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Abstract. The behaviour of a holomorphic map germ at a critical point has always been
an important part of the singularity theory. It is generally known (cf. [5]) that we can associate
an integer invariant—called the multiplicity—to each isolated critical point of a holomorphic
function of many variables. Several years later it was noticed that similar invariants exist for
function germs defined on isolated hypersurface singularities (see [1]). The present paper aims to
show a simple approach to critical points of maps defined on the Ak-type singular hypersurfaces.
After some changes it can probably be adopted to other isolated hypersurface singularities.
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1. Let On denote the ring of germs of holomorphic functions f : (Cn, 0)→ (C, 0).

Definition. The multiplicity of the critical point of f at zero is µ(f) := dimCOn/Jf ,
where Jf = 〈∂f/∂z1, . . . , ∂f/∂zn〉On

is the Jacobian ideal of f .

The number µ(f) is also called the Milnor number of f , because it was first introduced
by J. Milnor in 1968 [4].

Proposition. Let f ∈ On have an isolated critical point at zero and let f(0) = 0.
Then µ(f) is finite and the preimage of each sufficiently small non-zero complex number
intersects a small open disk in a smooth manifold , which is homotopy equivalent to a
bouquet of µ(f) (n− 1)-dimensional spheres.

(∃ε, δ ∈ R+)(∀t ∈ C) 0 < |t| < ε⇒ f−1(t) ∩Dδ ∼
∨
µ(f)

Sn−1.
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For a proof the reader is referred to Milnor’s original article [4] as well as [3] and
[5]—a survey article dealing with various definitions of multiplicity.

2. Let Ωi (1 ≤ i ≤ n) denote the On-module of germs of holomorphic i-forms at 0.
The explicit expressions for the most relevant cases: i = n− 1 and i = n are

Ωn = {g · dz1 ∧ . . . ∧ dzn | g ∈ On}
and

Ωn−1 =
{ n∑
k=1

gk · dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn
∣∣∣ gk ∈ On},

where the hat over dzk means “skip”. Moreover, for all f ∈ On we have

df =
n∑
i=1

∂f

∂zi
· dzi.

Hence

df ∧
( n∑
k=1

gk · dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn
)

=
( n∑
k=1

(−1)k−1gk ·
∂f

∂zk

)
· dz1 ∧ . . . ∧ dzn

and denoting df ∧ Ωn−1 := {df ∧ ω | ω ∈ Ωn−1}, we obtain immediately

Ωn/(df ∧ Ωn−1) ∼= On/Jf and dimC Ωn/(df ∧ Ωn−1) = µ(f).

Example 1. We shall find the Milnor number of the function f : C2 → C given by

f(z) = ze11 + ze22 ,

where e1, e2 ≥ 2. Computing the Jacobian ideal gives us at once

µ(f) = e1e2 − e1 − e2 + 1 = (e1 − 1)(e2 − 1),

but the result could also be obtained by looking at fibres. Our function is quasi-homoge-
neous, hence f−1(t1) is homeomorphic to f−1(t2), for all t1 6= 0 6= t2. We can therefore
consider the fibre F := f−1(1). Let ξ1 = exp(2πi/e1), ξ2 = exp(2πi/e2) and put

Pr = (ξr1 , 0) for r = 0, . . . , e1 − 1,

Qs = (0, ξs2) for s = 0, . . . , e2 − 1.

Given r and s, there is an arc γr,s ⊂ F between Pr and Qs described by

γr,s : [0, 1]→ F, t 7→ ((1− te2)1/e1 · ξr1 , t · ξs2).

It can be shown that the graph G :=
⋃
r,s γr,s is a retract of F (see [5], p. 434). Moreover

G is homotopy equivalent to a bouquet of (e1 − 1)(e2 − 1) circles.

3. For a fixed integer k > 1 we shall consider the following singular hypersurface

X := {(z1, z2, z3) ∈ C3 | zk1 = z2z3}.
Denote also X ′ := X\{(0, 0, 0)}.
Proposition. X ′ is a two-dimensional complex manifold.

P r o o f. Observe that X ′ = U1 ∪ U2, where

U1 = {(z1, z2, z3) ∈ X | z2 6= 0}, U2 = {(z1, z2, z3) ∈ X | z3 6= 0}.
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Both sets Ui are homeomorphic to C× (C\{0}); the homeomorphisms can be

h1 : U1 → C× (C\{0}), (z1, z2, z3) 7→ (z1, z2),

h2 : U2 → C× (C\{0}), (z1, z2, z3) 7→ (z1, z3).

Moreover, the transition function

h2 ◦ h−1
1 : (C\{0})2 → (C\{0})2, (s, t) 7→ (s, sk/t),

is holomorphic.

Proposition. The mapping m : C2 → X defined by m(s, t) := (st, sk, tk) induces a
holomorphic covering m′ : C2\{(0, 0)} → X ′. The preimage of any x′ ∈ X ′ consists of k
points of the form (ξis, ξ−it), where 0 ≤ j ≤ k − 1 and ξ = exp(2πi/k).

Corollary. Every holomorphic function f ′ : X ′ → C comes from a holomorphic
function f̃ : C2\{(0, 0)} → C satisfying f̃(ξs, ξ−1t) = f̃(s, t).

The following diagram is then commutative
C2\{(0, 0)}

m ↓ ↘ f̃

X ′
f ′−→ C

A well-known theorem of Hartogs implies that every holomorphic function defined on
C2\{(0, 0)} extends to C2. Hence the preceding considerations result in the following

Proposition. If f : X → C is a continuous function such that f |X′ is holomorphic
then there exists a holomorphic function f̃ : C2 → C making the following diagram
commutative:

C2

m ↓ ↘ f̃

X
f−→ C

f̃ is invariant under the action of the covering group, i.e.

(1) f̃(ξs, ξ−1t) = f̃(s, t).

On the other hand, if f̃ =
∑
apqs

ptq (1) is equivalent to

apq = 0 if p 6≡ q (mod k).

Therefore if f̃ : C2 → C satisfies (1) then all non-zero components apqsptq can be written
as a · (sk)m1 · (st)m2 or a · (tk)m1 · (st)m2 . In this manner f̃ induces a function f : X → C.
If f̃ is holomorphic then f is continuous on X and holomorphic on X ′. In the sequel we
shall sometimes identify corresponding functions f : X → C and f̃ : C2 → C.

4. Let f : X → C and f̃ : C2 → C be corresponding functions in the sense of the
above diagram. If f((0, 0, 0)) = 0 then for t 6= 0

m|f̃−1(t) : f̃−1(t)→ f−1(t)

is an unramified covering of degree k. If we define Ft as we have above for functions
C2 → C then we can easily see that

(2) χ(F̃t) = k · χ(Ft),
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where χ denotes the Euler characteristic.

Theorem. If 0 is an isolated critical point of f̃ then for all sufficiently small t 6= 0

Ft ∼
∨

µX(f)

S1,

where

µX(f) =
µ(f̃)− 1

k
+ 1.

P r o o f. The fibre F̃t is a Riemann surface. Viewed as a subset of CP2 it becomes a
compact Riemann surface (a sphere with handles) with a finite number of disks removed.
Using properties of coverings we see that Ft is also a surface of this type, hence it is
homotopy equivalent to a bouquet of a certain number of circles. We know that

F̃t ∼
∨
µ(f̃)

S1 and χ(F̃t) = µ(f̃)− 1.

Equation (2) gives now the required result.

Example 2. Consider f : X → C induced by

f̃(s, t) = sk·e1 + tk·e2 ,

where e1, e2 ≥ 2. The above theorem yields together with Example 1

µX(f) =
(ke1 − 1)(ke2 − 1)− 1

k
+ 1 = k · e1e2 − e1 − e2 + 1.

On the other hand, the reader can check that the graph m(Γ) is homotopy equivalent to
a bouquet of

µ = (e1 − 1)(e2 − 1) + (k − 1) · e1e2
circles. Obviously µX(f) = µ.

5. Although the Jacobian ideal of a function f : X → C cannot be defined in the
previous way, we can proceed using the language of differential forms. Let F ,G1,G2 be the
sheaves of holomorphic functions, 1-forms and 2-forms on X ′, respectively. If j : X ′ ↪→ X

is the natural inclusion, then the stalks

OX := (j∗F)(0,0,0), Ω1
X := (j∗G1)(0,0,0) and Ω2

X := (j∗G2)(0,0,0)

are analogues of the ring of germs of holomorphic functions and the modules of germs of
holomorphic 1-forms and 2-forms. This enables us to define the algebraic multiplicity in
the current context by the formula

µa(f) := dimC Ω2
X/(df ∧ Ω1

X).

Also differential forms on X are induced by those forms on C2 which satisfy certain
invariance conditions. In fact Ω2

X is generated as an OX -module by the form induced by
ds∧ dt, while Ω1

X needs four generators: sk−1 · ds, t · ds, s · dt and tk−1 · dt. Therefore we
have

µa(f) = dimCOX
/〈

sk−1 ∂f̃

∂t
, t
∂f̃

∂t
, s
∂f̃

∂s
, tk−1 ∂f̃

∂s

〉
OX

.
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Example 3. Let us return to the function f : X → C induced by

f̃(s, t) = sk·e1 + tk·e2 ,

where e1, e2 ≥ 2. Now

µa(f) = dimCOX/〈(st)k−1 · (tk)e2−1, tk·e2 , sk·e1 , (st)k−1 · (sk)e1−1〉OX
.

An explicit calculation shows that µa(f) = k · e1e2 − e1 − e2 + 1.
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