GENERIC DEFORMATIONS OF LAGRANGIAN AND LEGENDRIAN MAPS

SERGEY STANCHENKO
Moscow Aviation Institute
Volokolamskoe shosse, 4, 125871 Moscow, Russia
E-mail: stan@k804.mainet.msk.su

1. Introduction

a. Investigating ocean and atmosphere flows Nye and Thorndike [2] have studied typical bifurcations of three dimensional vector fields depending on time. One can describe such a field as a one-parameter family of maps from R^{3} to R^{3} or as a map from $R^{1} \times R^{3}=$ R^{4} to R^{3}.

To study them the authors of [2] consider sections of stable maps from R^{4} to R^{4}. There is one family in their list of typical sections for which the set of critical values for an isolated value of the parameter is equal to the caustic of a Lagrangian D_{4} map.

This leads to another problem: To study properties of Lagrangian and Legendrian maps included in generic families of maps with a suitable number of parameters. In this way V-versal deformations of Lagrangian D_{k} and Legendrian A_{k} maps are considered below.
b. As a Lagrangian map is the restriction to a Lagrangian submanifold of the projection that defines a Lagrangian fiber bundle, Lagrangian maps may be locally considered as maps from R^{n} to R^{n}. The normal form of Lagrangian stable maps is given by the corresponding classification theorem ([1]).

Example. The normal form of Lagrangian A_{k} maps coincides with that of stable Whitney maps A_{k} :

$$
\begin{align*}
& A_{k}:\left(R^{n}(x), 0\right) \rightarrow\left(R^{n}(y), 0\right) \\
& y_{1}= \pm(k+1) x_{1}^{k}+(k-1) x_{2} x_{1}^{k-2}+\ldots+2 x_{k-1} x_{1} \tag{1}\\
& y_{i}=x_{i}, \quad i=2, \ldots, n, \quad k-1 \leq n
\end{align*}
$$

1991 Mathematics Subject Classification: Primary 58C27; Secondary 53C15.
Research supported by ISF grant MSD000 and by RFFI grant 94-01-00255.
The paper is in final form and no version of it will be published elsewhere.

It is obvious that Lagrangian A_{k} maps are stable in the class of general maps.
Example. The Lagrangian $D_{k}^{ \pm}$maps have the following normal form:

$$
\begin{aligned}
& \quad D_{k}^{ \pm}:\left(R^{n}(x), 0\right) \rightarrow\left(R^{n}(y), 0\right), \\
& y_{1}=x_{2}^{2} \pm(k-1) x_{1}^{k-2}+(k-2) x_{3} x_{1}^{k-3}+\ldots+2 x_{k-1} x_{1}, \\
& y_{2}=2 x_{1} x_{2}, \\
& y_{i}=x_{i} \quad i=3, \ldots, n, \quad k-1 \leq n, \quad k \geq 4 .
\end{aligned}
$$

In this paper the properties of the maps (2) are described. The V-versal deformation preserving the origin is a one parameter deformation for the maps (2). For even k the Lagrangian D_{k}^{+}maps fall into stable maps A_{k} (at two isolated points), the Lagrangian D_{k}^{-}maps decompose only into A_{k-1}, A_{k-2} etc. For odd k the Lagrangian D_{k} maps fall into A_{k} (at one isolated point).
c. A map from a Legendrian submanifold to the base of a Legendrian bundle may be locally considered as a map from R^{n} to R^{n+1}.

Example. The normal form of Legendrian A_{k} maps is given by (see [1])

$$
\begin{align*}
& L A_{k}:\left(R^{n}(y, x), 0\right) \rightarrow\left(R^{n+1}(q), 0\right), \\
q_{1} & =\varphi_{1}(y, x) \tag{3}\\
q_{i}= & x_{i}, \quad i=2, \ldots, n, \quad q_{n+1}=\varphi_{2}(y, x),
\end{align*}
$$

where

$$
\begin{aligned}
\varphi_{1} & =(k+1) y^{k}+(k-1) x_{2} y^{k-2}+\ldots+2 x_{k-1} y, \\
\varphi_{2} & =k x^{k+1}+(k-2) x_{2} x_{1}^{k-1}+\ldots+x_{k-1} y^{2}
\end{aligned}
$$

In the Legendrian case the following results are obtained: The V-versal deformation of Lagrangian A_{k} maps preserving the origin is a $k-1$-parameter deformation. The bifurcational diagram for this family is constructed. Outside the bifurcational set the maps of this family are stable and at isolated points they are $R L$-equivalent to the trivial extension of the stable maps that has the image of a "Whitney umbrella". Legendrian A_{k} maps have infinite $R L$ - and topological codimension.

The author is grateful to Prof. V. Zakalyukin for his considerate attention to this work.

2. V-versal deformation of Lagrangian D_{k} maps

Proposition 1. The V-versal deformation $D_{k}^{ \pm}(t, c)$ of the maps (2) is given by

$$
\begin{align*}
y_{1} & =\varphi_{1}(x)+t x_{2}+c_{1} \\
y_{2} & =\varphi_{2}(x)+c_{2} \tag{4}\\
y_{i} & =x_{i}+c_{i}, \quad i=3, \ldots, n
\end{align*}
$$

where

$$
\begin{aligned}
& \varphi_{1}(x)=x_{2}^{2} \pm(k-1) x_{1}^{k-2}+(k-2) x_{3} x_{1}^{k-3}+\ldots+2 x_{k-1} x_{1} \\
& \varphi_{2}(x)=2 x_{1} x_{2}
\end{aligned}
$$

Proof. Direct calculations.
The main result for Lagrangian D_{k} series. Let $D_{k}(t)$ be the family (4) with $c=0: D_{k}^{ \pm}(t)=D_{k}^{ \pm}(t, 0)$, and let $k-1=n$.

Theorem 1. If k is even, $t \neq 0$, then $D_{k}^{+}(t)$ has 2 singular points at which it is $R L$-equivalent to A_{k} (1). These points have coordinates

$$
x_{10}= \pm s_{1}|t|^{2 /(k-2)}, \quad x_{20}=-t / k, \quad x_{i 0}=s_{i} x_{10}^{i-2}, \quad i=3, \ldots, n .
$$

$D_{k}^{-}(t)$ has no A_{k} points.
If k is odd, $t \neq 0$, then $D_{k}(t)$ has one singular point at which it is $R L$-equivalent to A_{k}. This point has coordinates

$$
x_{10}=s_{1} t^{2 /(k-2)}, \quad x_{20}=-t / k, \quad x_{i 0}=s_{i} x_{10}^{i-2}, \quad i=3, \ldots, n,
$$

for some $s_{1}, s_{3}, \ldots, s_{n}$.
Proof. It is sufficient to prove two propositions:
A. If $t \neq 0$, then $D_{k}^{ \pm}(t)$ has the corresponding number of singular points with Boardman type $\Sigma^{\frac{1 \cdot 1}{k}}$.
B. $D_{k}^{ \pm}(t)$ is stable at these points.

First we find all the points of $\Sigma^{\frac{1.1^{1}}{k}}$ Boardman type.
Lemma 1. Let $x_{1}^{2}+x_{2}^{2} \neq 0$. Then for $D_{k}^{ \pm}(t)$

$$
\Sigma^{\frac{1 \ldots 1}{i}}=\left\{x \in R^{n} \mid B_{1}(x)=0, \ldots B_{i-1}(x)=0, B_{i}(x) \neq 0\right\}
$$

where

$$
B_{i}=b_{i 1} x_{1}^{k-2}+b_{i 2} x_{3} x_{1}^{k-3}+\ldots+b_{i k-2} x_{k-1} x_{1}+b_{i k-1} x_{2}+b_{i k} x_{2}^{2}
$$

and $\left(b_{i j}\right)=B$ is the $(k-1) \times k$-matrix:

$$
\left(\begin{array}{cccccc}
\pm(k-1)(k-2) & (k-2)(k-3) & \cdots & 2 & -t & -2 \tag{5}\\
\mp(k-1)(k-2)^{2} & -(k-2)(k-3)^{2} & \cdots & -2 & -t & -4 \\
(-1)^{k-2}(k-1)(k-2)^{k-1} & (-1)^{k-2}(k-2)(k-3)^{k-1} & \ldots & (-1)^{k-2} 2 & -t & -2^{k-1}
\end{array}\right)
$$

Proof. Direct calculations.
Let $S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n} \mid x_{1}=0, x_{2}=0\right\}$.
Lemma 2. S contains no points of $\Sigma^{\frac{1.10}{k}}$ Boardman type, and it contains one point of $\sum^{\frac{1.1-1}{k-1}}$ Boardman type. This point is $(0 \ldots 0)$.

Thus to find the points of $\sum^{\frac{1 .-1}{k-1}}$ Boardman type we should solve the system of equations

$$
B_{1}=0, \ldots, B_{k-1}=0
$$

where B_{i} are as in lemma 1 . This is a system of linear algebraic equations over the
monomials $x_{1}^{k-2}, x_{3} x_{1}^{k-3}, \ldots, x_{k-1} x_{1}, x_{2}, x_{2}^{2}$. It may be represented in the following way:

$$
\left(\tilde{b}_{i j}\right) \cdot\left(\begin{array}{c}
x_{1}^{k-2} \tag{6}\\
x_{3} x_{1}^{k-3} \\
\vdots \\
x_{k-1} x_{1} \\
x_{2}
\end{array}\right)=x_{2}^{2} \cdot\left(\begin{array}{c}
2 \\
4 \\
\vdots \\
2^{k-1}
\end{array}\right)
$$

where $\left(\tilde{b}_{i j}\right)$ is the matrix $\left(b_{i j}\right)$ without the last column. If the linear system with $(k-1) \times(k-1)$ matrix $\left(\tilde{b}_{i j}\right)$ is solvable, then for some values s_{1}, \ldots, s_{k-1},

$$
\begin{equation*}
x_{1}^{k-1}=s_{1} x_{2}^{2}, \quad t x_{2}=s_{2} x_{2}^{2}, \quad x_{i} x_{1}^{k-i}=s_{i} x_{2}^{2}, \quad i=3, \ldots, k-1 . \tag{7}
\end{equation*}
$$

The equation $t x_{2}=s_{2} x_{2}^{2}$ has 2 solutions: $x_{20}=t / s_{2}$ and $x_{20}=0$. The second solution is non-proper by lemma 2. Then the number of solutions of the system (6) is equal to that of the equation $x_{1}^{k-2}=s_{1} x_{2}^{2}$.

If k is odd, then this equation has one real solution, and $D_{k}(t)$ has one point of $\sum^{\frac{1 \ldots-1}{k-1}}$ type. To complete the proof of proposition A we need the following algebraic lemma:

Lemma 3. Let $M=\left(m_{i j}\right)$ be a $k \times n$ matrix $(n>k)$ with each column a geometric progression with ratio $l_{i}, l_{i} \neq l_{j}$. Then there exists a non-singular $k \times k$ matrix C such that $C \cdot M$ is as follows:

$$
\left(\begin{array}{cccl}
* & & \ldots \\
0 & \ddots & & \ldots \\
& 0 & m_{k k} q_{k} & \ldots \\
m_{k n} q_{n}
\end{array}\right)
$$

where

$$
q_{i}=\left(1-l_{1} / l_{i}\right) \ldots\left(1-l_{k-1} / l_{i}\right)
$$

In other words we can see the elements of the last row of M after reducing it to the triangle matrix.

Proof. Direct calculations.
Using Lemma 3 we may get the following results:
Corollary 1. If $x_{0}=\left(x_{01} \ldots x_{0 k-1}\right)$ is the solution of the system (6) and $x_{02} \neq 0$ then

$$
\pm x_{01}^{k-2}=\frac{(-1)^{k-2}}{k-1} \cdot\left(\frac{t}{k}\right)^{2}, \quad x_{02}=-\frac{t}{k}
$$

Corollary 2. If k is even, then $D_{k}(t)$ has two points of $\Sigma^{\frac{1 \ldots-1}{k-1}}$ type and for these points

$$
x_{01}=\frac{ \pm 1}{1-k}\left(\frac{t}{k}\right)^{\frac{2}{k-2}}, \quad x_{02}=-\frac{t}{k}
$$

If k is odd, then $D_{k}(t)$ has one point of $\Sigma^{\frac{1 \ldots 11}{k-1}}$ type, and

$$
x_{01}=\frac{1}{1-k}\left(\frac{t}{k}\right)^{\frac{2}{k-2}}, \quad x_{02}=-\frac{t}{k}
$$

Corollary 3. If x_{0} is a point of $\sum^{\frac{1 \ldots-1}{k-1}}$ Boardman type for $D_{k}(t)$, then $B_{k}\left(x_{0}\right) \neq 0$ (i.e. x_{0} is a point of $\Sigma^{\frac{1 \ldots 1}{k}}$ Boardman type for $D_{k}(t)$).

That completes the proof of proposition A.
Corollary 4. 1) $B_{1} \ldots B_{k-1} \in \mathbf{m}\left(x_{1}-x_{01}, \ldots, x_{k-1}-x_{0 k-1}\right)$.
2) $\left|\frac{\partial\left(B_{1}, \ldots, B_{k-2}\right)}{\partial\left(x_{2}, \ldots, x_{k-1}\right)}\right|_{x=x_{0}} \neq 0$.

Now to prove the stability of $D_{k}(t)$ at x_{0} we use the following construction: Let the germ of $D:\left(R^{n}, x_{0}\right) \rightarrow\left(R^{n}, y_{0}\right)$ have the Boardman type $\Sigma^{\frac{1 \ldots 10}{k}}$ at x_{0}, and η be the germ of a smooth vector field whose direction coincides with the direction of the null-space of the derivative of the map D. Consider the functions $B_{i}(x)$ such that $B_{1}(x)$ is the Jacobian of D,

$$
B_{2}(x)=d B_{1}(\eta), \ldots, B_{k}=d B_{k-1}(\eta)
$$

Obviously, $B_{1}\left(x_{0}\right)=\ldots=B_{k-1}\left(x_{0}\right)=0$.
Proposition 2. If the differentials $d B_{1} \ldots d B_{k-2}$ are independent at x_{0}, then the germ D is $R L$-equivalent to the germ of a Whitney A_{k} map at x_{0}.

By corollary 4 if $D_{k}(t)$ has the Boardman type $\Sigma^{\frac{1 \ldots 10}{k}}$ at x_{0}, then all the conditions of proposition 2 are fulfilled. That completes the proof of the theorem.
3. Proof of proposition 2. This proof is based on two simple lemmas.

Lemma 4. In some coordinates u and v the germ of D may be represented by

$$
\begin{gather*}
D:\left(R^{n}(u), 0\right) \rightarrow\left(R^{n}(v), 0\right) \\
v_{1}=\varphi(u), \quad v_{i}=u_{i}, \quad i=2, \ldots, k-1, \tag{8}
\end{gather*}
$$

where

$$
\begin{gathered}
\varphi(u)=u_{1}^{k}+\varphi_{1}\left(u_{2} \ldots u_{n}\right) u_{1}^{k-1}+\ldots+\varphi_{k-1}\left(u_{2} \ldots u_{n}\right) u_{1}+\varphi_{k} \\
\varphi_{1}, \ldots, \varphi_{k-1} \in \mathbf{m}(u), \quad n=k-1
\end{gathered}
$$

and in these coordinates $\eta=\partial / \partial u_{1}$.
Lemma 5. The following conditions are equivalent:

1) The germ of map (8) is stable at 0 .
2)

$$
\left|\frac{\partial\left(\varphi_{2}, \ldots, \varphi_{k-1}\right)}{\partial\left(u_{2}, \ldots, u_{k-1}\right)}\right|_{u=0} \neq 0
$$

3)

$$
\left|\frac{\partial\left(\varphi^{\prime}, \ldots, \varphi^{(k-2)}\right)}{\partial\left(u_{2}, \ldots, u_{k-1}\right)}\right|_{u=0} \neq 0
$$

where $\varphi^{(i)}=\partial^{i} \varphi / \partial u_{1}^{i}$.
4)

$$
\left|\frac{\partial\left(B_{1}, \ldots, B_{k-2}\right)}{\partial\left(x_{2}, \ldots, x_{k-1}\right)}\right|_{x=x_{0}} \neq 0
$$

where the basis vectors of the coordinates x_{2}, \ldots, x_{k-1} are transversal to the vector η at x_{0}.

Proof of lemma 5. a) 1$) \Leftrightarrow 2$). This follows from the theorem on stability of expansion of genotype [1].
b) 2$) \Leftrightarrow 3$). This follows from the rules of differentiation.
c) The functions B_{1}, \ldots, B_{k-2} are the sequential derivatives in the direction of η of the Jacobian $B_{1}=|\partial y / \partial x|$. The functions $\varphi^{\prime}, \ldots, \varphi^{(k-2)}$ are the sequential derivatives in the direction of η of the Jacobian $K=|\partial y / \partial x|$.

Thus the ideals generated by B_{1}, \ldots, B_{k-2} and by $\varphi^{\prime}, \ldots, \varphi^{(k-2)}$ coincide. The basis vectors of the coordinates x_{2}, \ldots, x_{k-1} are transversal to the vector η, and the coordinates u_{2}, \ldots, u_{k-1} have the same property. Then 3) and 4) are equivalent.

4. V-versal deformations of Legendrian A_{k} maps

Proposition 3. The V-versal deformation of the map (3) is given by

$$
\begin{align*}
q_{1} & =\varphi(y, x)+c_{1} \\
q_{i} & =x_{i}+c_{i}, \quad i=2, \ldots, n \tag{9}\\
q_{n+1} & =\varphi_{2}(\lambda, y)+P(\lambda, y)+c_{n+1}
\end{align*}
$$

where $y \in R^{1}, x \in R^{n-1}, \lambda \in R^{k-1}, c \in R^{n+1}$ and

$$
\begin{aligned}
\varphi_{1} & =(k+1) y^{k}+(k-1) x_{2} y^{k-1}+\ldots+2 x_{k-1} y, \\
\varphi_{2} & =k y^{k+1}+(k-2) x_{2} y^{k-1}+\ldots+x_{k-1} y^{2}, \\
P(\lambda, y) & =\lambda_{1} y^{k-1}+\ldots+\lambda_{k-2} y^{2}+\lambda_{k-1} y .
\end{aligned}
$$

Let $\Sigma_{P} \subset R^{k-1}(\lambda)$ be the discriminant set for the polynomial $P^{\prime}(\lambda, y)=\partial P / \partial y$.
THEOREM 2. If $\lambda \in \Sigma_{P}$ then the maps (9) are nonstable for each c. If $\lambda \notin \Sigma_{P}$ then the maps (9) are stable. Their image is $R L$-equivalent to the trivial extension of the "Whitney umbrella". The preimage of the umbrellas set is a finite combination of planes of codimension 2.

Proof. The Jacobi matrix is

$$
\left(\begin{array}{cc}
\varphi_{1}^{\prime} & * \\
0 & E_{n-2} \\
y \varphi_{1}^{\prime}+P^{\prime} & * *
\end{array}\right)
$$

where $\varphi^{\prime}=\partial \varphi / \partial y, P^{\prime}=\partial P / \partial y$.
The vector field $\eta=\partial / \partial y$ coincides with the direction of the null-space of M. The set $\Sigma^{\frac{1 \ldots{ }^{1}}{l}}=\Sigma^{1_{l}}$ is defined by the equations

$$
\begin{array}{llll}
\varphi_{1}^{\prime}(y, x)=0, & \varphi_{1}^{\prime \prime}(y, x)=0, & & \varphi_{1}^{(l)}(y, x)=0 \\
P^{\prime}(\lambda, y)=0, & P^{\prime \prime}(\lambda, y)=0, & \cdots & P^{(l)}(\lambda, y)=0
\end{array}
$$

If y_{0} is a root of $P^{\prime}(\lambda, y)=0$ with multiplicity l, then $\Sigma^{1_{l}}$ is defined by $l+1$ equations $y=y_{0}, \quad \varphi^{\prime}\left(y_{0}, x\right)=0, \ldots, \varphi^{(l)}\left(y_{0}, x\right)=0$.

Thus $\Sigma^{1_{l}}$ is a plane of codimension $l+1$. According to the Boardman formula this codimension is $2 l$. Then if $l>1$, we have nonstability. In case $l=1$ after some calculations, we may see the extension of the "Whitney umbrella".

Corollary 5. The V-versal deformation of a Legendrian A_{3} map is a 2-parameter deformation. It consists of maps equivalent to the "umbrella" at not more than one point.
5. Generic deformations of Legendrian A_{k} maps. Now we compare V - and $R L$-equivalence for deformations of Legandrian A_{k} maps. It is easy to prove

Proposition 4. A generic deformation of a Legendrian $A_{k} \operatorname{map}(k \geq 3)$ is $R L$ equivalent to the following deformation:

$$
\begin{align*}
q_{1} & =\varphi_{1} \\
q_{i} & =x_{i}, \quad i=2, \ldots, n, \tag{10}\\
q_{n+1} & =\varphi_{2}+h(x, y)
\end{align*}
$$

where φ_{1} and φ_{2} are the same as in (3), and $h(x, y)$ is an arbitrary smooth function.
As was shown in the preceding section the V-versal deformation of the Legendrian A_{3} map has not more than one "umbrella" point. Another situation is for generic deformations:

Let O_{ϵ} be the ϵ-sphere in the space of all coefficients of the Taylor series of h at $0, Q_{\delta}$ be the δ-sphere around the origin in $R^{3}(q)$ and let $n=2$.

Proposition 5. For arbitrary $\epsilon>0, \delta>0$, and integer m there is a function h such that

1) All the Taylor coefficients of h are in O_{ϵ}.
2) The map (10) is equivalent to the "Whitney umbrella" at m points and all the preimages of these points are in Q_{δ}.

Proof. All the points at which the image of the map (10) is equivalent to the "umbrella" can be defined from the system of equations

$$
\varphi_{1 y}^{\prime}=0, \quad h_{y}^{\prime}=0
$$

We can take the polynomial $h=h_{1}+h_{2} y+\ldots+h_{m} y^{m}$ with sufficiently small coefficients.

Thus Legendrian A_{k} maps have no finite $R L$-versal and finite topologically versal deformations.

References

[1] V.I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Nauka, Moscow, 1982 (in Russian); English transl.: Birkhäuser, 1985.
[2] J. F. Nye and A. S. Thorndike, Events in evolving three-dimensional vector fields, J. Phys. A Math. Gen. 13 (1980), 1-14.

