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Abstract. An example of a locally unsolvable hyperbolic equation of the second order is
constructed, which has smooth (C∞) coefficients, but has no solutions in the class of distribu-
tions.

1. Introduction. We consider here an equation of the form

(1) Pu =
∂2u

∂t2
− a(t)2

∂2u

∂x2
+ b(t)

∂u

∂x
= f(t, x),

where a, b, f are some real-valued C∞ functions, and prove that it can have no solutions
in the class of distributions in any neighborhood of the origin. Here a(t) ≥ 0 and the
formally adjoint operator P ∗ is also locally non-solvable.

The equation (1) is (weakly) hyperbolic. The Cauchy problem for weakly hyper-
bolic equations has been studied by M. Protter [1], M. M. Smirnov [2], V. Ya. Ivrĭı and
V. Petkov [3], O. A. Olĕınik and others.

One of the classical methods to study the equation (1) is factorization. Let

v =
∂u

∂t
− a(t)

∂u

∂x
.

Then the function v satisfies the relation
∂v

∂t
+ a(t)

∂v

∂x
+ (b(t) + a′(t))

∂u

∂x
= f.

Putting U = (u, v), we obtain the system
∂U

∂t
+A(t)

∂U

∂x
+B(t)U = F (t),

where

A(t) =
(

−a(t) 0
b(t) + a′(t) a(t)

)
, B(t) =

(
0 −1
0 0

)
, F (t) =

(
0
f(t)

)
.
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The principal part of this system can be diagonalized if we put w = u+ k(t)v, where

k(t) = 2a(t)/(a′(t) + b(t)).

Then
∂w

∂t
+ a(t)

∂w

∂x
=
k′(t) + 1
k(t)

(w − u) + k(t)f(t).

This shows that the solvability of the Cauchy problem depends on the properties of
the function k (which can also be replaced by k1(t) = 2a(t)/(a′(t) − b(t)), if one takes
v1 = ∂u/∂t+ a(t)∂u/∂x).

Another approach consists in the consideration of energy estimates. Multiplying (1)
by 2∂u/∂t, and integrating over QT = (0, T )×R, we obtain∫

t=T

[(
∂u

∂t

)2

+ a(t)2
(
∂u

∂x

)2]
dxdt = 2

∫
QT

[
f
∂u

∂t
+ ((a(t)2)′ − b(t))

(
∂u

∂x

)2]
dxdt.

The method works if, for example,

(a(t)2)′ − b(t) ≤ ka(t)2

with a constant k. This inequality is sufficient for the Cauchy problem to be well posed.
O. A. Olĕınik [4] used a modification of this method and proved that the Cauchy

problem is well posed if the following condition holds:

There exist some constants α,A, T0, . . . , TN , such that 0 = T0 < T1 < . . . < TN = T

and for Tj < t < Tj+1, j = 0, 1, . . . , N − 1, the inequality

α(t− Tj)b(t)2 ≤ Aa(t)2 + (a(t)2)′t

or the inequality

α(Tj+1 − t)b(t)2 ≤ Aa(t)2 +
a(t)2

α(Tj+1 − t)
− (a(t)2)′t

is true.

On the other hand, the well-known classical example of an equation of the first order
which is locally non-solvable is one of H. Lewy [5]:

∂u

∂x
+ i

∂u

∂y
+ i(x+ iy)

∂u

∂t
= f(t, x, y).

L. Hörmander [6] has proved that the real equation of the second order

(y2 − z2)
∂2u

∂x2
+ (1 + x2)

(
∂2u

∂y2
− ∂2u

∂z2

)
− xy ∂2u

∂x∂y

− ∂2(xyu)
∂x∂y

+ xz
∂2u

∂x∂z
+
∂2(xzu)
∂x∂z

= f(x, y, z)

is also locally non-solvable.
In the works of L. Hörmander [6], L. Nirenberg and F. Trèves [7], and Yu. V. Egorov [8]

necessary conditions were given for the local solvability of differential equations of the
general form (see [9]). The most general result in this direction is the one of L. Hörmander
[10]. The local solvability for the equations with double characteristics has been studied
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by F. Trèves, V. Ya. Ivrĭı, P. R. Popivanov, Ya. Kannai, Yu. V. Egorov and others.
Ya. Kannai [11] proved the local unsolvability of the parabolic operator

∂u

∂t
+ t

∂2u

∂x2
= f(t, x).

This equation is the “inverse heat equation” for all t 6= 0. In the work [12] of F. Colombini
and S. Spagnolo an example of equation of the form (1) is given with a positive function
a(t) (however it is not regular), for which the Cauchy problem is locally non-solvable,
and an example of the equation of the form

∂2u

∂t2
− ∂

∂x

(
a(t)
a(x)

∂u

∂x

)
= x,

having no solutions of class C1 in any neighborhood of the origin, where 2−1 ≤ a(t) ≤ 2,
a(t) ∈ Cα for α < 1, but a(t) 6∈ C1.

In our example (1) the function a(t) ∈ C∞(R). It is important to note also that the
usual technique of the construction of the asymptotic solutions is not applicable in this
case. In fact it is impossible to construct in a neighborhood of the origin a smooth phase
function w(t, x), with a positive imaginairy part, satisfying the equation

w2
t − a(t)2w2

x = 0

or the equation
w2
t − a(t)2w2

x + ib(t)wx = 0.

2. Main result

Theorem. There exist real functions

a(t), b(t) ∈ C∞(R), a(t) ≥ 0, f(t, x) ∈ C∞(R2),

for which equation (1) has no solution in the class of distributions in any neighborhood
of the origin. The formally adjoint operator P ∗ is also locally non-solvable in any neigh-
borhood of the origin.

Lemma 1. If equation (1) is locally solvable in a neighborhood ω of the origin, then
there exist constants C1 ∈ R and N ∈ N such that

(2) ‖u‖0 ≤ C1‖P ∗u‖N , u ∈ C∞0 (ω).

P r o o f o f L e m m a 1. From the local solvability of equation (1) in the domain ω

follows the existence of real constants C, s and r such that

(3) ‖u‖s ≤ C‖P ∗u‖r, u ∈ C∞0 (ω).

The statement of Lemma 1 is evident if s ≥ 0. If s < 0, we choose n1 ∈ N for which
n1 + s ≥ 0. Since Di

xu ∈ C∞0 (ω) for all i, if u ∈ C∞0 (ω), we have

‖Di
xu‖s ≤ C‖Di

xf‖r,
where u ∈ C∞0 (ω), f = P ∗u, i = 0, 1, . . . Of course, we can assume that r ≥ s.

Writing down D2
t u from the equation P ∗u = f , we obtain

‖D2
t u‖s−1 ≤ C(‖D2

xu‖s−1 + ‖Dxu‖s−1 + ‖f‖s−1)

≤ C1(‖Dxu‖s + ‖u‖s + ‖f‖r−1) ≤ C2(‖Dxf‖r + ‖f‖r).
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Therefore,

‖u‖s+1 ≤ C3(‖u‖s + ‖D2
xu‖s−1 + ‖D2

t u‖s−1)

≤ C4(‖f‖r + ‖Dxf‖r + ‖f‖r+1) ≤ C ′1‖f‖r+1.

Repeating these arguments, we obtain

‖u‖s+2 ≤ C ′2‖f‖r+2, . . . , ‖u‖s+n1 ≤ C ′n1
‖f‖r+n1 .

Since s+ n1 ≥ 0, we have

‖u‖0 ≤ Cn1‖f‖r+n1 .

The index r + n1 on the right-hand side can always be enlarged. Therefore ‖u‖0 ≤
Cn1‖f‖N , where N ∈ N.

3. Proof of the Theorem. Let ω be a neighborhood of the origin, λ � 1 and the
function F be of class C∞0 (−1, +1). Let k ∈ N and Ik = (1/kπ, 1/(k − 1)π).

The functions a(t) and b(t) in our example have the following form:

a(t) = exp(−t−2 − sin−2(1/t)), b(t) = −2a(t)µ′(t)− a′(t),

where µ(t) = − sin−4(1/t)− ln |t| is a function such that eµ(t) → 0 and Di
te
µ(t) → 0, as t

tends to the end points of the interval Ik. It is obvious that b ∈ C∞ and∫
Ik

e2µ(t)dt =
π∫

0

exp(−2 sin−4 s)ds = c1.

After the substitution x1 = x − A(t), where A is a function such that A′(t) = a(t),
the equation P ∗u = 0 takes the form

P1u ≡
∂2u

∂t2
− 2a(t)

∂2u

∂t∂x
− (b(t) + a′(t))

∂u

∂x
= 0

(we drop the subscript 1 for simplicity).
We wish to construct a function uλ(t, x) ∈ C∞0 (K), where K = Ik × (−λ−1, λ−1),

such that

(4) ‖uλ‖0 ≥ c0 > 0, ‖P ∗uλ‖N ≤ Cλ−1.

After substitution of this function in (2), we are led to a contradiction for λ and k

sufficiently large. Since for any neighborhood ω of the origin the domain K is inside ω
for λ > λω, k > kω, this proves that the operator P is locally non-solvable at the origin.

Let

u(t, x) = F (λx)eµ(t)v(t, x).

Then the function v satisfies the equation

∂2v

∂t2
− 2a(t)

∂2v

∂t∂x
− 2a(t)λ

F ′(λx)
F (λx)

∂v

∂t
+ 2µ′(t)

∂v

∂t
+ (µ′(t)2 + µ′′(t))v = 0.

The change of the variable x2 = λx1 gives:

(5)
∂2v

∂t2
− 2a(t)λ

∂2v

∂t∂x
− 2a(t)λ

F ′(x)
F (x)

∂v

∂t
+ 2µ′(t)

∂v

∂t
+ (µ′(t)2 + µ′′(t))v = 0

(we drop again the subscript 2).
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We are looking for an approximate solution of the equation (5) of the form

v(t, x) =
N+1∑
j=0

λ−jvj(t, x),

where v0(t, x) = 1, vj(t, x) = µj(t)Fj(x), for j = 1, . . . , N + 1 and

∂2(F (x)vj(t, x))
∂t∂x

=
F (x)
a(t)

[
∂2vj−1(t, x)

∂t2
+ 2µ′(t)

∂vj−1(t, x)
∂t

+ [µ′(t)2 + µ′′(t)]vj−1

]
,

j = 1, 2, . . . , N + 1. But then

G′j(x) = Gj−1(x), µ′j(t) = [µ′′j−1 + 2µ′µ′j−1 + (µ′′ + µ′2)µj−1]/a(t),

where Gj(x) = F (x)Fj(x), j = 1, 2, . . . , N + 1, G0(x) = F (x), µ0(t) = 1. Of course, this
means that we have first to choose a smooth function GN+1(x) such that FN+1 is flat at
the end points of (−1,+1) and next to put GN+1−j(x) = G

(j)
N+1(x), j = 1, . . . , N + 1. It

is easy to see that the function µj(t)eµ(t) is smooth in Ik and flat at the end points of Ik.
On the other hand,∫ ∫
K

e2µ(t)F (λx)2dxdt ≥ c0λ−1 > 0,
∫ ∫
K

e2µ(t)F (λx)2vj(t, λx)2dxdt ≤ Cj,kλ−1,

j = 1, 2, . . . , N + 1 and thus ‖u‖20 ≥ c0λ
−1/2 for λ > Λ(ω, k,N). At the same time

‖P ∗u(t, x)‖2N ≤ Cλ−3. Therefore the inequalities (4) are valid for the function

uλ = λ1/2F (λ(x−A(t)))eµ(t)v(t, λ(x−A(t))).

This implies the statement of Theorem in the standard way (see [10]).
In order to prove the theorem for the adjoint operator P ∗ it is sufficient to remark

that it can be obtained from P after the substitution x = −x1.

The proof is complete.
The question of the solvability of the equations of the form (1) was posed to me by

Professor P. Guan from McMaster University in Hamilton, Canada, and I thank him for
this.
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