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Sección de Matemáticas, Facultad de Ciencias
A.P. 59, 29080 Málaga, Spain

E-mail: turiel@ccuma.sci.uma.es

Abstract. Consider a (1, 1) tensor field J , defined on a real or complex m-dimensional
manifold M , whose Nijenhuis torsion vanishes. Suppose that for each point p ∈ M there exist
functions f1, . . . , fm, defined around p, such that (df1∧ . . .∧dfm)(p) 6= 0 and d(dfj(J( )))(p) = 0,
j = 1, . . . ,m. Then there exists a dense open set such that we can find coordinates, around each
of its points, on which J is written with affine coefficients. This result is obtained by associating
to J a bihamiltonian structure on T ∗M .

Introduction. Consider a (1, 1) tensor field J , defined on a real or complex m-
dimensional manifold M , whose Nijenhuis torsion vanishes. Suppose that for each point
p ∈M there exist functions f1, . . . , fm, defined around p, such that (df1∧. . .∧dfm)(p) 6= 0
and d(dfj ◦ J)(p) = 0 , j = 1, . . . ,m [here df ◦ J means df(J( ))]. In this paper we give a
complete local classification of J on a dense open set that we call the regular open set.
Moreover, near each regular point, i.e. each element of the regular open set, J is written
with affine coefficients on a suitable coordinate system.

To express the condition about functions f1, . . . , fm, stated above, in a simple compu-
tational way we introduce the invariant PJ (see section 1). This invariant only depends on
the 1-jet of J at each point, and PJ(p) = 0 iff functions f1, . . . , fm as before exist. When
J defines a G-structure, the first-order structure function being zero implies PJ = 0 and
NJ = 0 (this last property is well known). Besides all points of M are regular; therefore
this work generalizes the main result of [5]. On the other hand NJ and PJ both together
can be considered as a generalization of the first-order structure function.

This kind of tensor fields appear in a natural way in Differential Geometry. For ex-
ample, on the base space of a bilagrangian fibration (see [1]) there exists a tensor field J ,
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with NJ = 0, such that if (x1, . . . , xm) are action coordinates then each dxj ◦ J is closed;
so PJ = 0. From a wider viewpoint, when NJ = 0, we can study the equation:

(1) d(df ◦ J) = 0;

i.e. the existence of conservation laws for J . Our classification shows that the existence,
close to p, of m functionally independent solutions to equation (1) is equivalent to PJ = 0
near p.

Partial answers to the foregoing question may be found in [2], [6] and [7]. In [4], by
using eigenvalues and eigenspaces, J. Grifone and M. Mehdi give an elegant necessary and
sufficient condition for the existence of enough local solutions to equations (1) when J is
real analytic. With the Grifone-Mehdi condition all points are regular and a calculation
shows that it implies PJ = 0. Therefore the Grifone-Mehdi result follows from ours.

Finally, let us sketch the way for classifying J . As NJ = 0 we can construct a bi-
hamiltonian structure on T ∗M and from it a (1, 1) tensor field J∗, prolongation of J to
T ∗M (see [8]). The main result of [9] gives us the local model of J∗ on a dense open set
and now a J∗-invariant cross section of T ∗M allows us to find a model of J . This cross
section exists because PJ = 0 implies that the behaviour of J∗ does not change along
each fiber of T ∗M .

In a forthcoming paper we will study some cases where PJ 6= 0.

1. The first step. Consider a (1, 1) tensor field J on a real or complex manifold M
of dimension m. We recall that the Nijenhuis torsion of J is the (1, 2) tensor field given
by the formula

NJ(X,Y ) = [JX, JY ] + J2[X,Y ]− J [X, JY ]− J [JX, Y ].

If τ is a 1-form τ ◦ J will mean the 1-form defined by (τ ◦ J)(X) = τ(JX).
For each p ∈M let F (2, J)(p) be the vector subspace of all the 2-forms βσ defined by

βσ(v, w) = σ(Jv,w)− σ(v, Jw) where v, w ∈ TpM and σ is a symmetric bilinear form on
TpM . Observe that F (2, Jk)(p) ⊂ F (2, J)(p) for each k ∈ N. Set

FJ(p) =
Λ2T ∗pM

F (2, J)(p)
.

Given α ∈ T ∗pM and a function f defined around p such that df(p) = α, the class of
d(df ◦J)(p) on FJ(p) only depends on α. That defines a linear map PJ(p) : T ∗pM → FJ(p)
or, from a global viewpoint, PJ : T ∗M → FJ where FJ is the disjoint union of all FJ(p).

Note that PJ(p) = 0 if and only if there exist functions f1, . . . , fm, defined around
p, such that (df1 ∧ . . . ∧ dfm)(p) 6= 0 and d(dfj ◦ J)(p) = 0, j = 1, . . .m. When the
characteristic polynomial of J(p) equals its minimal polynomial, i.e. when TpM is cyclic,
then F (2, J)(p) = Λ2T ∗pM and automatically PJ(p) = 0. If J2 = − Id a straightforward
calculation shows that NJ = 0 implies PJ = 0. However J can be semisimple, NJ = 0
and PJ 6= 0; e.g. on Rm, m ≥ 2, J = ex1 Id.

Let KN [t] be the polynomial algebra in one variable over the ring of differentiable
functions on a manifold N . Here differentiable means C∞ if N is a real manifold (K =
R) and holomorphic in the complex case (K = C). A polynomial ϕ ∈ KN [t] is called
irreducible if it is irreducible at each point of N . We shall say that ϕ, ρ ∈ KN [t] are



CLASSIFICATION OF TENSOR FIELDS 451

relatively prime if they are at each point. Consider an endomorphism field H of a vector
bundle π : V → N , i.e. a cross section of V ⊗ V ∗. We will say that H has constant
algebraic type if there exist relatively prime irreducible polynomials ϕ1, . . . , ϕ` ∈ KN [t]
and natural numbers aij , i = 1, . . . , rj , j = 1, . . . , `, such that for each p ∈ N the family
{ϕaij

j (p)}, i = 1, . . . , rj , j = 1, . . . , `, is the family of elementary divisors of H(p).

Suppose that J defines a G-structure, i.e. J has constant algebraic type on M and
ϕ1, . . . , ϕ`∈K[t]. If its first-order structure function vanishes then PJ =0. Indeed, around
each point p ∈ M there exists a linear connection ∇, whose torsion at p vanishes, such
that ∇J = 0. Let f1, . . . , fm be normal coordinates with origin p; then d(dfj ◦ J)(p) = 0
and PJ(p) = 0. Conversely NJ = 0 and PJ = 0 imply that the first-order structure
function equals zero. In a word, the invariants NJ and PJ can be seen as a generalization
of the first-order structure function to the case where J does not define a G-structure.

Henceforth we shall suppose NJ = 0. Set gk = trace(Jk) and E =
⋂m
j=1 Ker dgj . It is

well known that (k + 1)dgk ◦ J = kdgk+1 and JE ⊂ E (see [9]).

We say that a point p ∈ M is regular if there exists an open neighbourhood A of p
such that:

(1) J has constant algebraic type on A,

(2) E, restricted to A, is a vector subbundle of TA.

(3) The restriction of J to E has constant algebraic type on A.

The set of all regular points is a dense open set of M which we shall call the regular
open set. Our local classification of J only refers to the regular open set.

Now suppose that on an open neighbourhood of a regular point p the characteristic
polynomial ϕ of J is the product ϕ1 · ϕ2 of two monic relatively prime polynomials ϕ1

and ϕ2. Then around p the structure (M,J) decomposes into a product of two similar
structures (M1, J1) × (M2, J2), where ϕ1 is the characteristic polynomial of J1 (more
exactly ϕ1 is the pull-back of the characteristic polynomial of J1) and ϕ2 that of J2

(see [3] and [9]). Moreover NJ1 = 0, NJ2 = 0, and p1 and p2 are regular points where
p = (p1, p2). On the other hand PJ1 = 0 and PJ2 = 0 if PJ = 0.

This splitting property reduces the classification to the case where the characteristic
polynomial ϕ of J is a power of an irreducible one. Therefore we have only two possibil-
ities: ϕ = (t+ f)m, or ϕ = (t2 + ft+ g)n where m = 2n and M is a real manifold.

2. The case ϕ = (t + f)m. In this section, by associating to J a bihamiltonian
structure on T ∗M , we prove the following result:

Theorem 1. Consider a (1, 1) tensor field J such that NJ = 0 and PJ = 0. Suppose
that its characteristic polynomial is (t+f)m. Then around each regular point p there exist
coordinates ((xji ), y) with origin p, i.e. p ≡ 0, such that :

(a) i = 1, . . . , rj and r1 ≥ r2 ≥ . . . ≥ r`. Moreover we also consider the case with no
coordinates (xji ), i.e. ` = 0, and the case with coordinates (xji ) only.
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(b) J = (y + a) Id +H + Y ⊗ dy where

H =
∑̀
j=1

( rj−1∑
i=1

∂

∂xji+1

⊗ dxji
)

and Y =
∂

∂x1
1

+
∑̀
j=1

( rj∑
i=2

(1− i)xji
∂

∂xji

)
.

R e m a r k. In the first special case m = 1 and J = (y + a) Id; in the second one
m = r1 + . . .+r` and J = a Id +

∑`
j=1(

∑rj−1
i=1 ∂/∂xji+1⊗dx

j
i ). The elementary divisors of

J determine its model completely. If there is no coordinate y, i.e. if J defines a G-structure,
they are: {(t− a)rj}, j=1, . . . , `. Otherwise they are: (t−(y+ a))r1+1; {(t− (y+ a))rj},
j = 2, . . . , `.

Let cJ : T ∗M → T ∗M be the morphism of T ∗M defined by cJ(τ) = τ ◦ J and let
ω be the Liouville symplectic form of T ∗M . Set ω1 = (cJ)∗ω where cJ is regarded as a
differentiable map. Consider the (1, 1) tensor field J∗, on T ∗M , defined by ω1(X,Y ) =
ω(J∗X,Y ). Then NJ∗ = 0, because NJ = 0, and {ω, ω1} is a bihamiltonian structure
(see [8]). If (x1, . . . , xm) are coordinates on M , (x1, . . . , xm, z1, . . . , zm) the associated
coordinates on T ∗M , and J =

∑m
i,j=1 fij∂/∂xi ⊗ dxj then

J∗ =
m∑

i,j=1

fij

(
∂

∂xi
⊗ dxj +

∂

∂zj
⊗ dzi

)
+

m∑
i,j,k=1

zi

(
∂fij
∂xk

− ∂fik
∂xj

)
∂

∂zj
⊗ dxk.

Hence π∗ ◦ J∗ = J ◦ π∗.
Throughout the rest of this section J is as in theorem 1. By the local expression of

J∗ given above, its characteristic polynomial is ϕ∗ = (t+ f ◦π)2m. Since PJ = 0, around
each regular point p ∈M there exist coordinates (x1, . . . , xm) such that d(dxi◦J)(p) = 0,
i = 1, . . . ,m. Even more if df(p) 6= 0 [regularity implies df(p) = 0 iff f is constant near p]
we can suppose f = x1 because g1 = −mf and dg1 ◦J = dg2

2 . But dxi ◦J =
∑m
j=1 fijdxj ,

then ∂fij

∂xk
(p) = ∂fik

∂xj
(p) and

J∗(p, z) =
m∑

i,j=1

fij(p)
(

∂

∂xi
⊗ dxj +

∂

∂zj
⊗ dzi

)
(p, z).

Therefore the elementary divisors of J(p) and (J|E)(p) determine those of J∗(p, z)
and (J∗|E∗)(p, z) completely, and the pull-back of the regular open set of J is included
in the regular open set of J∗. This is the role of the assumption PJ = 0 while NJ = 0
assures us that {ω, ω1} is bihamiltonian.

The zero cross section allows us to consider M as a submanifold of T ∗M . Take a
regular point p∈M such that df(p)=0, i.e. f constant near p. By theorem 3 of [9] there
exist coordinates (y1, . . . , y2m) on an open neighbourhood A of p, with origin this point,
on which ω and ω1 are written with constant coefficients and J∗ as well. By rearranging
coordinates (y1, . . . , y2m) if necessary, we can suppose that { ∂

∂y1
(p), . . . , ∂

∂ym
(p)} spans

TpM and { ∂
∂ym+1

(p), . . . , ∂
∂y2m

(p)} spans the vertical subspace Kerπ∗(p) at p. Both sub-
spaces are J∗-invariant as the local expression of J∗ shows. Set A0 = {y ∈ A : ym+1 =
. . . = y2m = 0}. As rank((π|A0)(p)) = m we can choose an open neighbourhood B of p
on A0 such that π(B) is open and π : B → π(B) a diffeomorphism.

By construction J∗(TA0) ⊂ TA0. Let J ′ be the restriction of J∗ to A0. The tensor
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field J ′ is written with constant coefficients on A0. Moreover (π|A0)∗ ◦ J ′ = J ◦ (π|A0)∗
since π∗ ◦J∗ = J ◦π∗. Then J is written with constant coefficients on π(B), which proves
theorem 1 when df(p) = 0.

The proof of the other case is basically the same but we have to rearrange coordinates
in a more sophisticated way. Let V be a real or complex vector space of dimension
2n. Consider α, α1 ∈ Λ2V ∗ such that αn 6= 0. Let J̃ be the endomorphism of V given
by α1(v, w) = α(J̃v, w). Suppose J̃ nilpotent (see proposition 1 of [9] for the model of
{α, α1}). An n-dimensional vector subspace W of V is called bilagrangian if α(v, w) =
α1(v, w) = 0 for all v, w ∈ W ; in other words W is lagrangian for α and JW ⊂ W .
When W is bilagrangian and there exists another bilagrangian subspace W ′ such that
V = W ⊕W ′ we shall say that W is superlagrangian. A bilagrangian subspace W is
superlagrangian if and only if the elementary divisors of J|W are half those of J ; i.e. if
{trj}, j = 1, . . . , `, are the elementary divisors of J|W then {trj , trj}, j = 1, . . . , `, are
those of J .

Lemma 1. Consider a basis {eji}, i = 1, . . . , 2rj , j = 1, . . . , `, of V such that

α =
∑̀
j=1

( rj∑
k=1

e∗j2k−1 ∧ e
∗j
2k

)
and α1 =

∑̀
j=1

( rj−1∑
k=1

e∗j2k−1 ∧ e
∗j
2k+2

)
.

Let W be the vector subspace spanned by {ej2k−1}, k = 1, . . . , rj , j = 1, . . . , `. Then for
each superlagrangian subspace W ′ of V there exists T ∈ GL(V ) such that T ∗α = α,
T ∗α1 = α1 and W ∩ TW ′ = {0}. Moreover if e12r1−1 6∈ W ′ we can choose T in such a
way that Te11 = e11.

Now take a regular point p ∈ M . Suppose df(p) 6= 0. By theorem 3 of [9] there exist
coordinates (x, y) = ((xji ), y1, y2), i = 1, . . . , 2rj and r1 ≥ r2 ≥ . . . ≥ r`, with origin p,
such that

ω =
∑̀
j=1

( rj∑
k=1

dxj2k−1 ∧ dx
j
2k

)
+ dy1 ∧ dy2

and ω1 = (y2 + a)ω + τ + α ∧ dy2 where

τ =
∑̀
j=1

( rj−1∑
k=1

dxj2k−1 ∧ dx
j
2k+2

)
and

α = dx1
2 +

∑̀
j=1

( rj∑
k=1

[(k + 1/2)xj2kdx
j
2k−1 + (k − 1/2)xj2k−1dx

j
2k]
)
.

Hence J∗ = (y2 + a) Id +H∗ + ∂
∂y1
⊗ α− Z ⊗ dy2 where

H∗ =
∑̀
j=1

( rj−1∑
k=1

∂

∂xj2k+1

⊗ dxj2k−1 +
rj∑
k=2

∂

∂xj2k−2

⊗ dxj2k

)
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and

Z =
∂

∂x1
1

+
∑̀
j=1

( rj∑
k=1

[
(k − 1/2)xj2k−1

∂

∂xj2k−1

− (k + 1/2)xj2k
∂

∂xj2k

])
.

Lemma 2. The vector ∂
∂x1

2r1−1
(p) does not belong to the vertical subspace Kerπ∗(p).

P r o o f. By the local expression of J∗ in the coordinates (x1, . . . , xm, z1, . . . , zm) given
at the beginning of this section, Kerπ∗(p) and TpM are J∗(p)-invariant, and J|Kerπ∗(p)

and J|TpM have the same elementary divisors. As p ≡ 0 in coordinates (x, y), the ele-
mentary divisors of J∗(p) are (t− a)r1+1; (t− a)r1+1; {(t− a)rj , (t− a)rj}, j = 2, . . . , `.
Therefore there exists v ∈ TpM spanning a cyclic subspace U of dimension r1 + 1 such
that U ∩Kerπ∗(p) = {0}.

Moreover v = a ∂
∂y2

(p) + b ∂
∂x1

2r1

(p) + v1 where (J∗(p)− a Id)r1v1 = 0.

By construction

(J∗(p)− a Id)r1v = a
∂

∂x1
2r1−1

(p) + b
∂

∂y1
(p)

does not belong to Kerπ∗(p). As ω(∂/∂y1, ) = dy2 = −d(f ◦ π) and ω =
∑m
j=1 dzj ∧ dxj

in coordinates (x1, . . . , xm, z1, . . . , zm) of T ∗M , the vector ∂
∂y1

(p) belongs to Kerπ∗(p).
So ∂

∂x1
2r1−1

(p) 6∈ Kerπ∗(p).

Set ω′ =
∑`
j=1(

∑rj

k=1 dx
j
2k−1 ∧ dx

j
2k).

Lemma 3. The vector subspace (Kerπ∗∩Ker dy1∩Ker dy2)(p), regarded as a subspace
of T0K2m−2, is superlagrangian with respect to {ω′(0), τ(0)}.

P r o o f. As f ◦π = −(y2+a), Kerπ∗(p) ⊂ Ker dy2(p) = Ker d(f ◦π)(p). Now note that
((J∗−a Id)r1 Kerπ∗)(p) is a 1-dimensional subspace of Kerπ∗(p)∩K{ ∂

∂x1
2r1−1

(p), ∂
∂y1

(p)}
(here K{v1, . . . , vs} is the space spanned by {v1, . . . , vs}). So ((J∗ − a Id)r1 Kerπ∗)(p) =
K{ ∂

∂y1
(p)} since ∂

∂x1
2r1−1

(p) 6∈ Kerπ∗(p).

On the other hand T0K2m−2 can be seen as the quotient space Ker dy2(p)/K{ ∂
∂y1

(p)},
which identifies (Kerπ∗ ∩ Ker dy1 ∩ Ker dy2)(p) with Kerπ∗(p)/K{ ∂

∂y1
(p)}, and (H∗ +

a Id)(0) as the endomorphism induced by J∗|Ker dy2(p). Therefore the elementary divisors
of H∗|(Kerπ∗∩Ker dy1∩Ker dy2)(p) are {trj}, j = 1, . . . , `.

Lemma 4. Let {eji}, i = 1, . . . , 2rj , j = 1, . . . , `, be the canonical basis of K2m−2 =
K2r1×. . .×K2r` . Set α =

∑`
j=1(

∑rj

k=1 e
∗j
2k−1∧e

∗j
2k) and α1 =

∑`
j=1(

∑rj−1
k=1 e∗j2k−1∧e

∗j
2k+2).

Given T ∈ GL(K2m−2) if Te11 = e11; T ∗α = α and T ∗α1 = α1, there exists a germ of
diffeomorphism G̃ : (K2m, 0) → (K2m, 0) such that G̃(x, y) = (G(x), y); G̃∗ω = ω;
G̃∗ω1 = ω1 and G∗(0) = T .

P r o o f. We will adapt to our case the proof of proposition 3 of [9]. Consider the map
GT : K2m → K2m given by GT (x, y) = (Tx, y). Then G∗Tω = ω and G∗Tω1 = ω1+dg∧dy2
where g is a quadratic function such that d(dg ◦H∗) = 0. Indeed GT preserves dx1

2(0) =
ω( ∂

∂x1
1
, )(0) and H∗, and d(α ◦H∗) = −2τ .
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Let D and L be the exterior derivative and the Lie derivative with respect to the
variables x only. We begin searching for a vector field Xt =

∑`
j=1(

∑2rj

i=1 ϕ
j
i (x, t)

∂

∂xj
i

),

defined on an open neighbourhood of the compact {0} × [0, 1] ⊂ K2m−2 ×K, such that:

(1) LXt
ω′ = LXt

τ = 0.
(2) LXt

(α+ tDg) = Dg (remark that dg = Dg).
(3) For each i = 1, . . . , 2rj and j = 1, . . . , `, ϕji and Dϕji vanish on {0} × [0, 1].

Consider the vector field Zt given by ω′(Zt, ) = α + tDg. Take a function f(x, t),
defined around {0} × [0, 1], such that:

(I) Ztf = −f − g.
(II) D(Df ◦H∗) = 0.

(III) For all i = 1, . . . , 2rj , j = 1, . . . , `, k = 1, . . . , 2rs and s = 1, . . . , `, the partial
derivatives ∂f/∂xji and ∂2f/∂xsk∂x

j
i vanish on {0} × [0, 1].

Let Xt the vector field defined by ω′(Xt, ) =Df . Then Xt satisfies conditions (1),
(2) and (3). By proposition 1.A (see the appendix) this kind of functions exists because
g is quadratic, D(Dg ◦ H∗) = 0, Zt(0) = ∂/∂x1

1, and LZt
H∗ = −H∗ since LZt

ω′ =
D(α+ tDg) = −ω′ and LZt

τ = D(α ◦H∗ + tDg ◦H∗) = −2τ .
By integrating the vector field−Xt we obtain a germ of diffeomorphism F : (K2m−2, 0)

→ (K2m−2, 0) such that F ∗ω′ = ω′; F ∗τ = τ ; F ∗(α+Dg) = α and F∗(0) = Id. Now set
G̃ = F̃ ◦GT where F̃ (x, y) = (F (x), y).

Let W be the subspace of TpT ∗M spanned by { ∂

∂xj
2k−1

(p)}, k = 1, . . . , rj , j =

1, . . . , `. By lemmas 1, 2, 3 and 4 we can suppose, without loss of generality, W ∩
(Kerπ∗ ∩ dy1 ∩ dy2)(p) = {0}, which implies (W ⊕K{ ∂

∂y2
(p)})∩Kerπ∗(p) = {0}. Indeed

dim(Kerπ∗ ∩dy1 ∩dy2)(p) = m− 1 (lemma 3) and ∂
∂y1

(p) ∈ Kerπ∗(p) (lemma 2, proof);
then Kerπ∗(p) = K{ ∂

∂y1
(p)} ⊕ (Kerπ∗ ∩ dy1 ∩ dy2)(p).

Set A0 = {(x, y) ∈ A : xj2k = y1 = 0, k = 1, . . . , rj , j = 1, . . . , `} where A is the
domain of coordinates (x, y). Then J∗(TA0) ⊂ TA0 and TpA0 ⊕ Kerπ∗(p) = TpT

∗M .
Finally, by reasoning as in the case df(p) = 0 we can state:

Proposition 1. Under the assumptions of theorem 1, if df(p) 6= 0 then there exist
coordinates ((xji ), y) as in this theorem such that J = (y + a) Id +H + Y ⊗ dy where

H =
∑̀
j=1

( rj−1∑
i=1

∂

∂xji+1

⊗ dxji
)

and Y =
∂

∂x1
1

+
∑̀
j=1

( rj∑
i=1

(1/2− i)xji
∂

∂xji

)
.

When df(p) 6= 0, proposition 1 shows that the local model of J only depends on its
elementary divisors.

Lemma 5. Consider on Km = Kr1 × . . . × Kr` × K, with r1 ≥ . . . ≥ r` if ` > 0,
coordinates ((xji ), y). Let L be the Lie derivative with respect to variables (xji ) only. Set
J = (y+ a) Id +H + Y ⊗ dy where Y is a vector field defined around the origin such that
dy(Y ) = 0 and H =

∑`
j=1

(∑rj−1
i=1

∂

∂xj
i+1
⊗ dxji

)
. If LYH = H and Hr1−1Y (0) 6= 0, then

NJ = 0 and close to the origin PJ = 0 and J has constant algebraic type.
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The elementary divisors of J , near the origin, are the same both for proposition 1 and
lemma 5: (t− (y+ a))r1+1; {(t− (y+ a))rj}, j = 2, . . . , `. So their models are equivalent.
We finish the proof of theorem 1 by taking

Y =
∂

∂x1
1

+
∑̀
j=1

( rj∑
i=2

(1− i)xji
∂

∂xji

)
.

The model announced by the author in a lecture at the Banach Center is obtained by
setting

Y =
∂

∂x1
1

−
∑̀
j=1

( rj∑
i=1

ixji
∂

∂xji

)
.

Another interesting model is given by taking

Y =
∂

∂x1
1

+
∑̀
j=1

( rj∑
i=1

(rj + 1− i)xji
∂

∂xji

)
.

For this model the forms dy ◦ J = (y+ a)dy and dxjrj
◦ J = (y+ a)dxjrj

+ xjrj
dy+ dxjrj−1

are closed. As NJ = 0 all the forms dxjrj
◦Jk are closed too. Therefore if the characteristic

polynomial of J is (t+ f)m, for each regular point p and for all λ0 ∈ T ∗pM there exists a
closed 1-form λ, defined near p, such that λ(p) = λ0 and d(λ ◦ J) = 0; usually λ is called
a conservation law. In other words, the equation d(df ◦J) = 0 has enough local solutions
on the regular open set.

3. The case ϕ=(t2+ft+g)n. Since our problem is local we can suppose M connected
and all of its points regular. Set J0 = 2(4g−f2)−

1
2 J+f(4g−f2)−

1
2 Id which makes sense

because f2 − 4g < 0. By construction J0 defines a G-structure and (J2
0 + Id)n = 0. Let

H be the semisimple part of J0. Then H is a complex structure, J a holomorphic tensor
field and (t+ h)n its complex characteristic polynomial, where h = 1

2 (f − i(4g− f2)
1
2 ) is

holomorphic.
Indeed, consider {ω, ω1} and J∗ on T ∗M as in section 2. Now the characteristic

polynomial of J∗ is ϕ∗ = (t2 + (f ◦ π)t + (g ◦ π))2n. Let A be the regular open set
of J∗. Set J∗0 = 2((4g − f2)−

1
2 ◦ π)J∗ + ((f(4g − f2)−

1
2 ) ◦ π) Id. On each connected

component of A the tensor field J∗0 defines a G-structure; moreover ((J∗0 )2 + Id)2n = 0.
Let H∗ be the semisimple part of J . In section 6 of [9] we showed that H∗ is a complex
structure, J∗ holomorphic and (t + h∗)2n its complex characteristic polynomial, where
h∗ = 1

2 (f◦π−i(4g−f2)
1
2 ◦π) is a holomorphic function. On the other hand π∗◦J∗0 = J0◦π∗

and π∗ ◦H∗ = H ◦ π∗ because π∗ ◦ J∗ = J ◦ π∗. So holomorphy holds on π(A), and on
M as well since A is dense on T ∗M and π(A) on M .

The complex regular set of J is M (see section 6 of [9] again).
Suppose PJ = 0. Let f = f1 + if2 a holomorphic function. Then d(df ◦ J) = d(df1 ◦

J) + i(d(df2 ◦ J)) is a holomorphic 2-form, so d(df1 ◦ J)(HX,Y ) = d(df1 ◦ J)(X,HY )
and d(df2 ◦ J)(X,Y ) = −d(df1 ◦ J)(HX,Y ). As PJ(p) = 0 from the real viewpoint,
there exists a real symmetric bilinear form σ on TpM such that d(df1 ◦ J)(p)(v, w) =
σ(J(p)v, w) − σ(v, J(p)w). Set σ1(v, w) = 1

2 (σ(v, w) − σ(H(p)v,H(p)w)) and σ̃(v, w) =
σ1(v, w) − iσ1(H(p)v, w). As J and H commute σ̃ is a complex symmetric bilinear
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form and d(df ◦ J)(p)(v, w) = σ̃(J(p)v, w)− σ̃(v, J(p)w). In other words PJ =0 from the
complex viewpoint. So to find a model of J , regard M as a complex manifold of dimension
n and apply theorem 1. Then forget the complex structure and regard J as a real tensor
field.

Theorem 2. Suppose NJ = 0 and PJ = 0. Then the local model of J around each
regular point is a finite product of models chosen among :

(a) For a complex manifold , those of theorem 1.
(b) For a real manifold , those of theorem 1 and those obtained considering the complex

models of that theorem from the real viewpoint.

The local model of J is completely determined by its elementary divisors.

R e m a r k. Suppose NJ =0. Let p be a regular point. By theorem 2 there exist enough
solutions to the equation d(df◦J) = 0, i.e. conservation laws, near p iff PJ vanishes around
this point. Nevertheless the existence of this kind of functions does not imply NJ = 0;
e.g. on K2 consider J = ex2 Id +∂/∂x2 ⊗ dx1; f1 = x1 − ex2 and f2 = x2.

Appendix. Consider an open set A of Kn endowed with a nilpotent constant coef-
ficient (1, 1) tensor field H. Let B be a differentiable manifold (the parameter space).
Elements of A×B will be denoted by (x, y) while by D, D(2) and L we mean the exterior
derivative, the second-order differential and the Lie derivative, all of them with respect to
the variables (x1, . . . , xn) only. Let Z be a vector field on A depending on the parameter
y ∈ B. We say that Z is generic at a point (x, y) if the dimension of the cyclic subspace
spanned by Z(x, y) equals the degree of the minimal polynomial of H.

Proposition 1.A. Suppose given p ∈ A, a compact set K ⊂ B, a scalar a ∈ K and
a function g : A × B → K, such that : (1) LZH = cH where c ∈ K; (2) Z is generic on
{p} ×K; (3) D(Dg ◦H) = 0, g({p} ×B) = 0 and Dg({p} ×B) = 0.

Then there exist an open neighbourhood U of p, an open set V ⊃ K and a function
f : U × V → K such that : (I) Zf = af + g; (II) D(Df ◦H) = 0; (III) Df({p} × V ) = 0
and D(2)f({p} × V ) = 0. Moreover if Dg(KerHr) = 0 we can choose f in such a way
that Df(KerHr) = 0.

The proof of this result is essentially that of proposition 1.A of [9]. Before lemma 2.A
no change is needed at all. This last result should be replaced with:

Lemma 2′.A. Consider a function h1 : A×B → K. Suppose Dh1(KerH) = 0 and
D(Dh1 ◦ H) = 0. Then there exist an open neighbourhood U of p and a function h :
U × B → K such that : (1) Dh ◦H = Dh1; (2) h({p} × B) = 0; (3) Dh(p, y) = 0 for all
y ∈ B such that Dh1(p, y) = 0; D(2)h(p, y) = 0 for each y ∈ B such that Dh1(p, y) = 0
and D(2)h1(p, y) = 0.

P r o o f. There exist a vector subbundle E of TA and a morphism ρ : TA→ TA such
that TA = E ⊕ KerH and (ρ ◦H)|E = Id. Set α = Dh1 ◦ ρ. Obviously α ◦H = Dh1.
Let C be the set of all y ∈ B such that Dh1(p, y) = 0 and D(2)h1(p, y) = 0. Suppose
α =

∑n
j=1 gjdxj . Then gj({p} × C) = 0 and Dgj({p} × C) = 0, j = 1, . . . , n.
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By rearranging coordinates (x1, . . . , xn) we can suppose the foliation KerH given by
dx1 = . . . = dxk=0. From lemma 1.A,Dα(ImH, ImH) = 0 soDα =

∑k
j=1(

∑n
i=1 fijdxi)

∧ dxj where each fij equals zero on {p} × C.
Let U =

∏n
i=1 Ui be an open neighbourhood of p, product of intervals (K = R) or disks

(K = C). As Dα is closed, there exist functions f̃j : U ×B → K such that ∂f̃j/∂xi = fij
and f̃j(U1 × . . . × Uk × {(pk+1, . . . , pn)} × B) = 0, i = k + 1, . . . , n, j = 1, . . . , k, where
p = (p1, . . . , pn). Therefore f̃j({p} ×B) = 0 and Df̃j({p} × C) = 0.

Set β = Dα−D(
∑k
j=1 f̃jdxj) =

∑k
i,`=1 ei`dxi ∧ dx`. As Dβ = 0, the functions ei` do

not depend on (xk+1, . . . , xn). By construction ei`({p} × C) = 0.
Now we can find functions e2, . . . , ek : U ×B → K, which do not depend on (xk+1, . . .

. . . , xn), such that ∂ej/∂x1 = e1j and ej({p1} × U2 × . . . × Un × B) = 0, j = 2, . . . , k.
So ej({p} × B) = 0 and Dej({p} × C) = 0. Set β′ =

∑k
j=2 ejdxj . Then β1 = β −Dβ′

is closed and β1({p} × C) = 0. Moreover β1 only involves the variables (x2, . . . , xk) and
differentials dx2, . . . , dxk. By induction we construct β̃ =

∑k
j=1 ẽjdxj such that Dβ̃ = β,

ẽj({p} ×B) = 0 and Dẽj({p} × C) = 0, j = 1, . . . , k.
Set α1 =

∑k
j=1 fjdxj where fj = f̃j+ẽj . Again fj({p}×B) = 0 and Dfj({p}×C) = 0,

j = 1, . . . , k. By construction α1 ◦H = 0 and D(α − α1) = 0. Therefore there exists a
function h : U × B → K such that h({p} × B) = 0 and Dh = α − α1. Now Dh ◦H =
α ◦ H = Dh1 and Dh(p, y) = α(p, y) = (Dh1 ◦ ρ)(p, y), which proves (1), (2) and (3).
Finally, note that Dh =

∑k
j=1(gj − fj)dxj +

∑n
j=k+1 gjdxj so D(2)h({p} × C) = 0.

Beyond this point both propositions have the same proof (lemma 2′.A assures us that
Dg0({p} ×B) = 0).
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