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Abstract. The aim of this paper is to construct asymptotic solutions to multidimensional

Fuchsian equations near points of their degeneracy. Such construction is based on the theory of

resurgent functions of several complex variables worked out by the authors in [1]. This theory

allows us to construct explicit resurgent solutions to Fuchsian equations and also to investigate

evolution equations (Cauchy problems) with operators of Fuchsian type in their right-hand parts.

1. Introduction. In this paper we construct asymptotic solutions to equations of

Fuchsian type in several variables. By equations of Fuchsian type we mean equations of

the form

Ĥu := H

(
x, x

∂

∂x

)
u = 0

where x = (x1, . . . , xn) is a point in the Cartesian space Rn,

x
∂

∂x
=

(
x1 ∂

∂x1
, . . . , xn ∂

∂xn

)

and the function H(x, p) is a polynomial with respect to the variable p. Such operators

were studied earlier from different points of view by M. Kashiwara and T. Kawai [2],

R. Melrose [3], B.-W. Schulze [4] and B. Ziemian [5], [6].

Evidently, this equation is degenerate on the union of the coordinate planes {xi = 0}
and, hence, one can expect that the solution will have singularities on this union. Our

goal is to construct asymptotic solutions to such an equation at points of its singularities.

We remark that the set of singularities, that is, the union of the hyperplanes {xi = 0}
can be stratifed in such a way that the strata are coordinate planes of different dimensions.

Renumbering the coordinates, if necessary, one can write down the equation of each
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stratum in the form

Ak = {x1 = 0, . . . , xk = 0}
where k is the codimension of the stratum Ak.

If we intend to construct an asymptotic solution (with respect to smoothness) to

equation (1) in a neighbourhood of a point of (2) then we see that the group of variables

(x1, . . . , xk) plays quite a different role than the group (xk+1, . . . , xn). Indeed, the vari-

ables of the first group are transversal to the singularity manifolds {xi = 0, i = 1, . . . , k}
which pass through the considered point and, hence, these variables are parameters of the

asymptotic expansion under construction. At the same time, the variables of the second

group are not small near the considered point and can be considered simply as param-

eters. To stress this difference explicitly we shall slightly change the notation denoting

the variables of the first group by x = (x1, . . . , xn) and the variables of the second one

by y = (y1, . . . , yk). Using this notation we can rewrite equation (1) in the form

(3) Ĥu = H

(
x, y, x

∂

∂x
,

∂

∂y

)
u = 0.

Further, for technical reasons it is convenient to consider the operator Ĥ of (3) as a

differential operator of the form

H

(
x, x

∂

∂x

)

whose coefficients lie in the space of differential operators in variables y ranging over R
n

or, more generally, over some smooth manifold. It is also convenient to complexify the

problem with respect to the variables x.

For constructing asymptotic solutions to the equation (3) we use the theory of resur-

gent functions of several independent variables worked out by the authors (see [1]). We

also remark that the one-dimensional case of that construction was considered in the

paper [7] by B.-W. Schulze, B. Sternin, and V. Shatalov.

The outline of the paper is as follows. In Section 2 we construct asymptotic expansions

of resurgent type for solutions to equation (3). In Section 3 we consider the correspond-

ing evolution equations. Finally, in Section 4 we present two concrete examples of the

introduced technique.

2. Statement of the problem. Let us proceed with exact definitions. Consider a

Fuchsian equation of the form

(4) Ĥu := H

(
x, x

∂

∂x

)
u(x) = f(x)

where Ĥ is a differential operator of the form

(5) Ĥ =
∑

|α|≤m

aα(x)

(
x

∂

∂x

)α

with analytic coefficients aα(x). Here x = (x1, . . . , xn) is a point of the Cartesian complex
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space Cn,

x
∂

∂x
=

(
x1 ∂

∂x1
, . . . , xn ∂

∂xn

)

and we construct asymptotic solutions to equation (4) with respect to smoothness in a

neighbourhood of the origin. The coefficients aα(x) of the operator (5) can be operator-

valued functions of x with values in the space of differential operators in Ck
y, y =

(y1, . . . , yk), or, more generally, in the space of differential operators on a smooth manifold

Y ; in the last case we shall denote by y local coordinates on Y .

Our approach is based on the theory of resurgent functions of several independent

variables worked out in [1]. This approach gives explicit formulas for the asymptotic

solutions under consideration.

Under the above asumptions equation (4) can be written in the form

(6) Ĥu := H

(
x, y, x

∂

∂x
,

∂

∂y

)
u(x, y) = f(x, y)

where

H

(
x, y, x

∂

∂x
,

∂

∂y

)
=

∑

|α|≤m

∑

|γ|≤mα

aγ
α(x, y)

(
x

∂

∂x

)α(
∂

∂y

)γ

.

Evidently, solutions to equations (4) or (6) can have singularities on the union of the

coordinate hyperplanes

xi = 0, i = 1, . . . , n.

In order to apply the theory of multidimensional resurgent functions to equations (4)

or (6) we perform the change of variables

(7) xi = eτ i

, i = 1, . . . , n,

and expand the coefficients aα(x) in the Taylor series in x:

aα(x) =
∑

|β|≥0

aαβxβ =
∑

|β|≥0

aαβeτβ,

where

τβ = τ1β1 + . . . + τnβn

and aαβ are differential operators in C
n. Then the considered equation becomes

(8)
∑

|α|≤m

∑

|β|≥0

aαβeτβ

(
∂

∂τ

)α

u(τ) = f(eτ ) =: g(τ).

This equation can be investigated with the help of the theory of resurgent functions of

several variables presented in [1].

3. Construction of resurgent solutions. Now we are able to apply the resurgent

functions theory to the construction of asymptotic solutions to equation (8). We recall

[1] that a resurgent function of variables x is a function of the form

(9) u(τ) = l(U, Ω) :=
∑

j

∫

Γj

e−sU(s, τ)ds



354 B. STERNIN AND V. SHATALOV

where U(s, τ) is an analytic homogeneous hyperfunction (see [8]) of the variables (s, τ)

and each Γj is a special contour surrounding some singular point sj = sj(τ) of the

hyperfunction U . It is not needed that each singular point of the function U is surrounded

by some contour Γj ; the set of singular points included in (9) is called the support of the

resurgent function u (see [1]) and denoted by Ω = Ω(τ); we emphasize that it can depend

on τ . The contours Γj are shown in Figure 1.

Theorem 1. We have the following commutation formulas:

∂

∂τ j
◦ l = l ◦

[(
∂

∂s

)−1
∂

∂τ j

]
,

∂

∂yj
◦ l = l ◦ ∂

∂yj
.

Further , eτβ ◦ l = l ◦ Tτβ, where Tτβ is the shift operator along the s axis :

(TτβU)(s, τ) = U(s + τβ, τ).

Fig. 1

Now we shall construct resurgent solutions to equation (8) provided that its right-hand

side is a resurgent function. Applying Theorem 1 to equation (8) we obtain an equation

for the function U(s, τ):

(10)
∑

|α|≤m

∑

|β|≥0

aαβTτβ

[(
∂

∂s

)−1
∂

∂τ

]α

U(s, τ) = G(s, τ)

where G(s, τ) corresponds to g(τ) under the action of the operator l. Equation (10) is

considered as an equation in homogeneous hyperfunctions of s.

We remark that, since we search for asymptotic solutions to equation (5) in a neigh-

bourhood of the origin, the variables

(11) τ j = lnxj , j = 1, . . . , n,

vary in the region Re τ j < 0. Hence, we must construct asymptotic solutions with respect

to smoothness to equation (10) only in this region. We recall that the coefficients aαβ of

equation (10) are in general differential operators in y ∈ Ck.
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Note that if s = S(τ) is a singular point of U(s, τ) then the shifted function

Tτβ[U(s, τ)] has a singularity at the point

s = S(τ) − τβ

lying to the right of the point of the original singularity.

Suppose that for some value of τ the point s = S0(τ) is the leftmost point of the

support of the resurgent function u (such a point will be referred as the main singularity

of the function U). Then the supports of all terms of the left-hand side of (10) except

that corresponding to β = 0 lie strictly to the right of the main singularity.

This allows us to use a recurrent procedure for constructing a resurgent solution to

(10). Namely, we denote by U0(s, τ) a solution to the equation

(12)
∑

|α|≤m

aα0

[(
∂

∂s

)−1
∂

∂τ

]α

U0(s, τ) = G(s, τ),

which is the “principal part” of (10). Then we determine the subsequent functions Uβ(s, τ)

as solutions to

(13)
∑

|α|≤m

aα0

[(
∂

∂s

)−1
∂

∂τ

]α

Uβ(s, τ)

= −
∑

|α|≤m

∑

β′+β′′=β

aαβ′Tτβ′

[(
∂

∂s

)−1
∂

∂τ

]α

Uβ′′

(s, τ)

where the sum on the right does not contain the term β′=0. Ordering the set of functions

(14) {Uβ(s, τ) : β ≥ 0}

in such a way that the product τβ decreases along this ordering, we see that the system

(12), (13) determines a recurrent procedure for the set of functions (14) with the same

principal part.

Now we denote by uβ(τ) the resurgent function corresponding to Uβ(s, τ). Certainly,

we must determine the supports of these resurgent functions. To begin with, we determine

these supports in a neighbourhood of some fixed value of τ . The support of U0(s, τ) can

be chosen arbitrarily provided it is contained in a sector of angle less than π bisected

by the positive direction of the real axis in the complex s plane. The supports of uβ(τ),

β ≥ 0, are chosen in such a way that these functions satisfy the equations

∑

|α|≤m

aα0

(
∂

∂τ

)α

uβ(τ) = −
∑

|α|≤m

∑

β′+β′′=β

aαβ′eτβ′

(
∂

∂τ

)α

uβ′′

(τ).

Evidently, this requirement uniquely determines the supports of uβ(τ).

In order to determine the support of uβ(τ) for all values of τ one performs analytic

continuation of the constructed resurgent function along paths in the complex plane Cs.

This can be done in a way usual in the theory of resurgent functions with the help of

the so-called transition homomorphism (see, for example, [9]). We shall not describe this

construction in detail here.
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We remark that if the functions uβ(τ) are determined as described above, the series

(15) u(τ) =
∑

β≥0

uβ(τ)

converges in the space of resurgent functions since we consider the domain in the space Cn
τ

where Re τβ ≤ 0 and, hence, the supports of the terms of this series lie in the half-plane

Re s > N for any value of N if |β| is sufficiently large. The function (15) is exactly the

required resurgent solution to (8).

Note that since we search for a resurgent solution of the initial equation, we must

solve equation (12) for the microfunction U0 (as well as the subsequent equations for

microfunctions Uβ) in the class of infinitely continuable microfunctions. To investigate the

existence of such solutions we use the ∂/∂s-transformation of ramifying analytic functions

(see [10]). Applying this transformation to equation (12) we obtain the following equation

for the image Ũ0(s, p) of the function U0(s, τ) under this transformation:

(16)
∑

|α|≤m

aα0p
αŨ0(s, p) = G̃(s, p).

The latter equation is a family of operator equations in the space of functions of y

with parameters p ∈ Cn. Note that the latter equation must be solved in the space of

microfunctions, that is, we must solve equation (16) modulo holomorphic functions of

(s, p). Similar to the case of differential equations with constant (numerical) coefficients,

the set of singularities of the solution Ũ0(s, p) is determined by the set of points p ∈ Cn

such that the operator

H̃(p) =
∑

|α|≤m

aα0p
α

is not invertible in the considered space of functions of y. We denote this set by

(17) char Ĥ = {p : H̃(p) is not invertible}
and call it the characteristic set of the operator Ĥ . We impose the following requirement

on Ĥ :

Condition 1. char Ĥ is an analytic set in Cn.

Under this condition the set of singularities of a solution to equation (12) is the union

of some set which is characteristic with respect to Ĥ and the set of singularities of the

right-hand side G(s, τ). Suppose that the main singularity s = S0(τ) of the solution is

not determined by any singularity of the function G(s, τ). Then S0(τ) must be a solution

of the Hamilton–Jacobi equation

{p : p = ∂S0/∂τ} ⊂ char Ĥ.

Now we are able to prove the existence of infinitely continuable solutions to equa-

tion (12).

Theorem 2. Suppose that the operator Ĥ satisfies Condition 1. Then equation (12)

is solvable in the space of resurgent functions.

P r o o f. To construct a solution to equation (12) we choose a submanifold which is not

everywhere characteristic with respect to this equation. Then a solution to any Cauchy
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problem with resurgent Cauchy data on this manifold will be a resurgent solution to

equation (12). The existence of an infinitely continuable solution for such a problem

(under the condition that the Cauchy data are infinitely continuable) can be proved with

the help of an explicit formula for solutions which has the same form as in the case

of constant (numerical) coefficients (see [10]). The proof of the fact that this formula

determines an infinitely continuable solution to the Cauchy problem is quite similar to

that in the cited book and we leave it to the reader. This proves the theorem.

To conclude this section, we present the form of constructed asymptotic solutions in

the case when this solution has simple singularities. We recall that the resurgent function

(9) has simple singularities if the corresponding function U(s, τ) can be represented in a

neighbourhood of its singular points in the form

(18) U(s, τ) =
a0(τ)

s − S(τ)
+ ln(s − S(τ))

∞∑

j=0

(s − S(τ))j

j!
aj+1(τ)

where s = S(τ) is an equation of the singularity set of U and the series on the right

converges in a neighbourhood of s = S(τ). From the homogeneity properties of U it

follows that S(τ) is a homogeneous function of τ of degree 1 and aj+1(τ) are homogeneous

functions of order −(j + 1). It is known that if u(τ) is a resurgent function with simple

singularities then the point s = S(τ) of singularity corresponds to the term

(19) e−S(τ)
∞∑

j=0

aj(τ)

of the asymptotic expansion for large values of |τ |. Performing the change of variables

(11) we come to the asymptotic expansion of the initial function u(x) which is the sum

of the following terms:

e−S(lnx)
∞∑

j=0

aj(ln x)

where S and aj are homogeneous functions of degree 1 and −j respectively.

4. Evolution equations. In this section we consider the Cauchy problem

(20)






∂mu

∂tm
= Ĥu,

u|t=0 = u0(x), . . . ,
∂m−1u

∂tm−1

∣∣∣∣
t=0

= um−1(x),

where Ĥ is an operator of the type (5). As above, using an exponential change of variables

(7) and expanding the coefficients of Ĥ in Taylor series in x, we reduce (20) to the form

(21)





∂mu

∂tm
=

∑

|α|≤m

∑

|β|≥0

aαβeτβ

(
∂

∂τ

)α

u,

u|t=0 = u0(τ), . . . ,
∂m−1u

∂tm−1

∣∣∣∣
t=0

= um−1(τ).

R e ma r k 1. We recall that aαβ in the latter equation are supposed to be differ-

ential operators in y ∈ Ck. More generally, we can assume that these operators contain
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differentiations with respect to t of order not more than m − 1. In any case, the orders

of the operators aαβ are supposed to be less than or equal to m − |α|.

Similar to the previous section we search for a solution to problem (21) in the form

of a resurgent function (see equation (9)):

u(t, τ) =
∑

j

∫

Γj

e−sU(s, t, τ)ds,

where U(s, t, τ) is an infinitely continuable analytic function in s. The corresponding

Cauchy problem for U(s, t, τ) has the form

(22)





∂mU

∂tm
=

∑

|α|≤m

∑

|β|≥0

aαβTτβ

[(
∂

∂s

)−1(
∂

∂τ

)]α

U,

U |t=0 = U0(s, τ), . . . ,
∂m−1U

∂tm−1

∣∣∣∣
t=0

= Um−1(s, τ).

We shall construct a solution to (22) with the help of a recurrent procedure. Namely, we

define U0(s, t, τ) as a solution of the Cauchy problem

(23)





∂mU0

∂tm
=

∑

|α|≤m

aα0

[(
∂

∂s

)−1(
∂

∂τ

)]α

U0,

U0|t=0 = U0(s, τ), . . . ,
∂m−1U0

∂tm−1

∣∣∣∣
t=0

= Um−1(s, τ).

Then, for each multiindex β 6= 0 we determine Uβ(s, t, τ) as a solution to the Cauchy

problem

(24)






∂mUβ

∂tm
=

∑

|α|≤m

aα0

[(
∂

∂s

)−1(
∂

∂τ

)]α

Uβ

+
∑

|α|≥m

∑

β′+β′′=β

aαβ′Tτβ′

[(
∂

∂s

)−1(
∂

∂τ

)]α

Uβ′′

,

Uβ |t=0 = 0, . . . ,
∂m−1Uβ

∂tm−1

∣∣∣∣
t=0

= 0,

where the last sum does not contain the term with β′ = 0. Since Re(τβ) ≤ 0, the

second term on the right-hand side of the equation in (24) contains the functions Uβ′′

only with Re(τβ′′) > Re(τβ). Hence, if we order the set of functions {Uβ : β ≥ 0}
in such a way that Re(τβ) does not increase, the set of Cauchy problems determines a

recurrent procedure for determining these functions. Certainly, for problems (23), (24)

to be solvable in the class of infinitely continuable functions, one has to impose some

requirements on the operator on the right-hand side of (23); such requirements will be

imposed below. However, if we assume that the recurrent system (23), (24) is solvable in

the required function class, then the series

(25) u(t, τ) =
∑

β≥0

uβ(t, τ)
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converges in the space of resurgent functions (here uβ(t, τ) are resurgent functions cor-

responding to Uβ(s, t, τ)) since the supports of uβ(t, τ) move to the left along the de-

scribed ordering. The resurgent function (25) evidently is a resurgent solution for the

problem (21).

Now let us formulate the condition under which equation (23) is solvable in classes

of infinitely continuable functions. To do this, we apply the ∂/∂s-transformation [10] to

the problem (23). Setting

(26) Ũβ(s, t, τ) = F∂/∂s(U
β(s, t, τ))

we come to the following Cauchy problems:





∂mŨ0

∂tm
=

∑

|α|≤m

aα0p
αŨ0,

Ũ0|t=0 = Ũ0(s, p), . . . ,
∂m−1Ũ0

∂tm−1

∣∣∣∣
t=0

= Ũm−1(s, p),

(27)





∂mŨβ

∂tm
=

∑

|α|≤m

aα0p
αU β̃ +

∑

|α|≤m

∑

β′+β′′=β

aαβ′Tτβ′pαŨβ′′

,

Ũβ |t=0 = 0, . . . ,
∂m−1Ũβ

∂tm−1

∣∣∣∣
t=0

= 0

(28)

for the functions (26). Evidently, the solvability of (23) is equivalent to the solvability of

(27), so we must impose the following condition.

Condition 2. The solution operator for problem (27) exists for each value of p ∈ Cn

and determines an analytic family of operators with parameter p.

Let us describe a situation in which Condition 2 will be valid. Suppose that the order

of the operator (1) aα0 equals m − |α| and that the operator

∂m

∂tm
− a00

is strictly hyperbolic (see Remark 1 above). Then it is evident that Condition 2 is valid.

To conclude this section we investigate the singularities of Uβ(s, t, τ) provided that

the Cauchy data Uj(s, τ) of problem (23) have simple singularities. This means that

Uj(s, τ), j = 1, . . . , m − 1, can be represented in the form

(29) Uj(s, τ) =
a0(τ)

s − S(τ)
+ ln(s − S(τ))

∞∑

i=0

(s − S(τ))i

i!
ai+1(τ)

near each point s = S(τ), where the series on the right converges. Then, as follows

from the stationary phase formula for the ∂/∂s-transformation (see [10], [11], [12]), the

functions Ûj(s, p) have the same form

Ũj(s, p) =
ã0(p)

s − S̃(p)
+ ln(s − S̃(p))

∞∑

i=0

(s − S̃(p))i

i!
ãi+1(p)

(1) We recall that aαβ are supposed to be differential operators in variables y.
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near singular points s = S̃(p), where S̃(p) is the Legendre transform of S(τ). Now the

singularities of Ũβ(s, t, p) can be computed in the usual way with the help of the Hamil-

tonian flow along the trajectories of the operator appearing in problems (27) and (28).

Note that, in contrast to the case considered in Section 3 the operator itself does not

originate any singularities of solution; all singularities come from the singularities of the

Cauchy data.

5. Examples. In this section we consider two examples of constructing a resurgent

solution to a stationary equation and to a Cauchy problem.

Example 1. Consider the equation
[(

x1 ∂

∂x1

)2

+

(
x2 ∂

∂x2

)2

+
∂2

∂y2

]
u(x1, x2, y) = 0,

where x1 and x2 are in a neighbourhood of the origin in C2 and y belongs to the unit

circle S1. The corresponding characteristic set (17) for this equation is the union of the

sets

charn Ĥ = {p2
1 + p2

2 − n2 = 0}
over all natural numbers n. This follows from the fact that the operator

∂2

∂y2
+ p2

1 + p2
2

on the unit circle is not invertible exactly for values of p = (p1, p2) such that p2
1+p2

2 = n2.

Performing, similar to the general case, the change (7) of variables and passing to the

“resurgent images” U(s, τ1, τ2, y) via formula (9), we come to an equation for U of the

form

(30)

[(
∂

∂s

)−2(
∂

∂τ1

)2

+

(
∂

∂s

)−2(
∂

∂τ2

)2

+
∂

∂y2

]
U(s, τ1, τ2, y) = 0.

As follows from the considerations of Section 3 the singularities of a solution to the latter

equation must lie in the set s = S(τ1, τ2, y) where the function S must be a solution to

one of the Hamilton–Jacobi equations

(31)

(
∂S

∂τ1

)2

+

(
∂S

∂τ2

)2

= n2

for some nonnegative integer n. We denote a solution of this equation by Sn(τ1, τ2).

Now we can construct an asymptotic solution to equation (30) with simple singulari-

ties. Such a solution has the form

(32) U(s, τ1, τ2, y) = U+(s, τ1, τ2)einy + U−(s, τ1, τ2)e−iny

where the functions U± are solutions to the equation

(33)

[(
∂

∂s

)−2(
∂

∂τ1

)2

+

(
∂

∂s

)−2(
∂

∂τ2

)2

− n2

]
U±(s, τ1, τ2, y) = 0.

Such form of solution is due to the fact that the functions exp(±iny) are eigenfunctions

of the operator ∂2/∂y2 on the unit circle S1. Solutions to equation (33) of the form (29)

corresponding to the action (31) can easily be constructed with the help of the Maslov
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canonical operator on complex manifolds (see [10]). We present here only the result of

the computation. Computations similar to those in [13] give

Sn = S±
n (τ1, τ2) = ±n

√
(τ1)2 + (τ2)2

or

Sn = Sn(τ1, τ2) = n(aτ1, bτ2)

where a and b are subject to the relation a2 + b2 = 1.

By (19) the terms U± of the asymptotic expansion (32) corresponding to the actions

S±
n (τ1, τ2) have the form

e±n
√

(ln x1)2+(ln x2)2
∞∑

j=0

aj(lnx1, lnx2)

where aj(τ
1, τ2) are homogeneous in (τ1, τ2) of degree −j.

Asymptotic solutions to the nonhomogeneous equation
[(

x1 ∂

∂x1

)2

+

(
x2 ∂

∂x2

)2

+
∂

∂y2

]
u(x1, x2, y) = f(x1, x2, y)

with resurgent right-hand side f(x1, x2, y) can be investigated with the help of the Green

function of equation (33). The corresponding computations are similar to those in [7].

Example 2. Consider the Cauchy problem





∂2u

∂t2
=

[(
x1 ∂

∂x1

)2

+

(
x2 ∂

∂x2

)2

+
∂2

∂y2

]
u,

u|t=0 = u0,
∂u

∂t

∣∣∣∣
t=0

= u1.

Here, similar to the previous example, the variable y varies on the unit circle S1 and

we construct asymptotic solutions in a neighbourhood of the origin in the space of the

variables x = (x1, x2). We require also that u0 and u1 are resurgent functions of the

variables τ = (τ1, τ2) determined by the change (7) of variables. This means that the

functions u0(e
τ1

, eτ2

), u1(e
τ1

, eτ2

) can be represented in the form of the integral (9)

with the corresponding functions U0(s, τ, y) and U1(s, τ, y). Then the Cauchy problem

for U = U(s, t, τ, y) has the form





∂2U

∂t2
=

[(
∂

∂s

)−2(
∂

∂τ1

)2

+

(
∂

∂s

)−2(
∂

∂τ2

)2

+
∂2

∂y2

]
U,

U |t=0 = U0,
∂U

∂t

∣∣∣∣
t=0

= U1.

Passing in this Cauchy problem to the image Ũ(s, t, p, y) of U(s, t, τ, y) under the action

of the ∂/∂s-transformation we come to the following family of Cauchy problems with the

parameters p = (p1, p2):

(34)





∂2Ũ

∂t2
=

[
(p1)

2 + (p2)
2 +

∂2

∂y2

]
Ũ ,

Ũ |t=0 = Ũ0,
∂Ũ

∂t

∣∣∣∣
t=0

= Ũ1,
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where Ũ0 and Ũ1 are the images of the Cauchy data U0 and U1 of problem (34) under

the ∂/∂s-transformation.

Suppose now that the functions Ũj , j = 1, 2, have simple singularities, that is,

Ũj(s, p, y) =
a0(p, y)

s − S(p, y)
+ ln(s − S(p, y))

∞∑

i=0

(s − S(p, y))i

i!
ai+1(p, y).

Suppose, in addition, that

∂S(p, y)

∂y
6= 0.

Then, as follows from [14], the asymptotic solution to problem (34) with respect to

smoothness has the form

Ũ(s, t, p, y) = Ũ+(s, t, p, y) + Ũ−(s, t, p, y)

where

Ũ±
j (s, t, p, y) =

a±
0 (t, p, y)

s − S±(t, p, y)
+ ln(s − S±(t, p, y))

∞∑

i=0

(s − S±(t, p, y))i

i!
a±

i+1(t, p, y)

and the functions S±(t, p, y) are solutions of the following Cauchy problem for the

Hamilton–Jacobi equation: 




∂S±(t, p, y)

∂t
= ±∂S±(t, p, y)

∂y
,

S±(t, p, y)|t=0 = S(p, y).

The explicit asymptotics for solutions to problem (34) with respect to smoothness can

be obtained with the help of the Laplace–Radon integral operators on complex manifolds;

the theory of these operators is presented in the book [10].
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