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Introduction. In this work, we continue the series [9, 10] which is based on Fila’s
approach to boundedness of global solutions to nonlinear parabolic equations [3, 4]. Now
we examine equations of the form

(0.1) ut = divA(Du) + f(u,Du)

for a vector function A with ∂A(p)/∂p a positive definite matrix. Our model case will
be A(p) = |p|m−2p, which corresponds to the so-called p-Laplacian (although we are
using m in place of p). Under various hypotheses connecting A and f , we shall show that
global solutions of (0.1) with zero boundary values in a cylinder Ω× (0,∞) with smooth
cross-section Ω are actually bounded in L∞. For this boundedness, we will assume that
f depends only on u, but our major focus is really on an intermediate result, which we
formulate here for a special case.

Theorem 0.1. Let u be a solution of (0.1) in a C2 domain Ω ⊂ Rn with

(0.2) u = 0 on ∂Ω× (0,∞)

for A(p) = |p|m−2p, with 2 < n < m, suppose there are positive functions C0 and C1 such
that

(0.3) |f(z, p)| ≤ C0(|z|) + θ|p|(nm+m−n)/n + C1(θ)

for all (z, p) ∈ R× Rn and all θ > 0, and set

(0.4) E(t) =
∫

Ω×{t}

|Du|m dx.
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If there are positive constants τ , σ, B and k such that τ > σ, B > k, and

(0.5) E(τ) = B, E(σ) = k, E(t) ≤ B for t ∈ [σ, τ ],

then

(0.6) τ − σ ≥ η

for some positive constant η(B, k, C0, C1,m, n,Ω).

A similar result will be proved when the inequalities 2 < n < m fail to hold, but then
condition (0.3) must be suitably modified. If 1 < m < n and n > 2 instead of n < m and
if

(0.3)′ |f(z, p)| ≤ θ|z|(nm+m−n)/(n−m) + θ|p|(nm+m−n)/n + C1(θ)

replaces (0.3), then (0.5) implies (0.6). (One must also assume m > 2n/(n + 2) for the
global boundedness result; see the remarks after Lemma 2.2.) For n = m > 2, (0.3) is
replaced by

|f(x, z)| ≤ exp(θ|z|n/(n−1)) + θ|p|n + C1(θ).

For n = 2, all these implications hold with θ|p|(nm+m−n)/n replaced by |p|(3/2)m−1−θ.
Finally, if 1 = n < m, then (0.5) implies (0.6) if (0.3) is replaced by

|f(x, z)| ≤ C0(|z|) + C1|p|m

for some constant C1.
Most of our effort will be to prove that (0.5) implies (0.6) for a suitable choice of E

based on the hypotheses on A and f (and, in some cases, that B and k are sufficiently
far apart). We also examine the related problem with boundary condition

(0.7) A(Du) · γ + ψ(u) = 0 on ∂Ω× (0, T ),

where γ denotes the unit inner normal to ∂Ω.
In addition to structure modelled on A(p) = |p|m−2p or A(p) = G(|p|)p for some

function G, we also consider a structure typified by defining Ai(p) = |pi|mi−2pi for
suitable constants mi or, more generally, Ai(p) = Gi(|pi|)pi for appropriate functions Gi.
Reasoning by analogy with other results concerning such problems, it seems natural to
assume also that each Gi is a Young’s function so that the theory of Orlicz spaces [7]
can be used. Although much of our analysis is closely related to that theory, our slightly
more general assumptions are a better setting for the problem at hand. Indeed, many of
our technical lemmata are obvious when G (or each Gi) is a power function, but there
seem to be no previous appearances of them in print.

We begin in Section 1 with a second derivative estimate which is needed to handle the
correct growth condition on f with respect to the gradient. Section 2 discusses a suitable
generalization of Theorem 0.1, and its corresponding global boundedness conclusion, in
case A grows rapidly at ∞, as in Theorem 0.1 with m > n. The case of slower growth
(m < n in Theorem 0.1) is covered in Section 3. The borderline case (which corresponds
to m = n in Theorem 0.1) is the topic of Section 4. Section 5 deals with boundary
condition (0.7), and Section 6 discusses some extensions of the results to more general
siutations.
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1. A second derivative estimate. When dealing with the equation ut = ∆u +
f(u,Du) in [9], we used the L2 Schauder theory to estimate terms in E′(t) arising from
the gradient dependence of f . If the Laplacian is replaced by the p-Laplacian, the corre-
sponding inequality is not part of the usual theory of such operators. In this section, we
prove such a result, which is similar to [6, Theorem 3.1.1.1] of Grisvard for studying global
second derivative estimates of solutions of linear elliptic equations in convex domains.

Theorem 1.1. Let Ω be a bounded C2 domain in Rn, and let A be a C2 Rn-valued
function defined on Ω× Rn. Suppose also that there are positive constants δ ≤ 1, Λ, M ,
and F and a C1, increasing function g such that

(1.1) δ ≤ τg′(τ)
g(τ)

≤ F,

(1.2a) |A(x, p)|+ |p||Ap(x, p)|+ |Ax(x, p)| ≤ Λg(|p|),

(1.2b) aij(x, p)ξiξj ≥ g(|p|)
|p|
|ζ|2

for all (x, p, ξ) ∈ Ω × Rn × Rn with |p| ≥ M and all τ ≥ M , where aij = ∂Ai/∂pj. If
u ∈ C2(Ω) solves

(1.3) divA(x,Du) = b(x) in Ω, u = 0 on ∂Ω,

then

(1.4)
∫
Ω

(
1− M

|Du|

)2

+

g′(|Du|)2|D2u|2dx ≤ C(Ω, n, δ,Λ, F )
∫
Ω

[g(|Du|)2 + b2] dx.

P r o o f. We note that our hypotheses are invariant under any C2 change of indepen-
dent variable. Therefore, we consider first the case that ∂Ω is just the set {xn = 0}.
Multiplying the differential equation by η, an arbitrary smooth function, yields∫

{xn=0}

Anη dx′ =
∫
Ω

[−AiDiη − bη] dx.

Now we take η = Dkζ
k for ζ a smooth vector-valued function (and we note that the sum

on k goes all the way to n). Integration by parts yields

(1.5)
∫

{xn=0}

[AnDkζ
k −AiDiζ

n] dx′ =
∫
Ω

(Dk(Ai) + bδik)Diζ
k dx.

A simple approximation argument shows that this inequality holds if ζ ∈ C1. In partic-
ular, if ζk = 0 for xn = 0 and k < n and if ζ has compact support, then∫

{xn=0}

[AnDkζ
k −AiDiζ

n] dx′ = −
∑
i<n

∫
{xn=0}

AiDiζ
n dx′.

To proceed, we suppose that h is a nonnegative C1([M,∞)) function with h(M) = 0 and

δ − 1 ≤ τh′(τ)
h(τ)

≤ h1 on [M,∞)

for some positive constant h1, and take ζ = h(|Du|)η2Du for η a C2 function with
compact support such that 0 ≤ η ≤ 1. First we examine the boundary integral. Setting



202 G. M. LIEBERMAN

H(τ) = τh(τ) and summing on i only up to n− 1 yields∫
{xn=0}

AiDiζ
n dx′ =

∫
{xn=0}

Ai(x, 0, . . . , 0, Dnu)H ′(Dnu)Dinuη
2 dx′

+
∫

{xn=0}

Ai(x, 0, . . . , 0, Dnu)H(Dnu)ηDiη dx
′.

Now we define hi(x, τ) =
∫ τ

0
Ai(x, 0, . . . , 0, σ)H ′(σ) dσ and integrate by parts to see that∫

{xn=0}

Ai(x, 0, . . . , 0, Dnu)H ′(Dnu)Dinuη
2 dx

= −
∫

{xn=0}

[2hi(x,Dnu)ηDiη + (∂hi(x,Du)/∂xi)η2] dx′.

Simple calculations show that

|Ai(x, 0, . . . , 0, Dnu)H(Dnu)|+ |hi(x,Dnu)|+ |∂hi/∂xi| ≤ Cg(|Du|)H(|Du|),

and hence

−
∫

{xn=0}

AiDiζ
n dx′ ≤ C

∫
{xn=0}

g(|Du|)H(|Du|)η dx′

with C depending also on h1. Integrating by parts and suppressing the argument |Du| in
g, h and H, we find that∫

{xn=0}

gHη dx′ =
∫
Ω

[(gH)′Dn(|Du|)η(x) + gHDnη(x)] dx

≤ C
∫
Ω

(
gh

(1− |Du|/M)
|D2u|η + |Du|gh|Dη|

)
dx

≤ ε
∫
Ω

gh

|Du|
|D2u|2η2 dx+ C(ε)

∫
Ω

gh|Du|
(1−M/|Du|)2

dx

for any ε > 0. Hence, choosing ε = δ
4 gives

−
∫

{xn=0}

AiDiζ
n dx′ ≤ δ

4

∫
Ω

gh

|Du|
|D2u|2η2 dx+ C

∫
Ω

gh|Du|
(1−M/|Du|)2

dx.

To estimate the interior integral in (1.5), we set Cik = ∂Ai/∂xk + bδki and gkm = δkm −
|Du|−2DkuDmu. It follows from the Cauchy-Schwarz inequality that∫

Ω

(Dk(Ai) + bδik)Diζ
k dx

=
∫
Ω

aijDjkuDikuhη
2 dx+

∫
Ω

|Du|aijDi(|Du|)Dj(|Du|)h′η2 dx

+
∫
Ω

2aijDjkuDkuhηDiη dx+
∫
Ω

hCikg
kmDimuη

2 dx

+
∫
Ω

CikDkuDi(|Du|)h′η2 dx+ 2
∫
Ω

CikDkuhDiηη dx
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≥ δ

2

∫
Ω

aijDikuDjkuhη
2 dx− C

∫
Ω

η2 |Du|h
(1−M/|Du|)g

CikC
i
k dx

− C
∫
Ω

gh|Du||Dη|2 dx

with the constants depending also on h1. Combining these estimates and using (1.1) and
(1.2) now yields ∫

Ω

hη2g′|D2u|2 dx ≤ C
∫
Ω

(g2 + b2)
h|Du|

(1−M/|Du|)2g
dx.

An easy approximation argument shows that this inequality is valid even if h is only
Lipschitz. In particular we can take h(τ) = (1 −M/τ)2

+g(τ)/τ and note that h(τ) ≥
Cg′(τ)(1−M/τ)+ to see that∫

Ω

(
1− M

|Du|

)2

+

g′(|Du|)2|D2u|2η2 dx ≤ C(δ, F,Λ)
∫

{|Du|>M}

[g(|Du|)2 + b2η2] dx.

A standard partition of unity argument and conversion to the original coordinates
yields (1.4).

The technical details of our proof are modelled on Simon’s gradient bounds for
nonuniformly elliptic equations [13], and a future work will show how to obtain max-
imum bounds on the gradient near the boundary without using barrier arguments. Other
choices of h can be used to derive (1.4) or modifications of that condition. For exam-
ple, h(τ) = (g(τ)/τ)(τ/(1 + τ2)1/2)1−δ gives an estimate of an integral of the form∫

Ω
Φ(|Du|)|D2u|2 dx with Φ vanishing only at zero, but this estimate uses information

about the behavior of the coefficients for small values of |Du|. For our applications, we
only use the following gradient estimate, which is a simple consequence of our second
derivative bound.

Corollary 1.2. Under the hypotheses of Theorem 1.1, we have

(1.6)
( ∫

Ω

g(|Du|)2κ dx
)1/κ

≤ C(δ, F, g(1),Λ,Ω)
( ∫

Ω

b2 dx+ g(M)2 +
( ∫

Ω

g(|Du|) dx
)2)

,

where κ = n/(n− 2) if n > 2 and κ is arbitrary for n ≤ 2.

P r o o f. We start with the easily verified inequality∫
{|Du|>2M}

g2κ dx ≤ 4κ
∫
Ω

[(
1− M

|Du|

)2

g

]2κ

dx.

Since

|D((1−M/|Du|)2g(|Du|))| ≤ (2 + F )(1−M/|Du|)g/|Du|,
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we infer from Theorem 1.1 and the Sobolev inequality that( ∫
{|Du|>2M}

g(|Du|)2κ dx
)1/κ

≤ C
( ∫

Ω

b2 dx+
∫
Ω

g(|Du|)2 dx
)
.

Next we note that ∫
{|Du|≤2M}

g(|Du|)2κ dx ≤ g(2M)2κ|Ω|

and infer that( ∫
Ω

g(|Du|)2κ dx
)1/κ

≤ C
( ∫

Ω

b2 dx+ g(M)2 +
∫
Ω

g(|Du|)2 dx
)
.

The proof is completed by applying Hölder’s inequality.

In particular, for the p-Laplace operator, g(τ) = τp−1, so Corollary 1.2 in conjunction
with Hölder’s inequality gives an estimate for the integral of |Du|(2p−2)κ.

2. Rapid growth. We begin with an estimate in case A(p) grows rapidly as p goes
to infinity. The model function is A(p) = |p|m−2p for some m > n. Also here and below,
we define

Q = Ω× (t0, t1), SQ = ∂Ω× (t0, t1),

where t0 < t1 are positive constants and Ω is a bounded domain in Rn for some n ≥ 1
with ∂Ω ∈ C2.

Theorem 2.1. Let u solve

(2.1) ut = divA(Du) + f(u,Du) in Q, u = 0 on SQ.

Suppose there are scalar functions S, g, and G satisfying

(2.2) A(p) =
∂S

∂p
(p),

(2.3a) G(s) = sg(s),

(2.3b) g is C1 and increasing on (0,∞),

(2.4) S(p) ≥ G(|p|),

and

(2.5)
∞∫
0

G−1(σ)
σ(n+1)/n

dσ <∞,

and such that (1.1) and (1.2) hold. Suppose also that there are an increasing , continuous
function C0 and a positive decreasing function C1 such that

(2.6a) |f(z, p)| ≤ C0(|z|) + C1(θ) + θg(|p|)1+1/n|p|1/n

for all θ > 0 if n ≥ 3,

(2.6b) |f(z, p)| ≤ C0(|z|) + C1(θ) + C2g(|p|)1+θ|p|θ

for some θ ∈ (0, 1/2) if n = 2, and

(2.6c) |f(z, p)| ≤ C0(|z|) + C2G(|p|)
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if n = 1. Finally , define E by

(2.7) E(t) =
∫

Ω×{t}

S(Du) dx.

Then for any B > 0, there is a positive constant C(B,C0, C1, g0,Ω, F, δ,Λ) for which

(2.8a) E(t) ≤ B for t ∈ [t0, t1]

implies

(2.8b) E(t1)− E(t0) ≤ C[t1 − t0].

P r o o f. Suppose first that n ≥ 3 and that u ∈ C2(Ω× [t0, t1]). By direct calculation
and the divergence theorem,

E′(t) =
∫

Ω×{t}

A(Du) ·Dut dx = −
∫

Ω×{t}

(divA)ut dx.

From the differential equation for u and Cauchy’s inequality, we infer that

E′(t) ≤ −1
2

∫
Ω×{t}

(divA)2 dx+
1
2

∫
Ω×{t}

f2 dx.

Next, we use (2.5), (2.6a), and the Sobolev-Orlicz imbedding theorem [2, Theorem 3.2b]
to see that

E′(t) ≤ −1
2

∫
Ω×{t}

(divA)2 dx+ C(θ) + θ
∫

Ω×{t}

g(|Du|)2+2/n|Du|2/n dx

for any θ > 0; C also depends, of course, on the same quantities as the constant in (2.8b).
This last integral is estimated via Hölder’s inequality and Corollary 1.2 to obtain∫

Ω×{t}

g(|Du|)2+2/n|Du|2/n dx ≤
( ∫

Ω×{t}

g(|Du|)2κ dx
)1/κ( ∫

Ω×{t}

g(|Du|)|Du| dx
)2/n

≤ C
( ∫

Ω×{t}

(divA)2 dx+ 1
)
.

Hence

E′(t) ≤
(
Cθ − 1

2

) ∫
Ω×{t}

(divA)2 dx+ C(θ) ≤ C

provided θ is taken sufficiently small. Integrating this inequality yields (2.8b) for smooth
u. The general case for n≥3 is recovered via the regularization scheme of [8, pp. 342–343].

The cases n = 1 and n = 2 can be handled using the ideas in [9, Section 2 and Lemma
3.2]. We leave the details to the reader.

Note that when n = 1, we don’t need to assume (1.1) and (1.2). The proof of [9,
Lemma 2.3] shows that we may assume instead that

|f(z, p)| ≤ C1(|z|) + C2Γ1/2(|p|),
where

Γ(τ) = τ
τ∫

0

g(s)g′(s)s ds.
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It follows immediately that if there are positive constants B > k and τ > σ satisfying
(0.5), then (0.6) holds with η = (B − k)/C, where C is the constant from (2.8b). In
particular, Theorem 0.1 follows.

If we assume that f grows more slowly with respect to p than in Theorem 2.1, we can
consider more general hypotheses on A.

Theorem 2.2. Let u solve (2.1), and suppose that there are scalar functions S, G, gi,
and Gi (i = 1, . . . , n) satsifying conditions (2.2), (2.5), and such that

(2.9a) Gi(s) = sgi(s),

(2.9b) each gi is C1 and increasing on (0,∞),

(2.9c) G(s) =
( n∏
i=1

Gi(s)
)1/n

,

(2.10) S(p) ≥
n∑
i=1

Gi(|pi|).

Suppose also that there are a continuous increasing function C0 and a positive constant
C2 such that

(2.11) |f(z, p)| ≤ C0(|z|) + C2S(p)1/2,

and define E by (2.7). Then for any positive B, there is a constant C(B,C0, C2,Ω) such
that (2.8a) implies (2.8b).

P r o o f. Computing E′ as in Theorem 2.1 leads to the estimates

E′(t) ≤ −1
2

∫
Ω×{t}

(divA)2 dx+ C2
1

∫
Ω×{t}

S(Du) dx+
∫

Ω×{t}

C0(|u|)2 dx

≤ C2
1B + C(C0, n)|Ω|

by the Sobolev-Orlicz imbedding theorem [15, Corollary 1]. The proof is now completed
as before.

We now show how Theorem 2.2 leads to a global boundedness result when f is inde-
pendent of p. Portions of this argument are still valid even if f depends on p, but a crucial
role is played by the Lyapunov functional J defined in Lemma 2.3 below. Rather than
discuss this point here, we refer the reader to [12, 16] for more details on the construction
of general Lyapunov functionals.

In addition to f being independent of p, we assume that f is superlinear. In the
present context, this assumption takes the following form: There are positive constants
a0, c0, c1, and ε such that

(2.12a) p ·A(p) ≤ a0S(p) + a1,

(2.12b) zf(z) ≥ (a0 + ε)F (z)− c1, F (z) ≥ z2+ε − c0,

where F (z) =
∫ z

0
f(σ) dσ. (For the equation ut = ∆u + f(u), we have A(p) = p, and

(2.6a) holds with a0 = 1/2 and a1 = 0. In this case, (2.12b) is equivalent to the single
condition lim inf |z|→∞ zf(z)/F (z) > 1/2.) Note that (2.12a) is a strong growth condition
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on S; if S(p) = h(|p|) for some function h, then h satisfies a ∆2-condition as defined in
[7, Chapter I, §4]. In particular, h can grow no faster than polynomially.

Lemma 2.3. Let n ≥ 1, let u solve

(2.13) ut = divA(Du) + f(u) in Ω× (0,∞), u = 0 on ∂Ω× (0,∞),

and suppose that f and S satisfy (2.12). If ut, S(Du), and divA(Du) are in L2(Ω×{T})
for any finite T , then

∫
Ω×{t} u

2 dx is uniformly bounded for t ∈ (0,∞), and

(2.14) lim inf
t→∞

E(t) <∞.

P r o o f. As in [3, 10], we set

M(t) =
1
2

∫
Ω×{t}

u2 dx, J(t) =
∫

Ω×{t}

[S(Du)− F (u)] dx.

After differentiating M with respect to t, using the differential equation for u and inte-
grating by parts, we have

M ′(t) =
∫

Ω×{t}

[−Du ·A(Du) + uf(u)] dx

for almost all t. Using (2.12a) and the first inequality of (2.12b), we find that

M ′(t) ≥ ε
∫

Ω×{t}

F (u) dx− a0J(t)− (a1 + c1)|Ω|.

A simple calculation shows that J ′(t) ≤ 0, so J is nonincreasing. Taking into account the
second inequality of (2.12b) and using Hölder’s inequality yields M ′(t) ≥ CM1+ε/2 −K
for suitable positive constants C and K. As in [4, Lemma 1.2], it follows that M(t) ≤
(K/C)2/(2+ε) because u exists for all t.

Similar calculations (cf. [10, Theorem 2.2]) show thatM ′(t) ≥ εE(t)−C, so E(t)→∞
as t→ T− implies that T must be finite, proving (2.14). (Note that these arguments also
work in the slow growth case because (2.12a) is the only restriction on S.)

Note that (2.12b) with A(p) = |p|m−2p implies that zf(z) ≥ C2z
1+ε − C3 so (0.3)′

can only be satisfied if (nm+m−n)/(n−m) > 1, which is equvialent to m > 2n/(n+2).
Combining the results of Theorem 2.2 and Lemma 2.3 with the techniques used in

proving [9, Theorem 1.5] gives global boundedness. We outline the procedure because
there are some important differences between the situation in [4, 9] and the present one.

Theorem 2.4. Let n ≥ 1, suppose conditions (2.2), (2.5), (2.9), (2.10) and (2.12)
are satisfied , and suppose that u solves (2.13). Suppose also that there is an increasing
continuous function C0 such that

(2.15) |f(z)| ≤ C0(|z|).

Then E(t) is uniformly bounded , and u is uniformly bounded in L∞.

P r o o f. From Lemma 2.3, E(t) cannot tend to infinity as t → ∞. If limt→∞E(t) is
finite, we are done. Hence we may assume that there are (finite) constants k and B so
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that

lim inf
t→∞

E(t) < k < B < lim sup
t→∞

E(t).

For any B and k satisfying this inequality, we can find sequences (σm) and (τm) such that
σm < τm < σm+1, σm → ∞, E(σm) = k, E(τm) = B, and E(t) ≤ B for t ∈ (σm, τm).
Since E(τm) is uniformly bounded, it follows from [2, Theorem 3.6] that the sequence
(u(·, τm)) is uniformly bounded and equicontinuous. By taking a suitable subsequence
of (τm) (still denoted by (τm)), we may therefore assume that this sequence converges
uniformly to a limit function v. Our goal is to show three things about v: first, v is a
solution of the limit problem

(2.16) divA(Dv) + f(v) = 0 in Ω, v = 0 on ∂Ω,

second,
∫

Ω
S(Dv) dx is bounded from above by a constant independent of B, and, third,

this integral is bounded from below by a constant multiple of B.
To show that v solves (2.16), we set um(X) = u(x, t− tm) and Q = Ω× (0, η). Then∫

Q
S(Dum) dX ≤ B, so

∫
|A(Dum)| dX is uniformly bounded and hence (by extracting

a subsequence as needed) there is a function v ∈ L1(Q) with |A(Dv)| ∈ L1(Q) and
A(Dum)→ A(Dv) weakly in L1(Q). Therefore∫

Q

[A(Dv) ·Dϕ− f(v)ϕ] dX = lim
m→∞

∫
Q

[A(Dum) ·Dϕ− f(um)ϕ] dX

= − lim
m→∞

∫
Q

um,tϕdX

for any ϕ ∈ C1
0 (Ω).

Now we mulitiply the differential equation for u by ut and integrate by parts to see
that ∫

Ω×(0,τm)

(ut)2 dX = J(0)− J(τm).

Since J(τm) ≥ C(B) for some negative constant C(B), it follows that ut ∈ L2(Ω×(0,∞)).
Now let C be the constant from Theorem 2.2 and set η = (B − k)/C, tm = τm − η and
Q(m) = Ω× (tm, τm), noting that tm ≥ σm. It follows that

lim
m→∞

∫
Q(m)

(ut)2 dX = 0,

and hence ∫
Ω

|u(x, τm)− u(x, τm − θ)| dx→ 0

uniformly for θ ∈ [0, η] as m→∞. Combined with the equiboundedness of the collection
of functions {um}, we find that v is independent of t and hence v is a weak solution
of (2.16).

Now we take v as test function in the weak form of (2.16) and use the first inequality
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of (2.12b) to see that∫
Ω

A(Dv) ·Dv dx ≥ (a0 + ε)
∫
Ω

F (v) dx− c1|Ω|,

and therefore (2.12a) implies that∫
Ω

S(Dv) dx ≥
(

1 +
ε

a0

) ∫
Ω

F (v) dx− a1 + c1
a0

|Ω|,

or

(2.17a)
∫
Ω

F (v) dx ≤ δ
∫
Ω

S(Dv) dx+ k1

for positive constants δ and k1 with δ < 1. On the other hand, Fatou’s Lemma shows
that ∫

Ω

S(Dv) dx ≤ lim inf
m→∞

∫
Ω

S(Du(x, τm)) dx.

Since the sequence (u(·, τm)) converges pointwise to v and is uniformly bounded, it follows
that F (u(·, τm))→ F (v) in L1(Ω). Moreover, J is decreasing so

(2.17b)
∫
Ω

S(Dv) dx ≤ lim
m→∞

J(τm) +
∫
Ω

F (v) dx ≤ J(0) +
∫
Ω

F (v) dx.

Combining (2.17a) with (2.17b) yields, after some rearrangement,∫
Ω

S(Dv) dx ≤ k2

for k2 = (J(0) + k1)/(1− δ), which is independent of B. Hence

lim
∫
Ω

F (u(·, τm)) dx =
∫
Ω

F (v) dx ≤ C

for some constant independent of B. Since also

lim
∫
Ω

S(Du(·, τm)) dx = lim J(τm) + lim
∫
Ω

F (u(·, τm)) dx ≤ J(0) + C,

we conclude that B ≤ J(0) + C, which means that E(t) is uniformly bounded. The L∞

bound follows from this one by [15, Corollary 1].

The slow growth version of Theorem 2.3 is only slightly more delicate; in place of
the uniform L∞ estimates for u, we need to observe that the appropriate integrands are
bounded by suitable L1 functions.

3. Slow growth. In this section, we study problem (2.1) when A grows more slowly
than in Section 2. A crucial element of our program is a Sobolev-type inequality involving
Orlicz functions. The guiding principle is a straightforward modification of Donaldson and
Trudinger’s imbedding theorem [2, Theorem 3.2(a)] for Sobolev-Orlicz spaces, but there
are some important technical differences. The most important is that we are not interested
in results relating Orlicz norms of functions and their derivatives over a suitable domain
in Rn but rather the integral of a Young’s function composed with the function defined
on that domain. In fact, our results do not use the convexity of the Young’s function so
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we state them in terms of a slightly different structure, namely (2.3). Unlike the situation
in Section 2, we always consider the structure from Theorem 2.1 which uses the single
function g.

Lemma 3.1. Let g and G satisfy (2.3). Suppose H is a positive C1(0,∞) function
satisfying the differential equation

(3.1) (G−1 ◦H)(s)
dH

ds
= H(s)(n+1)/n

for s > 0. Then

(3.2)
n+ 1
n
≥ HH ′′

(H ′)2
≥ 1
n
.

Moreover

(3.3)
d

ds
((H ′(s))2H(s)−1/n) ≤ 2H ′′(s)g ◦G−1(H(s)).

P r o o f. Differentiation of (3.1) followed by a use of (3.1) itself yields

(G−1)′(H)(H ′)2 +G−1(H)H ′′ =
n+ 1
n

H1/nH ′ =
n+ 1
n

(H ′)2

H
G−1(H).

Since G is increasing, so is its inverse and hence

G−1(H)H ′′ ≤ n+ 1
n

(H ′)2

H
G−1(H),

which implies the first inequality of (3.2). For the second, note that G′ ≥ g, so

(G−1)′(H) = 1/G′(G−1(H)) ≤ 1/g ◦G−1(H) = G−1(H)/H,

and hence

H ′′ ≥
(
n+ 1
n
− 1
)

(H ′)2

H
.

To prove (3.3), we suppress the argument s from H and its derivatives and note that

d

ds
((H ′)2H−1/n) = H ′H−1/n

[
2H ′′ − 1

n

(H ′)2

H

]
≤ 2H ′′H ′H−1/n.

Since (3.1) implies that g ◦G−1(H) = H ′H−1/n, we infer (3.3).

Note that, even though G and H need not be Young’s functions, much of the machin-
ery of Orlicz spaces can still be used. In particular, we define

‖u‖H = inf
{
k > 0 :

∫
Ω

H

(
|u|
k

)
dx ≤ 1

}
,

which is the Luxemburg norm because H is convex. Note that∫
Ω

H

(
|u|
‖u‖H

)
dx = 1

if u is bounded. We are now ready to prove our Sobolev inequality.
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Lemma 3.2. Suppose the hypotheses of Lemma 3.1 are satisfied. Let u ∈ C0,1(Ω̄) with
u = 0 on ∂Ω, and set ε1 = min{1/8, 1/‖u‖H}. Then for any ε ∈ (0, ε1), we have

(3.4)
∫
Ω

H ′(ε|u|)2 dx ≤ 4ε
∫
Ω

H ′′(ε|u|)G(|Du|) dx.

P r o o f. Without loss of generality, we may assume that u is nonnegative. Then we
integrate (3.3) and apply the inequalities of Sobolev and Hölder. Since the constant in
Sobolev’s inequality is less than 1 (see [5, (7.28)]), we see that∫

Ω

(H ′(εu))2 dx ≤ C1(ε)
∫
Ω

H ′′(εu)g ◦G−1(H(εu))|Du| dx,

for C1(ε) = 2ε[
∫

Ω
H(εu) dx]1/n. Because ε1 ≤ 1/‖u‖H , it follows that C1 ≤ 2ε. Then

Young’s inequality in the form [8, Lemma 1.1(e)] implies that∫
Ω

(H ′)2 dx ≤ 2ε
( ∫

Ω

H ′′G(|Du|) dx+
∫
Ω

H ′′H dx
)
,

where we suppress the argument εu in H and all its derivatives. From (3.2), it follows
that ∫

Ω

(H ′)2 dx ≤ 2ε
∫
Ω

H ′′G(|Du|) dx+ 4ε
∫
Ω

(H ′)2 dx.

The desired result follows from this inequality because ε1 ≤ 1/8.

Now we examine the situation that A has “slow growth” and f is independent of
Du. Specifically, we assume of A that there are nonnegative constants g0 and g1, and an
increasing function g such that

(3.5a) g(s) = g1s
(n−2)/(n+2) for s ∈ (0, 1),

(3.5b) p ·A(p) ≥ G(|p|)− g0 for all p ∈ Rn

(here G is related to g via (2.3a)), and that

(3.6)
∞∫
0

G−1(τ)
τ (n+1)/n

dτ =∞.

We pause here to make some observations about these conditions. The explicit form
of g in (3.5a) is just a convenient technical device to facilitate the proof of Lemma 3.3
below. Moreover, for a given C1 function g∗ defined on [0,∞), we can find a C1 function
g satisfying (3.5a) such that g(s) = g∗(s) for s > 2. If (3.5b) holds with g replaced by g∗

and some constant g0, we can always adjust the constants g0 and g1 to guarantee (3.5b)
with g. Condition (3.5b) says that G only has to control p · A for large p. When S is
convex, (3.5b) follows from (2.2) and (2.4). If G(s) = sm for some constant m and all
s > 1, then (3.6) holds if and only if 1 ≤ m ≤ n.

The key step in our study of global boundedness is an estimate for E′(t), once a
suitable choice has been made for E. If we take H to be the even extension of the
Sobolev conjugate of G, so

H−1(s) =
s∫

0

G−1(τ)
τ (n+1)/n

dτ
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for s ≥ 0, then E is given by

(3.7) E(t) =
∫

Ω×{t}

H(εu) dx

with ε sufficiently small.

Lemma 3.3. Let u be a solution of (2.1) and suppose E is given by (3.7) with ε ≤
min{1/8, 1/‖u‖H}. Suppose also that there is an decreasing function C1 such that

(3.8) f(z, p) sgn z ≤ C1(θ) + θ|H ′(θz)|

for all real z and all θ ∈ (0, 1). If (3.5) and (3.6) hold , then there is a constant C
determined only by C1(ε), |Ω|, g0, g1, and h = G−1(g(n+2)/n

1 /4) such that (2.8a) implies
(2.8b).

P r o o f. As before, we may assume u to be C2, and then we only need to estimate
E′. By direct calculation,

E′(t) = ε
∫

Ω×{t}

H ′(εu)ut dx = ε
∫

Ω×{t}

[H ′ divA(Du) +H ′f ] dx

= −ε2
∫

Ω×{t}

H ′′Du ·Adx+ ε
∫

Ω×{t}

H ′f dx.

Now we use (3.8) with θ = ε and then Lemma 3.2 to infer that

E′(t) ≤ ε2
(
−
∫

Ω×{t}

H ′′Du ·Adx+
∫

Ω×{t}

(H ′)2 dx+ C1(ε)|Ω|
)

(3.9)

≤ ε2

(
− 1

2

∫
Ω×{t}

H ′′G(|Du|) dx+ g0

∫
Ω×{t}

H ′′ dx

)
+ C.

Since H(τ)→∞ as τ →∞, we can use (3.2) to see that

g0

∫
Ω×{t}

H ′′ dx ≤ 2
∫

{H>g0}

(H ′)2 dx+
∫

{H≤g0}

H ′′ dx.

To estimate the second integral on the right hand side of this inequality, we note that
H(1) = g

(n+2)/n
1 /4 = G(h). Therefore, on {1 < ε|u|, H ≤ g0}, we have

H ′′ ≤ 2(H ′)2/H =
2H1+2/n

h2
≤ 2H1+2/n(H−1(g0))

h2
=

2g(n+2)/n
0

h2
.

It follows that

g0

∫
Ω×{t}

H ′′ dx ≤ 2
∫

Ω×{t}

(H ′)2 dx+ [g0g
(n+2)/n
1 + 2g(n+2)/n

0 h−2]|Ω|.

Using this inequality in (3.9) and applying Lemma 3.2 yields (2.8b).

Note that E plays two different roles in Section 2, which now must be played by
two functions denoted by E and U . We use U to measure how large the solution u is
and how fast it changes. In seeing how fast U (and hence u) changes, we introduce a
comparable function E whose derivative is easily estimated. As we shall see in the proof
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of Theorem 3.4, the correct quantity for U is ‖u‖H , while E is defined by (3.7). Note
also that the variational hypothesis (2.2) is not used in this case.

Theorem 3.4. Let A and g satisfy (2.3), (3.5) and (3.6), suppose that f satisfies (3.8),
suppose u solves (2.1), and set U(t) = ‖u(·, t)‖H . If B and k are positive constants with
B > max{k, 8}, and if τ > σ are positive constants with

(3.10) U(τ) = B, U(σ) = k, U(t) ≤ B for t ∈ (σ, τ),

then there is a positive constant η determined only by B, k, Ω, C1(1/B), g0, g1, n, and
h such that (0.6) is satisfied.

P r o o f. Taking ε = 1/B, we see that

1−
∫

Ω×{σ}

H(εu) dx =
∫

Ω×{τ}

H(εu) dx−
∫

Ω×{σ}

H(εu) dx ≤ C[τ − σ].

Because H ′′ ≥ 0, we have H(εu) ≤ (εk)H(u/k) and therefore 1 − (k/B) = 1 − εk ≤
C[τ − σ], which implies (0.6).

When f grows more rapidly with respect to p, we must modify Lemma 3.3 to obtain
a hybrid of the conditions in Theorem 3.4 and those in Section 2.

Lemma 3.5. Suppose there are scalar functions S, g, and G and a positive constant
g0 such that (2.2), (2.3), and (3.5) are satisfied. Let u be a solution of (2.1) and define
E by

(3.11) E(t) =
∫

Ω×{t}

S(Du) dx+ λ
∫

Ω×{t}

H(εu) dx

for some positive constants ε and λ. Suppose also that Ω ⊂ Rn with n ≥ 3 and that there
is a positive decreasing function C1 such that

(3.12) |f(z, p)| ≤ C1(θ) + θ|H ′(θz)|+ θg(|p|)1+1/n|p|1/n

for all real z and all θ ∈ (0, 1). If there is a constant B such that

(3.13)
∫

Ω×{t}

G(|Du|) dx ≤ B,

and if ε ≤ 1/(8B1/n), then there is a constant C(B,C1, ε, λ, |Ω|, g0, g1, n, h) such that
(2.8b) holds.

P r o o f. Let us define Γ and Φ by Γ(τ) = G(τ)/B and

Φ−1(τ) =
τ∫

0

Γ−1(s)
s1+1/n

ds.

From the Sobolev-Orlicz imbedding theorem [2, Theorem 3.4(b)], we have ‖u‖Φ ≤ 1
because the constant γ in that inequality is n1/2. It is a simple matter to check that
Φ(τ) = H(τ/B1/n)/B, so the proof of Lemma 3.2 gives∫

Ω×{t}

(H ′)2 dx ≤ 4ε1

∫
Ω×{t}

H ′′G(|Du|) dx
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for any ε1 ≤ 1/8 provided ε = ε1/B
1/n. Hence the terms obtained from differentiating

the first integral in E with respect to t are estimated as in Section 2 while those from
the second integral are estimated as in Lemma 3.3.

With E defined by (3.11), the analog of Theorem 3.4 is easier because we don’t need
to take B > 8.

Theorem 3.6. Let A and g satisfy (1.1), (1.2), (2.2), (2.3), (2, 4), (3.5) and (3.6),
suppose that f satisfies (3.12), suppose u satisfies (2.1), and set

(3.14) U(t) =
∫

Ω×{t}

S(Du(x, t)) dx.

If B and k are positive constants with B > k, and if τ > σ are positive constants satisfying
(3.10), then there is a positive constant δ determined only by B, k, Ω, C1(1/B), g0, g1,
n, and h such that (0.6) holds.

P r o o f. Now we use Lemma 3.5 with 0 < ε < ε0 and λ = min{1, (B − k)/2}. We
then have

B − k = U(τ)− U(σ) ≤ E(τ)− E(σ) + λ
∫

Ω×{τ}

H(εu) dx.

From our choice of ε and λ, it follows that B − k ≤ E(τ) − E(σ) + 1
2 (B − k) ≤

C[τ − σ] + 1
2 (B − k). Rearranging this inequality gives (0.6) with η = 1/(2C).

As previously indicated, the case n = 2 is handled by using the techniques of [9,
Lemma 3.2] provided the term θg(|p|)1+1/n|p|1/n is replaced by g(|p|)1−θ+1/n|p|(1/n)−θ.
Because of (1.1), we have G−1(σ) ≤ Cσ1−δ for σ ≥ 1, so (2.2) is always satisfied when
n = 1.

4. The borderline case. The results of Section 3 rely on the specific form of the
Sobolev-Orlicz embedding theorem. The Sobolev conjugate function H of G is used to
bound the function f in our partial differential equation, and the precise form of this
conjugate is used, via Lemmata 3.1 and 3.2, to control terms in the expression for E′. It
is well-known that a better embedding theorem is valid in case G(s) = sn, where n ≥ 2
and Ω ⊂ Rn. (The behavior of G for small s is not relevant here.) In this section, we
show how to take advantage of the better embedding.

Theorem 4.1. Let n ≥ 3, and let u solve (2.1). Suppose there is a scalar function S

satisfying (2.2) and (2.4) with G(s) = sn. Suppose also that there is a positive decreasing
function C1 such that

(4.1) |f(z, p)| ≤ C1(θ) exp(θ|z|n/(n−1)) + θ|p|n

for all θ > 0, and define E by (2.7). Then for any B > 0, there is a positive constant
C(B,C0, C1, g0,Ω, F, δ,Λ) for which (2.8a) implies (2.8b).

P r o o f. We follow the proof of Theorem 2.1. The only difference is in the estimate of∫
f2 dx. We have∫

Ω×{t}

f2 dx ≤ C(θ) + θ
∫

Ω×{t}

|Du|2n dx+ C1(θ)
∫

Ω×{t}

exp(2θ|u|n/(n−1)) dx,
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and the first integral on the right is estimated as before. From the embedding theorem
[14, Theorem 2], we know there is a constant C(n) such that if k is a positive constant
with

k ≥ C(n)
( ∫

Ω×{t}

|Du|n dx
)1/n

,

then ∫
Ω×{t}

exp(|u/k|n/(n−1)) dx ≤ 1.

Using this implication with k = 1/(2θ) and θ ≤ B1/n/(2C(n)) gives
∫

Ω×{t} tf
2 dx ≤ C

provided θ is sufficiently small, and then the proof is completed as in Theorem 2.1.

For n = 2, we must modify (4.1) by using |p|2−θ in place of θ|p|n. Full details may be
found in [9]. Note that the proof of Theorem 4.1 is valid as long as there is a function H
satisfying the algebraic inequality

|f(z, p)| ≤ C1(θ)H(θ|z|)1/2 + θg(|p|)1+1/n|p|1/n

and the Sobolev inequality ‖u‖H ≤ C‖Du‖G. The author is currently unaware of situa-
tions in which these inequalities are satisfied which do not fall into the cases discussed in
Theorem 4.1 or the previous sections of this paper.

5. Nonlinear boundary conditions. In this section we show how to modify our
arguments to cover the problem

(5.1) ut = divA(Du) in Q, A(Du) · γ + f(u) = 0 on SQ,

with Q and SQ as before, where γ denotes the unit inner normal to ∂Ω.
The fast growth case is handled very much like its analog in [9].

Lemma 5.1. Let u be a solution of (5.1). Suppose conditions (2.2)–(2.5) are satisfied.
Suppose also that there is a C1 function C1 such that G ◦ g−1(|f(z)|) ≤ C1(|z|) and set

(5.2) E(t) =
∫

Ω×{t}

[S(Du)− f(u)Du · γ + 2C1(|u|)] dx.

Then for any positive constant B, there is a constant C = C(C1, B,Ω, g0) such that

(5.3)
∫

Ω×{t}

[G(|Du|) +G(u)] dx ≤ B

implies (2.8b).

P r o o f. Suppose first that f is C1 and that u is C2. Then

E′(t) =
∫

Ω×{D}

[ut ·A(Du)− f(u)Dtu · γ − utf ′(u)Du · γ + 2C ′1(u)ut] dx

=
∫

Ω×{t}

[Dut · (A(Du)− fγ)− utf ′(u)Du · γ + 2C ′1(u)ut] dx

=
∫

Ω×{t}

− ut[div(A(Du)− f(u)γ) + f ′(u)Du · γ + 2C ′1(u)] dx
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=
∫

Ω×{t}

(−u2
t + ut[f div γ + 2C ′1(u)]) dx.

Now we use the Sobolev-Orlicz imbedding theorem [2, Theorem 3.2(b)] and Cauchy’s
inequality to infer that E′ ≤ C, and an approximation argument implies (2.8b) for the
general case.

Note that the condition relating f and C1 is not used directly. For the purposes of
Lemma 5.1, we could have assumed that |f(z)| ≤ C2(|z|) for some increasing function
C2; however, the condition on G ◦ g−1(|f(z)|) guarantees, via Young’s inequality, that E
is bounded from below. This lower bound is crucial for our estimate of how quickly the
function U defined by

(5.4) U(t) =
∫

Ω×{t}

[S(Du) +G(|Du|)] dx

can increase.

Theorem 5.2. Let u solve (5.1) and suppose conditions (0.8), (0.9), (2.2) and

(5.5) S(p) ≥ 2G(|p|)

are satisfied. Suppose that there is an even C1 function C1, which is increasing on (0,∞),
such that

(5.6) G ◦ g−1(|f(z)|) +G(z) ≤ C1(z),

and let k > 0. Then there are positive constants C2(k,C1,Ω) and η(k,C1,Ω) such that
(3.10) with B > C2 implies (0.6).

P r o o f. By the Sobolev-Orlicz imbedding theorem, there is a constant C0(k,Ω) such
that |u(x, σ)| ≤ C0 for x ∈ Ω. Hence

E(σ) ≤
∫

Ω×{t}

[S(Du) +G(|Du|) +G ◦ g−1(|f(u)|) + 2C1(u)] dx

≤ 3
∫

Ω×{t}

[S(Du) + C1(u)] dx ≤ 3k + 3C1(C0)|Ω|,

while a similar argument gives E(τ) ≥ B
2 . Choosing C2 = 8(k+C1(C0)|Ω|) gives E(τ)−

E(σ) ≥ C and then (0.6) follows from Lemma 5.1.

The slow growth case is more delicate. The correct ideas are (mostly) present in [9],
but an error crept into the proof of [9, Lemma 4.2]: in the estimate of the boundary
integral, all powers of |u| should be increased by p. As we shall see in Theorem 5.4, [9,
Lemma 4.3] (and hence Theorem 4.4 there) is correct. To give a correct statement and
proof of the result in [9, Lemma 4.2], we begin with a technical lemma. As before, the
results of this lemma are obvious when g(τ) = τm for some m ∈ (0, n− 1).

Lemma 5.3. Let g and G satisfy conditions (2.3a,b), and let C1 and θ be positive
constants with θ ≤ 1

2 . Then there is a positive C2 determined only by g, n, θ, and C1

such that

(5.9) g ◦G−1(θH(θz) + C1) ≤ θ|H ′(θz)|+ C2 for any real z.
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P r o o f. We define k = H−1(θ−n + C1(θ)/θ)/θ and C2 = g ◦ G−1(2C1 + θ1−n) and
note that g ◦ G−1(θH(θz) + C1) ≤ C2 if |z| ≤ k. Suppressing the argument θz from H

and its derivatives, we have

g ◦G−1(2θH) ≤ g ◦G−1(H) =
H ′

H1/n

if z is positive. Because H(θz) ≥ θ−n if z > k, we have (5.9) in this case as well. Finally,
(5.9) holds for z < −k because H is even.

For the slow growth case, our analysis is very close to that of Lemma 3.3.

Lemma 5.4. Let u be a solution of (5.1), suppose E is given by (3.7), suppose (3.6)
holds, and suppose there is a decreasing function C1 such that

(5.10) G ◦ g−1(|f(z)|) ≤ θH(θz) + C1(θ)

for all real z and all θ ∈ (0, 1). If B is a constant such that

(5.11) ‖u(·, t)‖H ≤ B

for all t ∈ [t0, t1], then there is a constant ε0 = ε0(Ω, B) such that ε ∈ (0, ε0) implies that
(2.8b) holds with C determined only by ε, B, C1, Ω, g1, and g.

P r o o f. By direct calculation, followed by use of the differential equation for u and
integration by parts, we have

E′(t) =
∫

Ω×{t}

H ′ut dx =
∫

Ω×{t}

H ′ divA(Du) dx

= −ε
∫

Ω×{t}

H ′′Du ·A(Du) dx− ε
∫

∂Ω×{t}

H ′A(Du) · γ dσ,

where, as before, we suppress the argument of H and its derivatives. Using the boundary
condition and (5.10) yields

−
∫

∂Ω×{t}

H ′A(Du) · γ dσ =
∫

∂Ω×{t}

H ′f(u) dσ ≤
∫

∂Ω×{t}

|H ′|g ◦G−1(εH + C1) dσ.

(The argument ε is also suppressed from C1.) Now we continue to estimate this integral.
First, the divergence theorem gives∫

∂Ω×{t}

|H ′|g ◦G−1(εH + C1) dσ =
∫

Ω×{t}

|H ′|g ◦G−1(εH + C1) div γ dx

+
∫

Ω×{t}

d

du
(|H ′|)g ◦G−1(εH + C1)Du · γ dx

+
∫

Ω×{t}

|H ′| d
du

(g ◦G−1(εH + C1))Du · γ dx.

To estimate these integrals, we first use (5.9) with θ = ε to see that

g ◦G−1(εH + C1) ≤ ε|H ′|+ C2.
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Next, we have | ddu |H
′|| = εH ′′, so

d

du
(|H ′|)g ◦G−1(εH + C1))Du · γ = εH ′′g ◦G−1(εH + C1))|Du|

≤ εH ′′G(|Du|) + εH ′′[εH + C1]

by Young’s inequality. Finally,
d

du
(g ◦G−1(εH + C1)) = ε2g′(G−1(εH + C1))(G−1)′(εH + C1)H ′

=
g′(G−1(εH + C1))
G′(G−1(εH + C1))

ε2H ′.

Since g and G are increasing and sg′(s) ≤ G′(s), it follows that

d

du
(g ◦G−1(εH + C1)) ≤ ε2|H ′|

G−1(εH ′ + C1)
.

From this inequality and (3.2), we infer that

d

du
(g ◦G−1(εH + C1))|H ′|Du · γ ≤ nε2H ′′H

G−1(εH + C1)
|Du|.

Since C1 is nonnegative, we infer from this inequality and Young’s inequality that
d

du
(g ◦G−1(εH + C1))|H ′|Du · γ ≤ nεH ′′G(|Du|) + nεH ′′[εH + C1].

Combining all these estimates and invoking (3.2) again yields

E′(t) ≤ (Cε2 − ε)
∫

Ω×{t}

H ′′G(|Du|) dx+ Cε
∫

Ω×{t}

(H ′)2 dx+ C(ε).

Now an easy modification of Lemma 3.2 shows that∫
Ω×{t}

(H ′)2 dx ≤ C(Ω)ε
[ ∫

Ω×{t}

H ′′G(|Du|) dx+
∫

Ω×{t}

H−1/n(H ′)2 dx
]

provided ε ≤ C(Ω, ‖u‖H). Since H−1/n(H ′)2 = C(g1, n)|εu|2−2/n ≤ C for |εu| ≤ 1 and
H−1/n(H ′)2 ≤ H(1)−1/n(H ′)2 otherwise, we infer (2.8b) for ε sufficiently small.

Now the proof of Theorem 3.4 immediately gives the following growth rate estimate.

Theorem 5.5. Let A and g satisfy (2.3), (3.5) and (3.6), suppose that f satisfies (5.10),
suppose u solves (5.1), and set U(t) = ‖u(·, t)‖H . If B and k are positive constants with
B > max{k, 8}, and if τ > σ are positive constants satisfying (3.10), then there is a
positive constant δ determined only by B, k, Ω, C1, g0, g1, n, and G such that (0.6)
holds.

Note that when A(p) = p, we can use Theorem 5.5 in place of [9, Theorem 4.2] to
prove [9, Lemma 4.3] and hence [9, Theorem 4.4].

For the borderline case, we note that (5.9) and Lemma 3.2, as well as the analog of
this lemma which was used in Lemma 5.4, remain valid if

(5.12) g(z) = zn−1, H(z) = exp(|z|n/(n−1)).

Moreover, the case n = 2 is included without any modifications. Hence the proof of
Lemma 5.4 carries over to this case and we obtain the following results.
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Lemma 5.6. Suppose E is given by (3.7) with g and H given by (5.12), and suppose
there is a decreasing function C1 such that (5.10) holds for all real z and all θ ∈ (0, 1).
If u is a solution of (5.1) and if B is a constant such that (5.11) holds for all t ∈ [t0, t1],
then there is a constant ε0 = ε0(Ω, B) such that ε ∈ (0, ε0) implies (2.8b).

Theorem 5.7. Let A satisfy (3.5b) with g and H given by (5.12), suppose that f
satisfies (5.10), and set U(t) = ‖u(·, t)‖H . If there are positive constants B and k with
B > max{k, 8} and τ > σ satisfying (3.10), then there is a positive constant η determined
only by B, k, Ω, C1, g0, g1, n, and G such that (0.6) holds.

Note that (5.10) with g and H given by (5.12) is equivalent to the condition

|f(z)| ≤ C3(θ) exp(θ|z|n/(n−1))

for all real z, all θ ∈ (0, 1), and a suitable function C3.

6. Extensions of the conditions. There are several ways in which our results can
be extended to cover more general situations by very minor modification of the arguments
just presented. In this section, we discuss some of these extensions briefly.

First, many of our results are true if A and f are allowed to depend also on x and
t. For example, Theorem 2.1 holds with the additional hypothesis that St(x, t, u, p) ≤
C3[S(x, t, u, p)+1] for some constant C3. Theorem 3.4 and 3.6 are true even without this
additional assumption.

The most interesting extension is to the case that A depends on u. In this case, our
techniques seem to apply only when the equation can be written as

ut = divA(DΦ(u)) + f(u,Du)

with A as before and Φ a strictly increasing C1(R\{0})∩C0(R) function. Then Theorem
2.1 holds with

Φ′(z)f(u,Du)2 ≤ C0(Φ(z)) + C1S(Φ′(z)p)

in place of (2.6) and E defined by

E(t) =
∫

Ω×{t}

S(DΦ(u)) dx.

This rapid growth case is virtually identical to the one in Section 2, but the slow growth
case is more delicate. The results are easy to state; if there are positive constants θ1 ≤ θ2

such that

H ′(s) ≤ θ1sH
′′(s), θ1 ≤

sΦ′(s)
Φ(s)

≤ θ2,

and if f satisfies (3.9), then Theorems 3.4 and 3.6 are still true. To prove them in this
case, we introduce a transformation T defined by

T [f ](z) =
1
z

z∫
0

f(s)ds

for f ∈ L1
loc(R) and set ψ = T [T [Φ]] and h(s) = H(εψ(s)) for ε a positive constant at
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our disposal. A straightforward calculation, similar to one giving [10, (4.8)], shows that

h′′ ≥ θ2
1εmax

{
H ′

ψ

s2
,

ε

(1 + θ1)2
H ′′
(
ψ

s

)2}
.

Then the proof of Lemma 3.2 is easily modified to show that there are positive constants
K and ε0 determined only by θ1 and θ2 such that∫

Ω

(h′)2 dx ≤ Kε
∫
Ω

h′′G(|DΦ|) dx

for ε ≤ min{1/‖Φ‖h, ε0}. From this inequality, the theorems follow just as before.
Finally, one can combine the techniques of Sections 2, 3, and 4 with those in Section

5 to consider problems of the form

ut = divA(Du) + f(u,Du) in Ω× (0,∞), A(Du) · γ + F (u) on ∂Ω× (0,∞).

We refer the interested reader to [1] for details on this situation when A(p) = p and f ,
which only depends on u, and F are power functions.
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