CLASSIFICATION OF $(1,1)$ TENSOR FIELDS AND BIHAMILTONIAN STRUCTURES

FRANCISCO JAVIER TURIEL
Sección de Matemáticas, Facultad de Ciencias
A.P. 59, 29080 Málaga, Spain
E-mail: turiel@ccuma.sci.uma.es

Abstract

Consider a $(1,1)$ tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point $p \in M$ there exist functions f_{1}, \ldots, f_{m}, defined around p, such that $\left(d f_{1} \wedge \ldots \wedge d f_{m}\right)(p) \neq 0$ and $d\left(d f_{j}(J())\right)(p)=0$, $j=1, \ldots, m$. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on $T^{*} M$.

Introduction. Consider a $(1,1)$ tensor field J, defined on a real or complex m dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point $p \in M$ there exist functions f_{1}, \ldots, f_{m}, defined around p, such that $\left(d f_{1} \wedge \ldots \wedge d f_{m}\right)(p) \neq 0$ and $d\left(d f_{j} \circ J\right)(p)=0, j=1, \ldots, m$ [here $d f \circ J$ means $\left.d f(J())\right]$. In this paper we give a complete local classification of J on a dense open set that we call the regular open set. Moreover, near each regular point, i.e. each element of the regular open set, J is written with affine coefficients on a suitable coordinate system.

To express the condition about functions f_{1}, \ldots, f_{m}, stated above, in a simple computational way we introduce the invariant P_{J} (see section 1). This invariant only depends on the 1-jet of J at each point, and $P_{J}(p)=0$ iff functions f_{1}, \ldots, f_{m} as before exist. When J defines a G-structure, the first-order structure function being zero implies $P_{J}=0$ and $N_{J}=0$ (this last property is well known). Besides all points of M are regular; therefore this work generalizes the main result of [5]. On the other hand N_{J} and P_{J} both together can be considered as a generalization of the first-order structure function.

This kind of tensor fields appear in a natural way in Differential Geometry. For example, on the base space of a bilagrangian fibration (see [1]) there exists a tensor field J,

[^0]with $N_{J}=0$, such that if $\left(x_{1}, \ldots, x_{m}\right)$ are action coordinates then each $d x_{j} \circ J$ is closed; so $P_{J}=0$. From a wider viewpoint, when $N_{J}=0$, we can study the equation:
\[

$$
\begin{equation*}
d(d f \circ J)=0 \tag{1}
\end{equation*}
$$

\]

i.e. the existence of conservation laws for J. Our classification shows that the existence, close to p, of m functionally independent solutions to equation (1) is equivalent to $P_{J}=0$ near p.

Partial answers to the foregoing question may be found in [2], [6] and [7]. In [4], by using eigenvalues and eigenspaces, J. Grifone and M. Mehdi give an elegant necessary and sufficient condition for the existence of enough local solutions to equations (1) when J is real analytic. With the Grifone-Mehdi condition all points are regular and a calculation shows that it implies $P_{J}=0$. Therefore the Grifone-Mehdi result follows from ours.

Finally, let us sketch the way for classifying J. As $N_{J}=0$ we can construct a bihamiltonian structure on $T^{*} M$ and from it a $(1,1)$ tensor field J^{*}, prolongation of J to $T^{*} M$ (see [8]). The main result of [9] gives us the local model of J^{*} on a dense open set and now a J^{*}-invariant cross section of $T^{*} M$ allows us to find a model of J. This cross section exists because $P_{J}=0$ implies that the behaviour of J^{*} does not change along each fiber of $T^{*} M$.

In a forthcoming paper we will study some cases where $P_{J} \neq 0$.

1. The first step. Consider a $(1,1)$ tensor field J on a real or complex manifold M of dimension m. We recall that the Nijenhuis torsion of J is the $(1,2)$ tensor field given by the formula

$$
N_{J}(X, Y)=[J X, J Y]+J^{2}[X, Y]-J[X, J Y]-J[J X, Y]
$$

If τ is a 1-form $\tau \circ J$ will mean the 1-form defined by $(\tau \circ J)(X)=\tau(J X)$.
For each $p \in M$ let $F(2, J)(p)$ be the vector subspace of all the 2 -forms β_{σ} defined by $\beta_{\sigma}(v, w)=\sigma(J v, w)-\sigma(v, J w)$ where $v, w \in T_{p} M$ and σ is a symmetric bilinear form on $T_{p} M$. Observe that $F\left(2, J^{k}\right)(p) \subset F(2, J)(p)$ for each $k \in \mathbb{N}$. Set

$$
F_{J}(p)=\frac{\Lambda^{2} T_{p}^{*} M}{F(2, J)(p)}
$$

Given $\alpha \in T_{p}^{*} M$ and a function f defined around p such that $d f(p)=\alpha$, the class of $d(d f \circ J)(p)$ on $F_{J}(p)$ only depends on α. That defines a linear map $P_{J}(p): T_{p}^{*} M \rightarrow F_{J}(p)$ or, from a global viewpoint, $P_{J}: T^{*} M \rightarrow F_{J}$ where F_{J} is the disjoint union of all $F_{J}(p)$.

Note that $P_{J}(p)=0$ if and only if there exist functions f_{1}, \ldots, f_{m}, defined around p, such that $\left(d f_{1} \wedge \ldots \wedge d f_{m}\right)(p) \neq 0$ and $d\left(d f_{j} \circ J\right)(p)=0, j=1, \ldots m$. When the characteristic polynomial of $J(p)$ equals its minimal polynomial, i.e. when $T_{p} M$ is cyclic, then $F(2, J)(p)=\Lambda^{2} T_{p}^{*} M$ and automatically $P_{J}(p)=0$. If $J^{2}=-$ Id a straightforward calculation shows that $N_{J}=0$ implies $P_{J}=0$. However J can be semisimple, $N_{J}=0$ and $P_{J} \neq 0$; e.g. on $\mathbb{R}^{m}, m \geq 2, J=e^{x_{1}}$ Id.

Let $\mathbb{K}_{N}[t]$ be the polynomial algebra in one variable over the ring of differentiable functions on a manifold N. Here differentiable means C^{∞} if N is a real manifold ($\mathbb{K}=$ \mathbb{R}) and holomorphic in the complex case $(\mathbb{K}=\mathbb{C})$. A polynomial $\varphi \in \mathbb{K}_{N}[t]$ is called irreducible if it is irreducible at each point of N. We shall say that $\varphi, \rho \in \mathbb{K}_{N}[t]$ are
relatively prime if they are at each point. Consider an endomorphism field H of a vector bundle $\pi: V \rightarrow N$, i.e. a cross section of $V \otimes V^{*}$. We will say that H has constant algebraic type if there exist relatively prime irreducible polynomials $\varphi_{1}, \ldots, \varphi_{\ell} \in \mathbb{K}_{N}[t]$ and natural numbers $a_{i j}, i=1, \ldots, r_{j}, j=1, \ldots, \ell$, such that for each $p \in N$ the family $\left\{\varphi_{j}^{a_{i j}}(p)\right\}, i=1, \ldots, r_{j}, j=1, \ldots, \ell$, is the family of elementary divisors of $H(p)$.

Suppose that J defines a G-structure, i.e. J has constant algebraic type on M and $\varphi_{1}, \ldots, \varphi_{\ell} \in \mathbb{K}[t]$. If its first-order structure function vanishes then $P_{J}=0$. Indeed, around each point $p \in M$ there exists a linear connection ∇, whose torsion at p vanishes, such that $\nabla J=0$. Let f_{1}, \ldots, f_{m} be normal coordinates with origin p; then $d\left(d f_{j} \circ J\right)(p)=0$ and $P_{J}(p)=0$. Conversely $N_{J}=0$ and $P_{J}=0$ imply that the first-order structure function equals zero. In a word, the invariants N_{J} and P_{J} can be seen as a generalization of the first-order structure function to the case where J does not define a G-structure.

Henceforth we shall suppose $N_{J}=0$. Set $g_{k}=\operatorname{trace}\left(J^{k}\right)$ and $E=\bigcap_{j=1}^{m} \operatorname{Ker} d g_{j}$. It is well known that $(k+1) d g_{k} \circ J=k d g_{k+1}$ and $J E \subset E$ (see [9]).

We say that a point $p \in M$ is regular if there exists an open neighbourhood A of p such that:
(1) J has constant algebraic type on A,
(2) E, restricted to A, is a vector subbundle of $T A$.
(3) The restriction of J to E has constant algebraic type on A.

The set of all regular points is a dense open set of M which we shall call the regular open set. Our local classification of J only refers to the regular open set.

Now suppose that on an open neighbourhood of a regular point p the characteristic polynomial φ of J is the product $\varphi_{1} \cdot \varphi_{2}$ of two monic relatively prime polynomials φ_{1} and φ_{2}. Then around p the structure (M, J) decomposes into a product of two similar structures $\left(M_{1}, J_{1}\right) \times\left(M_{2}, J_{2}\right)$, where φ_{1} is the characteristic polynomial of J_{1} (more exactly φ_{1} is the pull-back of the characteristic polynomial of J_{1}) and φ_{2} that of J_{2} (see [3] and [9]). Moreover $N_{J_{1}}=0, N_{J_{2}}=0$, and p_{1} and p_{2} are regular points where $p=\left(p_{1}, p_{2}\right)$. On the other hand $P_{J_{1}}=0$ and $P_{J_{2}}=0$ if $P_{J}=0$.

This splitting property reduces the classification to the case where the characteristic polynomial φ of J is a power of an irreducible one. Therefore we have only two possibilities: $\varphi=(t+f)^{m}$, or $\varphi=\left(t^{2}+f t+g\right)^{n}$ where $m=2 n$ and M is a real manifold.
2. The case $\varphi=(t+f)^{m}$. In this section, by associating to J a bihamiltonian structure on $T^{*} M$, we prove the following result:

Theorem 1. Consider a $(1,1)$ tensor field J such that $N_{J}=0$ and $P_{J}=0$. Suppose that its characteristic polynomial is $(t+f)^{m}$. Then around each regular point p there exist coordinates $\left(\left(x_{i}^{j}\right), y\right)$ with origin p, i.e. $p \equiv 0$, such that:
(a) $i=1, \ldots, r_{j}$ and $r_{1} \geq r_{2} \geq \ldots \geq r_{\ell}$. Moreover we also consider the case with no coordinates $\left(x_{i}^{j}\right)$, i.e. $\ell=0$, and the case with coordinates $\left(x_{i}^{j}\right)$ only.
(b) $J=(y+a) \mathrm{Id}+H+Y \otimes d y$ where

$$
H=\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}-1} \frac{\partial}{\partial x_{i+1}^{j}} \otimes d x_{i}^{j}\right) \quad \text { and } \quad Y=\frac{\partial}{\partial x_{1}^{1}}+\sum_{j=1}^{\ell}\left(\sum_{i=2}^{r_{j}}(1-i) x_{i}^{j} \frac{\partial}{\partial x_{i}^{j}}\right) .
$$

Remark. In the first special case $m=1$ and $J=(y+a)$ Id; in the second one $m=r_{1}+\ldots+r_{\ell}$ and $J=a \operatorname{Id}+\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}-1} \partial / \partial x_{i+1}^{j} \otimes d x_{i}^{j}\right)$. The elementary divisors of J determine its model completely. If there is no coordinate y, i.e. if J defines a G -structure, they are: $\left\{(t-a)^{r_{j}}\right\}, j=1, \ldots, \ell$. Otherwise they are: $(t-(y+a))^{r_{1}+1} ;\left\{(t-(y+a))^{r_{j}}\right\}$, $j=2, \ldots, \ell$.

Let $c_{J}: T^{*} M \rightarrow T^{*} M$ be the morphism of $T^{*} M$ defined by $c_{J}(\tau)=\tau \circ J$ and let ω be the Liouville symplectic form of $T^{*} M$. Set $\omega_{1}=\left(c_{J}\right)^{*} \omega$ where c_{J} is regarded as a differentiable map. Consider the $(1,1)$ tensor field J^{*}, on $T^{*} M$, defined by $\omega_{1}(X, Y)=$ $\omega\left(J^{*} X, Y\right)$. Then $N_{J^{*}}=0$, because $N_{J}=0$, and $\left\{\omega, \omega_{1}\right\}$ is a bihamiltonian structure (see [8]). If $\left(x_{1}, \ldots, x_{m}\right)$ are coordinates on $M,\left(x_{1}, \ldots, x_{m}, z_{1}, \ldots, z_{m}\right)$ the associated coordinates on $T^{*} M$, and $J=\sum_{i, j=1}^{m} f_{i j} \partial / \partial x_{i} \otimes d x_{j}$ then

$$
J^{*}=\sum_{i, j=1}^{m} f_{i j}\left(\frac{\partial}{\partial x_{i}} \otimes d x_{j}+\frac{\partial}{\partial z_{j}} \otimes d z_{i}\right)+\sum_{i, j, k=1}^{m} z_{i}\left(\frac{\partial f_{i j}}{\partial x_{k}}-\frac{\partial f_{i k}}{\partial x_{j}}\right) \frac{\partial}{\partial z_{j}} \otimes d x_{k} .
$$

Hence $\pi_{*} \circ J^{*}=J \circ \pi_{*}$.
Throughout the rest of this section J is as in theorem 1. By the local expression of J^{*} given above, its characteristic polynomial is $\varphi^{*}=(t+f \circ \pi)^{2 m}$. Since $P_{J}=0$, around each regular point $p \in M$ there exist coordinates $\left(x_{1}, \ldots, x_{m}\right)$ such that $d\left(d x_{i} \circ J\right)(p)=0$, $i=1, \ldots, m$. Even more if $d f(p) \neq 0$ [regularity implies $d f(p)=0$ iff f is constant near p] we can suppose $f=x_{1}$ because $g_{1}=-m f$ and $d g_{1} \circ J=\frac{d g_{2}}{2}$. But $d x_{i} \circ J=\sum_{j=1}^{m} f_{i j} d x_{j}$, then $\frac{\partial f_{i j}}{\partial x_{k}}(p)=\frac{\partial f_{i k}}{\partial x_{j}}(p)$ and

$$
J^{*}(p, z)=\sum_{i, j=1}^{m} f_{i j}(p)\left(\frac{\partial}{\partial x_{i}} \otimes d x_{j}+\frac{\partial}{\partial z_{j}} \otimes d z_{i}\right)(p, z) .
$$

Therefore the elementary divisors of $J(p)$ and $\left(J_{\mid E}\right)(p)$ determine those of $J^{*}(p, z)$ and $\left(J^{*}{ }_{\mid E^{*}}\right)(p, z)$ completely, and the pull-back of the regular open set of J is included in the regular open set of J^{*}. This is the role of the assumption $P_{J}=0$ while $N_{J}=0$ assures us that $\left\{\omega, \omega_{1}\right\}$ is bihamiltonian.

The zero cross section allows us to consider M as a submanifold of $T^{*} M$. Take a regular point $p \in M$ such that $d f(p)=0$, i.e. f constant near p. By theorem 3 of $[9]$ there exist coordinates $\left(y_{1}, \ldots, y_{2 m}\right)$ on an open neighbourhood A of p, with origin this point, on which ω and ω_{1} are written with constant coefficients and J^{*} as well. By rearranging coordinates $\left(y_{1}, \ldots, y_{2 m}\right)$ if necessary, we can suppose that $\left\{\frac{\partial}{\partial y_{1}}(p), \ldots, \frac{\partial}{\partial y_{m}}(p)\right\}$ spans $T_{p} M$ and $\left\{\frac{\partial}{\partial y_{m+1}}(p), \ldots, \frac{\partial}{\partial y_{2 m}}(p)\right\}$ spans the vertical subspace $\operatorname{Ker} \pi_{*}(p)$ at p. Both subspaces are J^{*}-invariant as the local expression of J^{*} shows. Set $A_{0}=\left\{y \in A: y_{m+1}=\right.$ $\left.\ldots=y_{2 m}=0\right\}$. As $\operatorname{rank}\left(\left(\pi_{\mid A_{0}}\right)(p)\right)=m$ we can choose an open neighbourhood B of p on A_{0} such that $\pi(B)$ is open and $\pi: B \rightarrow \pi(B)$ a diffeomorphism.

By construction $J^{*}\left(T A_{0}\right) \subset T A_{0}$. Let J^{\prime} be the restriction of J^{*} to A_{0}. The tensor
field J^{\prime} is written with constant coefficients on A_{0}. Moreover $\left(\pi_{\mid A_{0}}\right)_{*} \circ J^{\prime}=J \circ\left(\pi_{\mid A_{0}}\right)_{*}$ since $\pi_{*} \circ J^{*}=J \circ \pi_{*}$. Then J is written with constant coefficients on $\pi(B)$, which proves theorem 1 when $d f(p)=0$.

The proof of the other case is basically the same but we have to rearrange coordinates in a more sophisticated way. Let V be a real or complex vector space of dimension $2 n$. Consider $\alpha, \alpha_{1} \in \Lambda^{2} V^{*}$ such that $\alpha^{n} \neq 0$. Let \tilde{J} be the endomorphism of V given by $\alpha_{1}(v, w)=\alpha(\tilde{J} v, w)$. Suppose \tilde{J} nilpotent (see proposition 1 of [9] for the model of $\left.\left\{\alpha, \alpha_{1}\right\}\right)$. An n-dimensional vector subspace W of V is called bilagrangian if $\alpha(v, w)=$ $\alpha_{1}(v, w)=0$ for all $v, w \in W$; in other words W is lagrangian for α and $J W \subset W$. When W is bilagrangian and there exists another bilagrangian subspace W^{\prime} such that $V=W \oplus W^{\prime}$ we shall say that W is superlagrangian. A bilagrangian subspace W is superlagrangian if and only if the elementary divisors of $J_{\mid W}$ are half those of J; i.e. if $\left\{t^{r_{j}}\right\}, j=1, \ldots, \ell$, are the elementary divisors of $J_{\mid W}$ then $\left\{t^{r_{j}}, t^{r_{j}}\right\}, j=1, \ldots, \ell$, are those of J.

Lemma 1. Consider a basis $\left\{e_{i}^{j}\right\}, i=1, \ldots, 2 r_{j}, j=1, \ldots, \ell$, of V such that

$$
\alpha=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}} e_{2 k-1}^{* j} \wedge e_{2 k}^{* j}\right) \quad \text { and } \quad \alpha_{1}=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}-1} e_{2 k-1}^{* j} \wedge e_{2 k+2}^{* j}\right) .
$$

Let W be the vector subspace spanned by $\left\{e_{2 k-1}^{j}\right\}, k=1, \ldots, r_{j}, j=1, \ldots, \ell$. Then for each superlagrangian subspace W^{\prime} of V there exists $T \in G L(V)$ such that $T^{*} \alpha=\alpha$, $T^{*} \alpha_{1}=\alpha_{1}$ and $W \cap T W^{\prime}=\{0\}$. Moreover if $e_{2 r_{1}-1}^{1} \notin W^{\prime}$ we can choose T in such a way that $T e_{1}^{1}=e_{1}^{1}$.

Now take a regular point $p \in M$. Suppose $d f(p) \neq 0$. By theorem 3 of $[9]$ there exist coordinates $(x, y)=\left(\left(x_{i}^{j}\right), y_{1}, y_{2}\right), i=1, \ldots, 2 r_{j}$ and $r_{1} \geq r_{2} \geq \ldots \geq r_{\ell}$, with origin p, such that

$$
\omega=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}} d x_{2 k-1}^{j} \wedge d x_{2 k}^{j}\right)+d y_{1} \wedge d y_{2}
$$

and $\omega_{1}=\left(y_{2}+a\right) \omega+\tau+\alpha \wedge d y_{2}$ where

$$
\tau=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}-1} d x_{2 k-1}^{j} \wedge d x_{2 k+2}^{j}\right)
$$

and

$$
\alpha=d x_{2}^{1}+\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}}\left[(k+1 / 2) x_{2 k}^{j} d x_{2 k-1}^{j}+(k-1 / 2) x_{2 k-1}^{j} d x_{2 k}^{j}\right]\right) .
$$

Hence $J^{*}=\left(y_{2}+a\right) \operatorname{Id}+H^{*}+\frac{\partial}{\partial y_{1}} \otimes \alpha-Z \otimes d y_{2}$ where

$$
H^{*}=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}-1} \frac{\partial}{\partial x_{2 k+1}^{j}} \otimes d x_{2 k-1}^{j}+\sum_{k=2}^{r_{j}} \frac{\partial}{\partial x_{2 k-2}^{j}} \otimes d x_{2 k}^{j}\right)
$$

and

$$
Z=\frac{\partial}{\partial x_{1}^{1}}+\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}}\left[(k-1 / 2) x_{2 k-1}^{j} \frac{\partial}{\partial x_{2 k-1}^{j}}-(k+1 / 2) x_{2 k}^{j} \frac{\partial}{\partial x_{2 k}^{j}}\right]\right) .
$$

Lemma 2. The vector $\frac{\partial}{\partial x_{2 r_{1}-1}^{1}}(p)$ does not belong to the vertical subspace $\operatorname{Ker} \pi_{*}(p)$.
Proof. By the local expression of J^{*} in the coordinates $\left(x_{1}, \ldots, x_{m}, z_{1}, \ldots, z_{m}\right)$ given at the beginning of this section, $\operatorname{Ker} \pi_{*}(p)$ and $T_{p} M$ are $J^{*}(p)$-invariant, and $J_{\mid \operatorname{Ker} \pi_{*}(p)}$ and $J_{\mid T_{p} M}$ have the same elementary divisors. As $p \equiv 0$ in coordinates (x, y), the elementary divisors of $J^{*}(p)$ are $(t-a)^{r_{1}+1} ;(t-a)^{r_{1}+1} ;\left\{(t-a)^{r_{j}},(t-a)^{r_{j}}\right\}, j=2, \ldots, \ell$. Therefore there exists $v \in T_{p} M$ spanning a cyclic subspace U of dimension $r_{1}+1$ such that $U \cap \operatorname{Ker} \pi_{*}(p)=\{0\}$.

Moreover $v=a \frac{\partial}{\partial y_{2}}(p)+b \frac{\partial}{\partial x_{2 r_{1}}^{1}}(p)+v_{1}$ where $\left(J^{*}(p)-a \mathrm{Id}\right)^{r_{1}} v_{1}=0$.
By construction

$$
\left(J^{*}(p)-a \mathrm{Id}\right)^{r_{1}} v=a \frac{\partial}{\partial x_{2 r_{1}-1}^{1}}(p)+b \frac{\partial}{\partial y_{1}}(p)
$$

does not belong to $\operatorname{Ker} \pi_{*}(p)$. As $\omega\left(\partial / \partial y_{1},\right)=d y_{2}=-d(f \circ \pi)$ and $\omega=\sum_{j=1}^{m} d z_{j} \wedge d x_{j}$ in coordinates $\left(x_{1}, \ldots, x_{m}, z_{1}, \ldots, z_{m}\right)$ of $T^{*} M$, the vector $\frac{\partial}{\partial y_{1}}(p)$ belongs to $\operatorname{Ker} \pi_{*}(p)$. So $\frac{\partial}{\partial x_{2 r_{1}-1}^{1}}(p) \notin \operatorname{Ker} \pi_{*}(p)$.

$$
\text { Set } \omega^{\prime}=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}} d x_{2 k-1}^{j} \wedge d x_{2 k}^{j}\right)
$$

Lemma 3. The vector subspace ($\left.\operatorname{Ker} \pi_{*} \cap \operatorname{Ker} d y_{1} \cap \operatorname{Ker} d y_{2}\right)(p)$, regarded as a subspace of $T_{0} \mathbb{K}^{2 m-2}$, is superlagrangian with respect to $\left\{\omega^{\prime}(0), \tau(0)\right\}$.

Proof. As $f \circ \pi=-\left(y_{2}+a\right), \operatorname{Ker} \pi_{*}(p) \subset \operatorname{Ker} d y_{2}(p)=\operatorname{Ker} d(f \circ \pi)(p)$. Now note that $\left(\left(J^{*}-a \mathrm{Id}\right)^{r_{1}} \operatorname{Ker} \pi_{*}\right)(p)$ is a 1-dimensional subspace of $\operatorname{Ker} \pi_{*}(p) \cap \mathbb{K}\left\{\frac{\partial}{\partial x_{2 r_{1}-1}^{1}}(p), \frac{\partial}{\partial y_{1}}(p)\right\}$ (here $\mathbb{K}\left\{v_{1}, \ldots, v_{s}\right\}$ is the space spanned by $\left.\left\{v_{1}, \ldots, v_{s}\right\}\right)$. So $\left(\left(J^{*}-a \operatorname{Id}\right)^{r_{1}} \operatorname{Ker} \pi_{*}\right)(p)=$ $\mathbb{K}\left\{\frac{\partial}{\partial y_{1}}(p)\right\}$ since $\frac{\partial}{\partial x_{2 r_{1}-1}^{1}}(p) \notin \operatorname{Ker} \pi_{*}(p)$.

On the other hand $T_{0} \mathbb{K}^{2 m-2}$ can be seen as the quotient space $\operatorname{Ker} d y_{2}(p) / \mathbb{K}\left\{\frac{\partial}{\partial y_{1}}(p)\right\}$, which identifies $\left(\operatorname{Ker} \pi_{*} \cap \operatorname{Ker} d y_{1} \cap \operatorname{Ker} d y_{2}\right)(p)$ with $\operatorname{Ker} \pi_{*}(p) / \mathbb{K}\left\{\frac{\partial}{\partial y_{1}}(p)\right\}$, and $\left(H^{*}+\right.$ $a \mathrm{Id})(0)$ as the endomorphism induced by $J^{*}{ }_{\mid \operatorname{Ker} d y_{2}(p)}$. Therefore the elementary divisors of $H^{*}{ }_{\mid\left(\operatorname{Ker} \pi_{*} \cap \operatorname{Ker} d y_{1} \cap \operatorname{Ker} d y_{2}\right)(p)}$ are $\left\{t^{r_{j}}\right\}, j=1, \ldots, \ell$.

Lemma 4. Let $\left\{e_{i}^{j}\right\}, i=1, \ldots, 2 r_{j}, j=1, \ldots, \ell$, be the canonical basis of $\mathbb{K}^{2 m-2}=$ $\mathbb{K}^{2 r_{1}} \times \ldots \times \mathbb{K}^{2 r_{\ell}} . \operatorname{Set} \alpha=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}} e_{2 k-1}^{* j} \wedge e_{2 k}^{* j}\right)$ and $\alpha_{1}=\sum_{j=1}^{\ell}\left(\sum_{k=1}^{r_{j}-1} e_{2 k-1}^{* j} \wedge e_{2 k+2}^{* j}\right)$. Given $T \in G L\left(\mathbb{K}^{2 m-2}\right)$ if $T e_{1}^{1}=e_{1}^{1} ; T^{*} \alpha=\alpha$ and $T^{*} \alpha_{1}=\alpha_{1}$, there exists a germ of diffeomorphism $\tilde{G}:\left(\mathbf{K}^{2 m}, 0\right) \rightarrow\left(\mathbf{K}^{2 m}, 0\right)$ such that $\tilde{G}(x, y)=(G(x), y) ; \tilde{G}^{*} \omega=\omega$; $\tilde{G}^{*} \omega_{1}=\omega_{1}$ and $G_{*}(0)=T$.

Proof. We will adapt to our case the proof of proposition 3 of [9]. Consider the map $G_{T}: \mathbb{K}^{2 m} \rightarrow \mathbb{K}^{2 m}$ given by $G_{T}(x, y)=(T x, y)$. Then $G_{T}^{*} \omega=\omega$ and $G_{T}^{*} \omega_{1}=\omega_{1}+d g \wedge d y_{2}$ where g is a quadratic function such that $d\left(d g \circ H^{*}\right)=0$. Indeed G_{T} preserves $d x_{2}^{1}(0)=$ $\omega\left(\frac{\partial}{\partial x_{1}^{1}},\right)(0)$ and H^{*}, and $d\left(\alpha \circ H^{*}\right)=-2 \tau$.

Let D and \mathbb{L} be the exterior derivative and the Lie derivative with respect to the variables x only. We begin searching for a vector field $X_{t}=\sum_{j=1}^{\ell}\left(\sum_{i=1}^{2 r_{j}} \varphi_{i}^{j}(x, t) \frac{\partial}{\partial x_{i}^{j}}\right)$, defined on an open neighbourhood of the compact $\{0\} \times[0,1] \subset \mathbb{K}^{2 m-2} \times \mathbb{K}$, such that:
(1) $\mathbb{L}_{X_{t}} \omega^{\prime}=\mathbb{L}_{X_{t}} \tau=0$.
(2) $\mathbb{L}_{X_{t}}(\alpha+t D g)=D g$ (remark that $\left.d g=D g\right)$.
(3) For each $i=1, \ldots, 2 r_{j}$ and $j=1, \ldots, \ell, \varphi_{i}^{j}$ and $D \varphi_{i}^{j}$ vanish on $\{0\} \times[0,1]$.

Consider the vector field Z_{t} given by $\omega^{\prime}\left(Z_{t},\right)=\alpha+t D g$. Take a function $f(x, t)$, defined around $\{0\} \times[0,1]$, such that:
(I) $Z_{t} f=-f-g$.
(II) $D\left(D f \circ H^{*}\right)=0$.
(III) For all $i=1, \ldots, 2 r_{j}, j=1, \ldots, \ell, k=1, \ldots, 2 r_{s}$ and $s=1, \ldots, \ell$, the partial derivatives $\partial f / \partial x_{i}^{j}$ and $\partial^{2} f / \partial x_{k}^{s} \partial x_{i}^{j}$ vanish on $\{0\} \times[0,1]$.

Let X_{t} the vector field defined by $\omega^{\prime}\left(X_{t},\right)=D f$. Then X_{t} satisfies conditions (1), (2) and (3). By proposition 1.A (see the appendix) this kind of functions exists because g is quadratic, $D\left(D g \circ H^{*}\right)=0, Z_{t}(0)=\partial / \partial x_{1}^{1}$, and $\mathbb{L}_{Z_{t}} H^{*}=-H^{*}$ since $\mathbb{L}_{Z_{t}} \omega^{\prime}=$ $D(\alpha+t D g)=-\omega^{\prime}$ and $\mathbb{L}_{Z_{t}} \tau=D\left(\alpha \circ H^{*}+t D g \circ H^{*}\right)=-2 \tau$.

By integrating the vector field $-X_{t}$ we obtain a germ of diffeomorphism $F:\left(\mathbb{K}^{2 m-2}, 0\right)$ $\rightarrow\left(\mathbb{K}^{2 m-2}, 0\right)$ such that $F^{*} \omega^{\prime}=\omega^{\prime} ; F^{*} \tau=\tau ; F^{*}(\alpha+D g)=\alpha$ and $F_{*}(0)=$ Id. Now set $\tilde{G}=\tilde{F} \circ G_{T}$ where $\tilde{F}(x, y)=(F(x), y)$.

Let W be the subspace of $T_{p} T^{*} M$ spanned by $\left\{\frac{\partial}{\partial x_{2 k-1}^{j}}(p)\right\}, k=1, \ldots, r_{j}, j=$ $1, \ldots, \ell$. By lemmas $1,2,3$ and 4 we can suppose, without loss of generality, $W \cap$ $\left(\operatorname{Ker} \pi_{*} \cap d y_{1} \cap d y_{2}\right)(p)=\{0\}$, which implies $\left(W \oplus \mathbb{K}\left\{\frac{\partial}{\partial y_{2}}(p)\right\}\right) \cap \operatorname{Ker} \pi_{*}(p)=\{0\}$. Indeed $\operatorname{dim}\left(\operatorname{Ker} \pi_{*} \cap d y_{1} \cap d y_{2}\right)(p)=m-1$ (lemma 3) and $\frac{\partial}{\partial y_{1}}(p) \in \operatorname{Ker} \pi_{*}(p)$ (lemma 2, proof); then $\operatorname{Ker} \pi_{*}(p)=\mathbb{K}\left\{\frac{\partial}{\partial y_{1}}(p)\right\} \oplus\left(\operatorname{Ker} \pi_{*} \cap d y_{1} \cap d y_{2}\right)(p)$.

Set $A_{0}=\left\{(x, y) \in A: x_{2 k}^{j}=y_{1}=0, k=1, \ldots, r_{j}, j=1, \ldots, \ell\right\}$ where A is the domain of coordinates (x, y). Then $J^{*}\left(T A_{0}\right) \subset T A_{0}$ and $T_{p} A_{0} \oplus \operatorname{Ker} \pi_{*}(p)=T_{p} T^{*} M$. Finally, by reasoning as in the case $d f(p)=0$ we can state:

Proposition 1. Under the assumptions of theorem 1 , if $d f(p) \neq 0$ then there exist coordinates $\left(\left(x_{i}^{j}\right), y\right)$ as in this theorem such that $J=(y+a) \operatorname{Id}+H+Y \otimes d y$ where

$$
H=\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}-1} \frac{\partial}{\partial x_{i+1}^{j}} \otimes d x_{i}^{j}\right) \quad \text { and } \quad Y=\frac{\partial}{\partial x_{1}^{1}}+\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}}(1 / 2-i) x_{i}^{j} \frac{\partial}{\partial x_{i}^{j}}\right) .
$$

When $d f(p) \neq 0$, proposition 1 shows that the local model of J only depends on its elementary divisors.

Lemma 5. Consider on $\mathbb{K}^{m}=\mathbb{K}^{r_{1}} \times \ldots \times \mathbb{K}^{r_{\ell}} \times \mathbb{K}$, with $r_{1} \geq \ldots \geq r_{\ell}$ if $\ell>0$, coordinates $\left(\left(x_{i}^{j}\right), y\right)$. Let \mathbb{L} be the Lie derivative with respect to variables $\left(x_{i}^{j}\right)$ only. Set $J=(y+a) \mathrm{Id}+H+Y \otimes d y$ where Y is a vector field defined around the origin such that $d y(Y)=0$ and $H=\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}-1} \frac{\partial}{\partial x_{i+1}^{j}} \otimes d x_{i}^{j}\right)$. If $\mathbb{L}_{Y} H=H$ and $H^{r_{1}-1} Y(0) \neq 0$, then $N_{J}=0$ and close to the origin $P_{J}=0$ and J has constant algebraic type.

The elementary divisors of J, near the origin, are the same both for proposition 1 and lemma 5: $(t-(y+a))^{r_{1}+1} ;\left\{(t-(y+a))^{r_{j}}\right\}, j=2, \ldots, \ell$. So their models are equivalent. We finish the proof of theorem 1 by taking

$$
Y=\frac{\partial}{\partial x_{1}^{1}}+\sum_{j=1}^{\ell}\left(\sum_{i=2}^{r_{j}}(1-i) x_{i}^{j} \frac{\partial}{\partial x_{i}^{j}}\right)
$$

The model announced by the author in a lecture at the Banach Center is obtained by setting

$$
Y=\frac{\partial}{\partial x_{1}^{1}}-\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}} i x_{i}^{j} \frac{\partial}{\partial x_{i}^{j}}\right)
$$

Another interesting model is given by taking

$$
Y=\frac{\partial}{\partial x_{1}^{1}}+\sum_{j=1}^{\ell}\left(\sum_{i=1}^{r_{j}}\left(r_{j}+1-i\right) x_{i}^{j} \frac{\partial}{\partial x_{i}^{j}}\right)
$$

For this model the forms $d y \circ J=(y+a) d y$ and $d x_{r_{j}}^{j} \circ J=(y+a) d x_{r_{j}}^{j}+x_{r_{j}}^{j} d y+d x_{r_{j}-1}^{j}$ are closed. As $N_{J}=0$ all the forms $d x_{r_{j}}^{j} \circ J^{k}$ are closed too. Therefore if the characteristic polynomial of J is $(t+f)^{m}$, for each regular point p and for all $\lambda_{0} \in T_{p}^{*} M$ there exists a closed 1-form λ, defined near p, such that $\lambda(p)=\lambda_{0}$ and $d(\lambda \circ J)=0$; usually λ is called a conservation law. In other words, the equation $d(d f \circ J)=0$ has enough local solutions on the regular open set.
3. The case $\varphi=\left(t^{2}+f t+g\right)^{n}$. Since our problem is local we can suppose M connected and all of its points regular. Set $J_{0}=2\left(4 g-f^{2}\right)^{-\frac{1}{2}} J+f\left(4 g-f^{2}\right)^{-\frac{1}{2}}$ Id which makes sense because $f^{2}-4 g<0$. By construction J_{0} defines a G-structure and $\left(J_{0}^{2}+\mathrm{Id}\right)^{n}=0$. Let H be the semisimple part of J_{0}. Then H is a complex structure, J a holomorphic tensor field and $(t+h)^{n}$ its complex characteristic polynomial, where $h=\frac{1}{2}\left(f-i\left(4 g-f^{2}\right)^{\frac{1}{2}}\right)$ is holomorphic.

Indeed, consider $\left\{\omega, \omega_{1}\right\}$ and J^{*} on $T^{*} M$ as in section 2. Now the characteristic polynomial of J^{*} is $\varphi^{*}=\left(t^{2}+(f \circ \pi) t+(g \circ \pi)\right)^{2 n}$. Let A be the regular open set of J^{*}. Set $J_{0}^{*}=2\left(\left(4 g-f^{2}\right)^{-\frac{1}{2}} \circ \pi\right) J^{*}+\left(\left(f\left(4 g-f^{2}\right)^{-\frac{1}{2}}\right) \circ \pi\right)$ Id. On each connected component of A the tensor field J_{0}^{*} defines a G-structure; moreover $\left(\left(J_{0}^{*}\right)^{2}+\mathrm{Id}\right)^{2 n}=0$. Let H^{*} be the semisimple part of J. In section 6 of [9] we showed that H^{*} is a complex structure, J^{*} holomorphic and $\left(t+h^{*}\right)^{2 n}$ its complex characteristic polynomial, where $h^{*}=\frac{1}{2}\left(f \circ \pi-i\left(4 g-f^{2}\right)^{\frac{1}{2}} \circ \pi\right)$ is a holomorphic function. On the other hand $\pi_{*} \circ J_{0}^{*}=J_{0} \circ \pi_{*}$ and $\pi_{*} \circ H^{*}=H \circ \pi_{*}$ because $\pi_{*} \circ J^{*}=J \circ \pi_{*}$. So holomorphy holds on $\pi(A)$, and on M as well since A is dense on $T^{*} M$ and $\pi(A)$ on M.

The complex regular set of J is M (see section 6 of [9] again).
Suppose $P_{J}=0$. Let $f=f_{1}+i f_{2}$ a holomorphic function. Then $d(d f \circ J)=d\left(d f_{1} \circ\right.$ $J)+i\left(d\left(d f_{2} \circ J\right)\right)$ is a holomorphic 2-form, so $d\left(d f_{1} \circ J\right)(H X, Y)=d\left(d f_{1} \circ J\right)(X, H Y)$ and $d\left(d f_{2} \circ J\right)(X, Y)=-d\left(d f_{1} \circ J\right)(H X, Y)$. As $P_{J}(p)=0$ from the real viewpoint, there exists a real symmetric bilinear form σ on $T_{p} M$ such that $d\left(d f_{1} \circ J\right)(p)(v, w)=$ $\sigma(J(p) v, w)-\sigma(v, J(p) w)$. Set $\sigma_{1}(v, w)=\frac{1}{2}(\sigma(v, w)-\sigma(H(p) v, H(p) w))$ and $\tilde{\sigma}(v, w)=$ $\sigma_{1}(v, w)-i \sigma_{1}(H(p) v, w)$. As J and H commute $\tilde{\sigma}$ is a complex symmetric bilinear
form and $d(d f \circ J)(p)(v, w)=\tilde{\sigma}(J(p) v, w)-\tilde{\sigma}(v, J(p) w)$. In other words $P_{J}=0$ from the complex viewpoint. So to find a model of J, regard M as a complex manifold of dimension n and apply theorem 1 . Then forget the complex structure and regard J as a real tensor field.

Theorem 2. Suppose $N_{J}=0$ and $P_{J}=0$. Then the local model of J around each regular point is a finite product of models chosen among:
(a) For a complex manifold, those of theorem 1.
(b) For a real manifold, those of theorem 1 and those obtained considering the complex models of that theorem from the real viewpoint.

The local model of J is completely determined by its elementary divisors.
Remark. Suppose $N_{J}=0$. Let p be a regular point. By theorem 2 there exist enough solutions to the equation $d(d f \circ J)=0$, i.e. conservation laws, near p iff P_{J} vanishes around this point. Nevertheless the existence of this kind of functions does not imply $N_{J}=0$; e.g. on \mathbb{K}^{2} consider $J=e^{x_{2}} \operatorname{Id}+\partial / \partial x_{2} \otimes d x_{1} ; f_{1}=x_{1}-e^{x_{2}}$ and $f_{2}=x_{2}$.

Appendix. Consider an open set A of \mathbb{K}^{n} endowed with a nilpotent constant coefficient $(1,1)$ tensor field H. Let B be a differentiable manifold (the parameter space). Elements of $A \times B$ will be denoted by (x, y) while by $D, D^{(2)}$ and \mathbb{L} we mean the exterior derivative, the second-order differential and the Lie derivative, all of them with respect to the variables $\left(x_{1}, \ldots, x_{n}\right)$ only. Let Z be a vector field on A depending on the parameter $y \in B$. We say that Z is generic at a point (x, y) if the dimension of the cyclic subspace spanned by $Z(x, y)$ equals the degree of the minimal polynomial of H.

Proposition 1.A. Suppose given $p \in A$, a compact set $K \subset B$, a scalar $a \in \mathbb{K}$ and a function $g: A \times B \rightarrow \mathbb{K}$, such that: (1) $\mathbb{L}_{Z} H=c H$ where $c \in \mathbb{K}$; (2) Z is generic on $\{p\} \times K ;(3) D(D g \circ H)=0, g(\{p\} \times B)=0$ and $D g(\{p\} \times B)=0$.

Then there exist an open neighbourhood U of p, an open set $V \supset K$ and a function $f: U \times V \rightarrow \mathbb{K}$ such that: (I) $Z f=a f+g$; (II) $D(D f \circ H)=0$; (III) $D f(\{p\} \times V)=0$ and $D^{(2)} f(\{p\} \times V)=0$. Moreover if $D g\left(\operatorname{Ker} H^{r}\right)=0$ we can choose f in such a way that $D f\left(\operatorname{Ker} H^{r}\right)=0$.

The proof of this result is essentially that of proposition 1.A of [9]. Before lemma 2.A no change is needed at all. This last result should be replaced with:

Lemma 2^{\prime}.A. Consider a function $h_{1}: A \times B \rightarrow \mathbb{K}$. Suppose $D h_{1}(\operatorname{Ker} H)=0$ and $D\left(D h_{1} \circ H\right)=0$. Then there exist an open neighbourhood U of p and a function h : $U \times B \rightarrow \mathbb{K}$ such that: (1) $D h \circ H=D h_{1} ;(2) h(\{p\} \times B)=0$; (3) $D h(p, y)=0$ for all $y \in B$ such that $D h_{1}(p, y)=0 ; D^{(2)} h(p, y)=0$ for each $y \in B$ such that $D h_{1}(p, y)=0$ and $D^{(2)} h_{1}(p, y)=0$.

Proof. There exist a vector subbundle E of $T A$ and a morphism $\rho: T A \rightarrow T A$ such that $T A=E \oplus \operatorname{Ker} H$ and $(\rho \circ H)_{\mid E}=$ Id. Set $\alpha=D h_{1} \circ \rho$. Obviously $\alpha \circ H=D h_{1}$. Let C be the set of all $y \in B$ such that $D h_{1}(p, y)=0$ and $D^{(2)} h_{1}(p, y)=0$. Suppose $\alpha=\sum_{j=1}^{n} g_{j} d x_{j}$. Then $g_{j}(\{p\} \times C)=0$ and $D g_{j}(\{p\} \times C)=0, j=1, \ldots, n$.

By rearranging coordinates $\left(x_{1}, \ldots, x_{n}\right)$ we can suppose the foliation Ker H given by $d x_{1}=\ldots=d x_{k}=0$. From lemma 1.A, $D \alpha(\operatorname{Im} H, \operatorname{Im} H)=0$ so $D \alpha=\sum_{j=1}^{k}\left(\sum_{i=1}^{n} f_{i j} d x_{i}\right)$ $\wedge d x_{j}$ where each $f_{i j}$ equals zero on $\{p\} \times C$.

Let $U=\prod_{i=1}^{n} U_{i}$ be an open neighbourhood of p, product of intervals $(\mathbb{K}=\mathbb{R})$ or disks $(\mathbb{K}=\mathbb{C})$. As $D \alpha$ is closed, there exist functions $\tilde{f}_{j}: U \times B \rightarrow \mathbb{K}$ such that $\partial \tilde{f}_{j} / \partial x_{i}=f_{i j}$ and $\tilde{f}_{j}\left(U_{1} \times \ldots \times U_{k} \times\left\{\left(p_{k+1}, \ldots, p_{n}\right)\right\} \times B\right)=0, i=k+1, \ldots, n, j=1, \ldots, k$, where $p=\left(p_{1}, \ldots, p_{n}\right)$. Therefore $\tilde{f}_{j}(\{p\} \times B)=0$ and $D \tilde{f}_{j}(\{p\} \times C)=0$.

Set $\beta=D \alpha-D\left(\sum_{j=1}^{k} \tilde{f}_{j} d x_{j}\right)=\sum_{i, \ell=1}^{k} e_{i \ell} d x_{i} \wedge d x_{\ell}$. As $D \beta=0$, the functions $e_{i \ell}$ do not depend on $\left(x_{k+1}, \ldots, x_{n}\right)$. By construction $e_{i \ell}(\{p\} \times C)=0$.

Now we can find functions $e_{2}, \ldots, e_{k}: U \times B \rightarrow \mathbb{K}$, which do not depend on $\left(x_{k+1}, \ldots\right.$ $\left.\ldots, x_{n}\right)$, such that $\partial e_{j} / \partial x_{1}=e_{1 j}$ and $e_{j}\left(\left\{p_{1}\right\} \times U_{2} \times \ldots \times U_{n} \times B\right)=0, j=2, \ldots, k$. So $e_{j}(\{p\} \times B)=0$ and $D e_{j}(\{p\} \times C)=0$. Set $\beta^{\prime}=\sum_{j=2}^{k} e_{j} d x_{j}$. Then $\beta_{1}=\beta-D \beta^{\prime}$ is closed and $\beta_{1}(\{p\} \times C)=0$. Moreover β_{1} only involves the variables $\left(x_{2}, \ldots, x_{k}\right)$ and differentials $d x_{2}, \ldots, d x_{k}$. By induction we construct $\tilde{\beta}=\sum_{j=1}^{k} \tilde{e}_{j} d x_{j}$ such that $D \tilde{\beta}=\beta$, $\tilde{e}_{j}(\{p\} \times B)=0$ and $D \tilde{e}_{j}(\{p\} \times C)=\underset{\sim}{0}, j=1, \ldots, k$.

Set $\alpha_{1}=\sum_{j=1}^{k} f_{j} d x_{j}$ where $f_{j}=\tilde{f}_{j}+\tilde{e}_{j}$. Again $f_{j}(\{p\} \times B)=0$ and $D f_{j}(\{p\} \times C)=0$, $j=1, \ldots, k$. By construction $\alpha_{1} \circ H=0$ and $D\left(\alpha-\alpha_{1}\right)=0$. Therefore there exists a function $h: U \times B \rightarrow \mathbb{K}$ such that $h(\{p\} \times B)=0$ and $D h=\alpha-\alpha_{1}$. Now $D h \circ H=$ $\alpha \circ H=D h_{1}$ and $D h(p, y)=\alpha(p, y)=\left(D h_{1} \circ \rho\right)(p, y)$, which proves (1), (2) and (3). Finally, note that $D h=\sum_{j=1}^{k}\left(g_{j}-f_{j}\right) d x_{j}+\sum_{j=k+1}^{n} g_{j} d x_{j}$ so $D^{(2)} h(\{p\} \times C)=0$.

Beyond this point both propositions have the same proof (lemma 2^{\prime}.A assures us that $\left.D g_{0}(\{p\} \times B)=0\right)$.

References

[1] R. Brouzet, P. Molino et F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. 4 (3) (1993), 269-296.
[2] P. Cabau, J. Grifone et M. Mehdi, Existence de lois de conservation dans le cas cyclique, Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), 789-803.
[3] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I, Indag. Math. 18 (1956), 338-359.
[4] J. Grifone and M. Mehdi, Existence of conservation laws and characterization of recursion operators for completely integrable systems, preprint, Univ. Toulouse II, 1993.
[5] J. Lehmann-Lejeune, Intégrabilité des G-structures définies par une 1-forme 0-déformable à valeurs dans le fibré tangent, Ann. Inst. Fourier (Grenoble) 16 (1966), 329-387.
[6] H. Osborn, The existence of conservation laws, I, Ann. of Math. 69 (1959), 105-118.
[7] -, Les lois de conservation, Ann. Inst. Fourier (Grenoble) 14 (1964), 71-82.
[8] F. J. Turiel, Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris Sér. I 308 (1992), 1085-1088.
[9] -, Classification locale simultanée de deux formes symplectiques compatibles, Manuscripta Math. 82 (1994), 349-362.

[^0]: 1991 Mathematics Subject Classification: Primary 53C15; Secondary 58H05, 35N99.
 Key words and phrases: $(1,1)$ tensor field, bihamiltonian structure.
 Supported by DGICYT under grant PB91-0412.
 The paper is in final form and no version of it will be published elsewhere.

