SINGULARITIES AND DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 33 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

GENERIC DEFORMATIONS OF LAGRANGIAN AND LEGENDRIAN MAPS

SERGEY STANCHENKO

Moscow Aviation Institute Volokolamskoe shosse, 4, 125871 Moscow, Russia E-mail: stan@k804.mainet.msk.su

1. Introduction

a. Investigating ocean and atmosphere flows Nye and Thorndike [2] have studied typical bifurcations of three dimensional vector fields depending on time. One can describe such a field as a one-parameter family of maps from R^3 to R^3 or as a map from $R^1 \times R^3 = R^4$ to R^3 .

To study them the authors of [2] consider sections of stable maps from R^4 to R^4 . There is one family in their list of typical sections for which the set of critical values for an isolated value of the parameter is equal to the caustic of a Lagrangian D_4 map.

This leads to another problem: To study properties of Lagrangian and Legendrian maps included in generic families of maps with a suitable number of parameters. In this way V-versal deformations of Lagrangian D_k and Legendrian A_k maps are considered below.

b. As a Lagrangian map is the restriction to a Lagrangian submanifold of the projection that defines a Lagrangian fiber bundle, Lagrangian maps may be locally considered as maps from \mathbb{R}^n to \mathbb{R}^n . The normal form of Lagrangian stable maps is given by the corresponding classification theorem ([1]).

EXAMPLE. The normal form of Lagrangian A_k maps coincides with that of stable Whitney maps A_k :

(1) $A_k : (R^n(x), 0) \to (R^n(y), 0),$ $y_1 = \pm (k+1)x_1^k + (k-1)x_2x_1^{k-2} + \ldots + 2x_{k-1}x_1,$ $y_i = x_i, \quad i = 2, \ldots, n, \quad k-1 \le n.$

¹⁹⁹¹ *Mathematics Subject Classification*: Primary 58C27; Secondary 53C15. Research supported by ISF grant MSD000 and by RFFI grant 94-01-00255. The paper is in final form and no version of it will be published elsewhere.

^[343]

It is obvious that Lagrangian A_k maps are stable in the class of general maps.

EXAMPLE. The Lagrangian D_k^{\pm} maps have the following normal form:

$$D_k^{\pm} : (R^n(x), 0) \to (R^n(y), 0),$$

$$y_1 = x_2^2 \pm (k-1)x_1^{k-2} + (k-2)x_3x_1^{k-3} + \ldots + 2x_{k-1}x_1,$$

$$y_2 = 2x_1x_2,$$

$$y_i = x_i \quad i = 3, \ldots, n, \quad k-1 \le n, \quad k \ge 4.$$

In this paper the properties of the maps (2) are described. The V-versal deformation preserving the origin is a one parameter deformation for the maps (2). For even k the Lagrangian D_k^+ maps fall into stable maps A_k (at two isolated points), the Lagrangian D_k^- maps decompose only into A_{k-1} , A_{k-2} etc. For odd k the Lagrangian D_k maps fall into A_k (at one isolated point).

c. A map from a Legendrian submanifold to the base of a Legendrian bundle may be locally considered as a map from \mathbb{R}^n to \mathbb{R}^{n+1} .

EXAMPLE. The normal form of Legendrian A_k maps is given by (see [1])

$$LA_k : (R^n(y,x), 0) \to (R^{n+1}(q), 0),$$

(3)
$$q_1 = \varphi_1(y, x),$$

$$q_i = x_i, \quad i = 2, \dots, n, \quad q_{n+1} = \varphi_2(y, x)$$

where

$$\varphi_1 = (k+1)y^k + (k-1)x_2y^{k-2} + \ldots + 2x_{k-1}y,$$

$$\varphi_2 = kx^{k+1} + (k-2)x_2x_1^{k-1} + \ldots + x_{k-1}y^2.$$

In the Legendrian case the following results are obtained: The V-versal deformation of Lagrangian A_k maps preserving the origin is a k – 1-parameter deformation. The bifurcational diagram for this family is constructed. Outside the bifurcational set the maps of this family are stable and at isolated points they are RL-equivalent to the trivial extension of the stable maps that has the image of a "Whitney umbrella". Legendrian A_k maps have infinite RL- and topological codimension.

The author is grateful to Prof. V. Zakalyukin for his considerate attention to this work.

2. V-versal deformation of Lagrangian D_k maps

PROPOSITION 1. The V-versal deformation $D_k^{\pm}(t,c)$ of the maps (2) is given by

(4)

$$y_1 = \varphi_1(x) + tx_2 + c_1,$$

 $y_2 = \varphi_2(x) + c_2,$
 $y_i = x_i + c_i, \quad i = 3, \dots, n,$

where

$$\varphi_1(x) = x_2^2 \pm (k-1)x_1^{k-2} + (k-2)x_3x_1^{k-3} + \ldots + 2x_{k-1}x_1,$$

$$\varphi_2(x) = 2x_1x_2,$$

(2)

Proof. Direct calculations.

The main result for Lagrangian D_k series. Let $D_k(t)$ be the family (4) with c = 0: $D_k^{\pm}(t) = D_k^{\pm}(t, 0)$, and let k - 1 = n.

THEOREM 1. If k is even, $t \neq 0$, then $D_k^+(t)$ has 2 singular points at which it is RL-equivalent to A_k (1). These points have coordinates

$$x_{10} = \pm s_1 |t|^{2/(k-2)}, \quad x_{20} = -t/k, \quad x_{i0} = s_i x_{10}^{i-2}, \quad i = 3, \dots, n$$

 $D_k^-(t)$ has no A_k points.

If k is odd, $t \neq 0$, then $D_k(t)$ has one singular point at which it is RL-equivalent to A_k . This point has coordinates

 $x_{10} = s_1 t^{2/(k-2)}, \quad x_{20} = -t/k, \quad x_{i0} = s_i x_{10}^{i-2}, \quad i = 3, \dots, n,$

for some s_1, s_3, \ldots, s_n .

Proof. It is sufficient to prove two propositions:

A. If $t \neq 0$, then $D_k^{\pm}(t)$ has the corresponding number of singular points with Boardman type $\Sigma^{\frac{1...1}{k}}$.

B. $D_k^{\pm}(t)$ is stable at these points.

First we find all the points of $\Sigma^{\frac{1...1}{k}}$ Boardman type.

LEMMA 1. Let
$$x_1^2 + x_2^2 \neq 0$$
. Then for $D_k^{\pm}(t)$
 $\Sigma^{\frac{1...1}{i}} = \{x \in \mathbb{R}^n \mid B_1(x) = 0, \dots B_{i-1}(x) = 0, B_i(x) \neq 0\},\$

where

$$B_i = b_{i1}x_1^{k-2} + b_{i2}x_3x_1^{k-3} + \ldots + b_{ik-2}x_{k-1}x_1 + b_{ik-1}x_2 + b_{ik}x_2^2$$

and $(b_{ij}) = B$ is the $(k-1) \times k$ -matrix: (5) $\begin{pmatrix} \pm (k-1)(k-2) & (k-2)(k-3) & \dots & 2 & -t & -2 \\ \mp (k-1)(k-2)^2 & -(k-2)(k-3)^2 & \dots & -2 & -t & -4 \\ \dots & \dots & \dots & \dots & \dots \\ (-1)^{k-2}(k-1)(k-2)^{k-1} & (-1)^{k-2}(k-2)(k-3)^{k-1} & \dots & (-1)^{k-2}2 & -t & -2^{k-1} \end{pmatrix}$

Proof. Direct calculations.

Let $S = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0, x_2 = 0\}.$

LEMMA 2. S contains no points of $\Sigma^{\frac{1...10}{k}}$ Boardman type, and it contains one point of $\Sigma^{\frac{1...1}{k-1}}$ Boardman type. This point is (0...0).

Thus to find the points of $\Sigma^{\frac{1...1}{k-1}}$ Boardman type we should solve the system of equations

$$B_1 = 0, \ldots, B_{k-1} = 0$$

where B_i are as in lemma 1. This is a system of linear algebraic equations over the

monomials x_1^{k-2} , $x_3 x_1^{k-3}$, ..., $x_{k-1} x_1$, x_2 , x_2^2 . It may be represented in the following way:

(6)
$$(\tilde{b}_{ij}) \cdot \begin{pmatrix} x_1 \\ x_3 x_1^{k-3} \\ \vdots \\ x_{k-1} x_1 \\ x_2 \end{pmatrix} = x_2^2 \cdot \begin{pmatrix} 2 \\ 4 \\ \vdots \\ 2^{k-1} \end{pmatrix},$$

where (\tilde{b}_{ij}) is the matrix (b_{ij}) without the last column. If the linear system with $(k-1) \times (k-1)$ matrix (\tilde{b}_{ij}) is solvable, then for some values s_1, \ldots, s_{k-1} ,

(7)
$$x_1^{k-1} = s_1 x_2^2, \quad tx_2 = s_2 x_2^2, \quad x_i x_1^{k-i} = s_i x_2^2, \quad i = 3, \dots, k-1.$$

The equation $tx_2 = s_2 x_2^2$ has 2 solutions: $x_{20} = t/s_2$ and $x_{20} = 0$. The second solution is non-proper by lemma 2. Then the number of solutions of the system (6) is equal to that of the equation $x_1^{k-2} = s_1 x_2^2$.

If k is odd, then this equation has one real solution, and $D_k(t)$ has one point of $\Sigma^{\frac{1...1}{k-1}}$ type. To complete the proof of proposition A we need the following algebraic lemma:

LEMMA 3. Let $M = (m_{ij})$ be a $k \times n$ matrix (n > k) with each column a geometric progression with ratio l_i , $l_i \neq l_j$. Then there exists a non-singular $k \times k$ matrix C such that $C \cdot M$ is as follows:

$$\begin{pmatrix} * & \cdots \\ 0 & \ddots & \cdots \\ 0 & m_{kk}q_k & \cdots & m_{kn}q_n \end{pmatrix}$$

where

$$q_i = (1 - l_1/l_i) \dots (1 - l_{k-1}/l_i)$$

In other words we can see the elements of the last row of M after reducing it to the triangle matrix.

Proof. Direct calculations.

Using Lemma 3 we may get the following results:

COROLLARY 1. If $x_0 = (x_{01} \dots x_{0k-1})$ is the solution of the system (6) and $x_{02} \neq 0$ then

$$\pm x_{01}^{k-2} = \frac{(-1)^{k-2}}{k-1} \cdot \left(\frac{t}{k}\right)^2, \quad x_{02} = -\frac{t}{k}.$$

COROLLARY 2. If k is even, then $D_k(t)$ has two points of $\Sigma^{\frac{1...1}{k-1}}$ type and for these points

$$x_{01} = \frac{\pm 1}{1-k} \left(\frac{t}{k}\right)^{\frac{2}{k-2}}, \quad x_{02} = -\frac{t}{k}.$$

If k is odd, then $D_k(t)$ has one point of $\sum_{k=1}^{\frac{1}{k-1}} type$, and

$$x_{01} = \frac{1}{1-k} \left(\frac{t}{k}\right)^{\frac{2}{k-2}}, \quad x_{02} = -\frac{t}{k}.$$

COROLLARY 3. If x_0 is a point of $\sum_{k=1}^{\frac{1}{k-1}}$ Boardman type for $D_k(t)$, then $B_k(x_0) \neq 0$ (i.e. x_0 is a point of $\sum_{k=1}^{\frac{1}{k-1}}$ Boardman type for $D_k(t)$).

That completes the proof of proposition A.

COROLLARY 4. 1)
$$B_1 \dots B_{k-1} \in \mathbf{m}(x_1 - x_{01}, \dots, x_{k-1} - x_{0k-1}).$$

2) $\left| \frac{\partial(B_1, \dots, B_{k-2})}{\partial(x_2, \dots, x_{k-1})} \right|_{x=x_0} \neq 0.$

Now to prove the stability of $D_k(t)$ at x_0 we use the following construction: Let the germ of $D: (\mathbb{R}^n, x_0) \to (\mathbb{R}^n, y_0)$ have the Boardman type $\Sigma^{\frac{1...10}{k}}$ at x_0 , and η be the germ of a smooth vector field whose direction coincides with the direction of the null-space of the derivative of the map D. Consider the functions $B_i(x)$ such that $B_1(x)$ is the Jacobian of D,

$$B_2(x) = dB_1(\eta), \dots, B_k = dB_{k-1}(\eta)$$

Obviously, $B_1(x_0) = \ldots = B_{k-1}(x_0) = 0.$

PROPOSITION 2. If the differentials $dB_1 \dots dB_{k-2}$ are independent at x_0 , then the germ D is RL-equivalent to the germ of a Whitney A_k map at x_0 .

By corollary 4 if $D_k(t)$ has the Boardman type $\Sigma^{\frac{1...10}{k}}$ at x_0 , then all the conditions of proposition 2 are fulfilled. That completes the proof of the theorem.

3. Proof of proposition 2. This proof is based on two simple lemmas.

LEMMA 4. In some coordinates u and v the germ of D may be represented by

(8)
$$D: (R^n(u), 0) \to (R^n(v), 0),$$

 $v_1 = \varphi(u), \quad v_i = u_i, \quad i = 2, \dots, k-1,$

where

$$\varphi(u) = u_1^k + \varphi_1(u_2 \dots u_n)u_1^{k-1} + \dots + \varphi_{k-1}(u_2 \dots u_n)u_1 + \varphi_k$$
$$\varphi_1, \dots, \varphi_{k-1} \in \mathbf{m}(u), \qquad n = k - 1,$$

and in these coordinates $\eta = \partial/\partial u_1$.

LEMMA 5. The following conditions are equivalent:

1) The germ of map (8) is stable at 0.

2)

$$\left\|\frac{\partial(\varphi_2,\ldots,\varphi_{k-1})}{\partial(u_2,\ldots,u_{k-1})}\right\|_{u=0}\neq 0.$$

3)

$$\frac{\partial(\varphi',\ldots,\varphi^{(k-2)})}{\partial(u_2,\ldots,u_{k-1})}\Big|_{u=0}\neq 0,$$

where $\varphi^{(i)} = \partial^i \varphi / \partial u_1^i$. 4)

$$\left|\frac{\partial(B_1,\ldots,B_{k-2})}{\partial(x_2,\ldots,x_{k-1})}\right|_{x=x_0}\neq 0,$$

where the basis vectors of the coordinates x_2, \ldots, x_{k-1} are transversal to the vector η at x_0 .

Proof of lemma 5. a) 1) \Leftrightarrow 2). This follows from the theorem on stability of expansion of genotype [1].

b) 2) \Leftrightarrow 3). This follows from the rules of differentiation.

c) The functions B_1, \ldots, B_{k-2} are the sequential derivatives in the direction of η of the Jacobian $B_1 = |\partial y/\partial x|$. The functions $\varphi', \ldots, \varphi^{(k-2)}$ are the sequential derivatives in the direction of η of the Jacobian $K = |\partial y/\partial x|$.

Thus the ideals generated by B_1, \ldots, B_{k-2} and by $\varphi', \ldots, \varphi^{(k-2)}$ coincide. The basis vectors of the coordinates x_2, \ldots, x_{k-1} are transversal to the vector η , and the coordinates u_2, \ldots, u_{k-1} have the same property. Then 3) and 4) are equivalent.

4. V-versal deformations of Legendrian A_k maps

PROPOSITION 3. The V-versal deformation of the map (3) is given by $q_1 = \varphi(y, x) + c_1,$

 $q_i = x_i + c_i, \quad i = 2, ..., n,$ $q_{n+1} = \varphi_2(\lambda, y) + P(\lambda, y) + c_{n+1},$

where $y \in \mathbb{R}^1$, $x \in \mathbb{R}^{n-1}$, $\lambda \in \mathbb{R}^{k-1}$, $c \in \mathbb{R}^{n+1}$ and

$$\varphi_1 = (k+1)y^k + (k-1)x_2y^{k-1} + \ldots + 2x_{k-1}y,$$

$$\varphi_2 = ky^{k+1} + (k-2)x_2y^{k-1} + \ldots + x_{k-1}y^2,$$

$$P(\lambda, y) = \lambda_1 y^{k-1} + \ldots + \lambda_{k-2}y^2 + \lambda_{k-1}y.$$

Let $\Sigma_P \subset \mathbb{R}^{k-1}(\lambda)$ be the discriminant set for the polynomial $P'(\lambda, y) = \partial P/\partial y$.

THEOREM 2. If $\lambda \in \Sigma_P$ then the maps (9) are nonstable for each c. If $\lambda \notin \Sigma_P$ then the maps (9) are stable. Their image is RL-equivalent to the trivial extension of the "Whitney umbrella". The preimage of the umbrellas set is a finite combination of planes of codimension 2.

Proof. The Jacobi matrix is

$$\begin{pmatrix} \varphi_1' & * \\ 0 & E_{n-2} \\ y\varphi_1' + P' & ** \end{pmatrix}$$

where $\varphi' = \partial \varphi / \partial y$, $P' = \partial P / \partial y$.

The vector field $\eta = \partial/\partial y$ coincides with the direction of the null-space of M. The set $\Sigma^{\frac{1...1}{l}} = \Sigma^{1_l}$ is defined by the equations

$$\varphi_1'(y,x) = 0, \qquad \varphi_1''(y,x) = 0, \qquad \qquad \varphi_1^{(l)}(y,x) = 0, \\
 P'(\lambda,y) = 0, \qquad P''(\lambda,y) = 0, \qquad \qquad P^{(l)}(\lambda,y) = 0$$

If y_0 is a root of $P'(\lambda, y) = 0$ with multiplicity l, then Σ^{1_l} is defined by l+1 equations

$$y = y_0, \quad \varphi'(y_0, x) = 0, \ \dots, \ \varphi^{(l)}(y_0, x) = 0$$

Thus Σ^{l_l} is a plane of codimension l + 1. According to the Boardman formula this codimension is 2l. Then if l > 1, we have nonstability. In case l = 1 after some calculations, we may see the extension of the "Whitney umbrella".

COROLLARY 5. The V-versal deformation of a Legendrian A_3 map is a 2-parameter deformation. It consists of maps equivalent to the "umbrella" at not more than one point.

5. Generic deformations of Legendrian A_k maps. Now we compare V- and RL-equivalence for deformations of Legandrian A_k maps. It is easy to prove

PROPOSITION 4. A generic deformation of a Legendrian A_k map $(k \ge 3)$ is RLequivalent to the following deformation:

(10)

$$q_1 = \varphi_1,$$

$$q_i = x_i, \quad i = 2, \dots, n,$$

$$q_{n+1} = \varphi_2 + h(x, y),$$

where φ_1 and φ_2 are the same as in (3), and h(x, y) is an arbitrary smooth function.

As was shown in the preceding section the V-versal deformation of the Legendrian A_3 map has not more than one "umbrella" point. Another situation is for generic deformations:

Let O_{ϵ} be the ϵ -sphere in the space of all coefficients of the Taylor series of h at 0, Q_{δ} be the δ -sphere around the origin in $R^3(q)$ and let n = 2.

PROPOSITION 5. For arbitrary $\epsilon > 0$, $\delta > 0$, and integer m there is a function h such that

1) All the Taylor coefficients of h are in O_{ϵ} .

2) The map (10) is equivalent to the "Whitney umbrella" at m points and all the preimages of these points are in Q_{δ} .

Proof. All the points at which the image of the map (10) is equivalent to the "umbrella" can be defined from the system of equations

$$\varphi_{1y}' = 0, \qquad h_y' = 0.$$

We can take the polynomial $h = h_1 + h_2 y + \ldots + h_m y^m$ with sufficiently small coefficients.

Thus Legendrian A_k maps have no finite RL-versal and finite topologically versal deformations.

References

- V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Nauka, Moscow, 1982 (in Russian); English transl.: Birkhäuser, 1985.
- [2] J. F. Nye and A. S. Thorndike, Events in evolving three-dimensional vector fields, J. Phys. A Math. Gen. 13 (1980), 1–14.