elaboration of
valuation theory can be found in [8] and [9].

2. Universal axioms for the real closed fields. We first set up basic
notation and terminology concerning field theory (cf. [3], [4] or [8]). For
simplicity, we shall omit in the sequel the initial quantifiers in universal
formulae.

An ordering of a field K is an order relation which satisfies the two
postulates

x ≤ y ⇒ x+ z ≤ y + z,

0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ xy.

A positive cone of K is a subset P of K satisfying

P + P ⊆ P, P · P ⊆ P, P ∩ −P = {0}, P ∪ −P = K.

There is a one-to-one correspondence between the orderings of the field K
and the positive cones of K:

≤ defines a positive cone P := {a ∈ K : 0 ≤ a};
P defines an ordering a ≤ b⇔ b− a ∈ P .

A field K is said to be real if it satisfies one of the following equivalent
conditions:

(i) K can be ordered;
(ii) −1 6∈

∑
K2;

(iii)
∑
x2
i = 0⇒ all xi = 0;

(iv)
∑
K2 6= K.

Here
∑
K2 stands for the set of sums of squares of K.

An ordered field (K,≤) is called maximally ordered if it has no proper
algebraic ordered field extension (K ′,≤′). Every positive element of a max-
imally ordered field K is a square, whence K has a unique ordering.

A field K is called real closed if it is real, but has no real proper algebraic
field extension K ′. A field K is real closed iff it has a unique ordering and
is maximally ordered.

Within the language {+,−, ·, 1/, 0, 1}, the theory of fields can be univer-
sally axiomatized in the ordinary fashion. Here +,−, · denote the obvious
binary function symbols, and 1/ is a unary function symbol characterized
by the postulate

(x 6= 0⇒ x · 1/x = 1) ∧ (x = 0⇒ 1/x = 0).

The standard axiomatization of the theory of real closed fields is based on
the following Artin–Schreier theorem [1]:
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For a field K, the three conditions are equivalent :
(i) K is real closed ;

(ii) K2 is a positive cone of K and every polynomial of odd degree has
a root in K;

(iii) K[i] = K[X]/(X2 + 1) is an algebraically closed field.

The real closed fields are thus described by the axioms of ordered field theory
augmented by the following ones:

∀x∃y (0 ≤ x⇒ x = y2)
∀x1, . . . , x2n−1∃y y2n−1 + x1y

2n−2 + . . .+ x2n−1 = 0 (n = 1, 2, . . .).

Now we shall attach a collection of function symbols to the language of
ordered fields {≤,+,−, ·, 1/, 0, 1}. First we add the symbols of arithmetic
roots n

√ (n = 2, 3, . . .) characterized by the postulates

(0 ≤ x⇒ 0 ≤ n
√
x ∧ ( n

√
x)n = x) ∧ (x ≤ 0⇒ n

√
x = 0).

Next, for each global Nash function f : Rn → R, we pick up one of the
quantifier-free formulae φf (x1, . . . , xn, y) that defines the graph of f , and
add the n-ary function symbol f& subject to the postulates

φf (x1, . . . , xn, f
&(x1, . . . , xn)),

(f + g)&(x1, . . . , xn) = f&(x1, . . . , xn) + g&(x1, . . . , xn),
(f · g)&(x1, . . . , xn) = f&(x1, . . . , xn) · g&(x1, . . . , xn).

Let L denote the language of ordered fields expanded in this way, and let T
be the theory of L specified by the axioms of ordered fields augmented by
the ones describing the arithmetic roots and global Nash functions. Given
a model K& of T , denote by fK the interpretation of each function symbol
f& of L. Clearly, every real number a determines the constant symbol a&

of L, and the map

R→ K, a 7→ aK ,

is an ordered field embedding. From now on, we shall identify R with its
image under this embedding.

By virtue of the Tarski–Seidenberg transfer principle, every real closed
field K containing R is the reduct of a unique model K

&
of T . Indeed, one

must construe each function symbol f& as a unique extension of f from R
to the field K, which is defined by the formula φf (cf. [3], Chap. 5).

Since every ordered field K can be embedded in a real closed field K, it
follows that—for any model K& of T and any n-ary function symbol f& of
L—the sole interpretation of f& in K& is

fK = restriction of fK to Kn.
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Consequently, fK does not depend on the formula φf chosen at the begin-
ning. The following basic rules are therefore satisfied:

1) If Xi denotes the ith coordinate projection (i = 1, . . . , n), then

X&
i (x1, . . . , xn) = xi.

2) If g& is an n-ary and all f&
i are m-ary symbols of L, then

g(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))&

= g&(f&
1 (x1, . . . , xm), . . . , f&

n (x1, . . . , xm)).

3) For any Nash function f : Rn → R and a ∈ Rn, we have

fK(a) = f(a).

4) For any Nash functions f, g : Rn → R, we have fK < gK (respectively
fK ≤ gK) whenever f < g (respectively f ≤ g).

We shall now prove that every model K& of T is a real closed field.
The chief tool we use is the theory of henselian valued fields. Therefore,
we recall without proofs some of the basic facts on valued fields (cf. [8]
or [9]). Let (G,≤) be an ordered abelian group written additively. A map
v : K → G ∪ {∞} is said to be a valuation of a field K if it satisfies the
conditions

v(x) =∞⇔ x = 0,
v(x · y) = v(x) + v(y), v(x+ y) ≥ min{v(x), v(y)},

where ∞ is greater than any element g of G, and

g +∞ =∞+ g =∞.

It is easy to see that

v(1) = 0, v(−x) = v(x),
v(x) 6= v(y)⇒ v(x+ y) = min{v(x), v(y)}.

The pair (K, v) is called a valued field.
By a valuation ring of a field K we mean a subring R of K such that if

a 6∈ R, then 1/a ∈ R. R is a local ring; we introduce the following notation:

M = the sole maximal ideal of R,
U = the set of all units in R,
F = R/M, the residue class field of R.

There is a one-to-one correspondence between the valuation rings of a field
K and the valuations of K (up to equivalence of valuations). A valuation v
determines a valuation ring

R = Rv := {a ∈ K : v(a) ≥ 0};
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then

M = Mv = {a ∈ K : v(a) > 0}, U = Uv = {a ∈ K : v(a) = 0},
and F = Fv = R/M is called the residue class field of v.

Conversely, a valuation ring R of K induces a group

G := (K \ {0})/U
with additively written group structure generated by multiplication in K \
{0}; let v : K \ {0} → G be the canonical map. We define an ordering on G
as follows:

v(a) ≤ v(b)⇔ ba−1 ∈ Rv.

A valuation v of a field K is called real if its residue class field Fv is real.
A valuation v is called henselian if its valuation ring Rv is henselian.

We say that an ordering ≤ of a field K and a valuation v of K are
compatible if

0 < x ≤ y ⇒ v(x) ≥ v(y).
For every real valuation v of K, there exists an ordering of K compatible
with v. In particular, a field K is real whenever it has a real valuation.

Every ordered field (K,≤) determines the valuation ring RK of all ele-
ments of K bounded in absolute value by a rational number; its maximal
ideal MK consists of all infinitesimals of K. The ring R = RK induces
a valuation v = vK compatible with the ordering ≤ of K, and called the
standard valuation of (K,≤).

A key role in the proof we proceed with will be played by the criterion
below (cf. [8], p. 87):

Criterion. A necessary and sufficient condition for a real valued field
(K, v) to be real closed is that its residue class field Fv be real closed , its
valuation ring Rv be henselian and the valuation group G be divisible.

We now state an elementary lemma which can be checked by straight-
forward computation.

Lemma 1. For a real number δ > 0, consider the two functions of one
variable:

gδ : (−δ, δ)→ R, y = gδ(x) =
2δx

δ2 − x2
,

and

hδ : R→ (−δ, δ), x = hδ(y) =
δy√

y2 + 1 + 1
,

as well as their counterparts over a model K& of the theory T :

gKδ : (−δ, δ)→ K and hKδ : K → (−δ, δ),
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defined by the same formulae. Then the functions gδ and hδ as well as gKδ
and hKδ are mutually inverse. The function hKδ is the one represented by
the symbol h&

δ .

Lemma 2. Let f : Rn → R be a Nash function, K& be a model of T ,
and let v be the standard valuation of K with valuation ring (R,M). Then
for all (λ1, . . . , λn) ∈Mn we have

fK(λ1, . . . , λn) ∈ f(0) + M ⊂ R.

For, let ε > 0 be any positive real number, and pick up a real number
δ > 0 such that

f(a1, . . . , an) < f(0) + ε for all ai ∈ R, ai ∈ (−δ, δ).
Then f ◦hδ < f(0) + ε, whence fK ◦hKδ < f(0) + ε. Since each infinitesimal
λi ∈ (−δ, δ), we have

fK(λ1, . . . , λn) = fK ◦ (hKδ , . . . , h
K
δ ) ◦ (gKδ , . . . , g

K
δ )(λ1, . . . , λn) < f(0) + ε.

Similarly, f(0) − ε < fK(λ1, . . . , λn), and thus (as ε > 0 has been chosen
arbitrarily small) fK(λ1, . . . , λn) ∈ f(0) + M.

Proposition. Let K& be a model of T . Then the standard valuation v
of K is henselian.

Our proposition asserts that the valuation ring (R,M) of the standard
valuation v of K is henselian. Take any monic polynomial

p(T ) = Tn + α1T
n−1 + . . .+ αn ∈ R[T ].

As the field K contains R, the residue class field F of v is exactly R. Hence

αi = ai + λi for some ai ∈ R, λi ∈M (i = 1, . . . , n).

Supposing that t ∈ R is a simple root of the reduced polynomial

p(T ) = Tn + a1T
n−1 + . . .+ an ∈ R[T ],

we must find a root ϑ of the polynomial p(T ) in the set t+ M.
Consider the polynomial

Tn + (a1 + x1)Tn−1 + . . .+ (an + xn),

where x1, . . . , xn are indeterminates. It follows from Hensel’s lemma that
there exists a Nash germ f(x1, . . . , xn) at 0 ∈ Rn for which f(0) = t and

fn(x1, . . . , xn) + (a1 + x1)fn−1(x1, . . . , xn) + . . .+ (an + xn) = 0.

We may assume that f is defined on a cube (−δ, δ)n, δ > 0, so that f ◦
(hδ, . . . , hδ) is a global Nash function. Then

fn(hδ(x1), . . . , hδ(xn)) + (a1 + hδ(x1)) · fn−1(hδ(x1), . . . , hδ(xn))
+ . . .+ (an + hδ(xn)) = 0,
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and thus

(fn ◦ (hδ, . . . , hδ))K(x1, . . . , xn)
+ (a1 + hKδ (x1)) · (fn−1 ◦ (hδ, . . . , hδ))K(x1, . . . , xn)

+ . . . + (an + hKδ (xn)) = 0.

Hence, replacing xi by gKδ (λi), we get

(fn ◦ (hδ, . . . , hδ))K(gKδ (λ1), . . . , gKδ (λn))
+ (a1 + λ1) · (fn−1 ◦ (hδ, . . . , hδ))K(gKδ (λ1), . . . , gKδ (λn))

+ . . .+ (an + λn) = 0.

This signifies that

ϑ := (f ◦ (hδ, . . . , hδ))K(gKδ (λ1), . . . , gKδ (λn))

is a root of the polynomial p(T ). From Lemma 2 it follows that

ϑ ∈ (f ◦ (hδ, . . . , hδ))(0) + M = f(0) + M = t+ M,

whereby the proof is completed.

Since each positive element x of K& has all roots, the group of the
standard valuation v of K is divisible. The residue class field of v is R
because R is the maximal archimedian ordered subfield of K. Consequently,
the above proposition together with the criterion for a real valued field to
be real closed imply

Corollary. Every model K& of the theory T is a real closed field.

Finally, observe that using the axioms of T , one can replace any formula
with function symbols f& by a formula of the language of ordered fields, and
thus quantifier elimination within the theory of real closed fields is applicable
to the theory T . Summing up, we can therefore state the following

Main Theorem. The universal theory T admits quantifier elimination.
The assignment to each model K& of its reduct K is a one-to-one corre-
spondence between the models of T and the real closed fields containing R.

3. An application to semialgebraic geometry. Universal theories
are characterized by the preservation theorem below, due to Tarski [11] and
 Loś [7] (also cf. [4], Chap. 3 or [6], Sect. 3):

A theory T has a set of universal axioms iff it is preserved under sub-
models.

We shall now demonstrate how this preservation property of our theory T
of real closed fields applies to problems concerning semialgebraic functions.

Proposition. Each semialgebraic function f : Rn → R is piecewise
defined by a finite number of L-terms
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τ1(x1, . . . , xn), . . . , τs(x1, . . . , xn),

i.e., for all a = (a1, . . . , an) ∈ Rn, f(a) = τi(a) for some i = 1, . . . , s.

The proof is by reductio ad absurdum. Consider a quantifier-free formula
φ(x1, . . . , xn, y) that defines the graph of f , and the type

Σ(x1, . . . , xn) = {¬φ(x1, . . . , xn, τ(x1, . . . , xn)) : τ is a term of L}.

Supposing f is not piecewise defined by a finite number of terms, it follows
from the compactness theorem (cf. [4], Chap. 2) that the type Σ is consistent
with the theory T . In other words, T has a model K which realizes Σ, i.e.
some n-tuple (a1, . . . , an) of elements of K satisfies Σ in K. The submodel
M generated by {a1, . . . , an} is of the form

M = {τ [a1, . . . , an] : τ is a term of L}.

As the theory T is universal, M is its model too. Through quantifier elim-
ination, M is an elementary submodel of K: M ≺ K. But M models the
sentence

∀y ¬φ(a1, . . . , an, y),

which is not true in K. We have thus obtained a contradiction with M ≺ K.

Corollary. Every semialgebraic function f : Rn → R is piecewise
Nash. In other words, there exists a disjoint decomposition of Rn into
finitely many Nash submanifolds Mk (k = 1, . . . , s) such that the restric-
tion of f to each Mk is a Nash function. Moreover , we can assume each
Mk to be Nash diffeomorphic to the unit cube (0, 1)dimMk .

Indeed, every semialgebraic set is a disjoint union of finitely many Nash
submanifolds Mk; moreover, we can assume each Mk to be Nash diffeomor-
phic to the unit cube (0, 1)dimMk (cf. [3], Prop. 8.1.12). In view of the above
proposition, we may therefore limit ourselves to the case when f is defined
by one L-term τ . Now, the assertion follows easily by induction with respect
to the complexity of the term τ (which is built from roots and global Nash
functions by means of four arithmetic operations +,−, · and 1/). We need
again to decompose semialgebraic sets into Nash submanifolds.

R e m a r k. The above corollary can also be obtained via ordinary appa-
ratus of semialgebraic geometry. It extends to the domain of semianalytic
geometry provided that f is a bounded semianalytic function. Whereas the
geometric proof makes use of a partition technique applied to the graph
of a given semialgebraic or semianalytic function f (cf. [5] or [2], Sect. 3),
the arguments we have presented illustrate some general methods of model
theory.
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