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1. Introduction. Let be X = R
n. We consider the general control problem with a

priori feebacks:

(1)

{

x′(t) = f(x(t), u(t)), for almost all t ≥ 0
u(t) ∈ U(x(t)), for all t ≥ 0

K ⊂ X describes the set of state constraints.

Let be F the set-valued map defined by F (x) := {f(x, u), u ∈ U(x)} and denote

SF (x) the set of all solutions to the dynamical system (1) starting from a point x. A

solution x( · ) ∈ SF (x) is viable if and only if

∀t ≥ 0, x(t) ∈ K.

Our aim is to study several features of control problems, more generally of systems

described through differential inclusion, with state constraints:

1. We give stability properties of approximations of the Viability Kernel with discrete

or fully discrete viability kernel:

ViabF (K) := {x ∈ K | ∃x( · ) ∈ SF (x), x(t) ∈ K, ∀t}.

2. We apply this result to compute the minimal time control problem with state con-

straints and we prove the convergence of a sequence of functions to the minimal time

function.

3. We consider the general problem of finding equilibria of upper semi continuous set-

valued maps F : X  Y :

Equilibria(F ) := {x ∈ X | 0 ∈ F (x)}
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We characterize this set through viability theory, proving that it is related to the

viability kernel for a particular dynamic defined in the product space X × Y .

4. We extend this approach by introducing the principle of exploration methods. This

has many applications. Mainly we study an algorithm of approximation of a Lyapunov

function allowing asymptotic stabilization of dynamical system and an algorithm of

approximation the asymptotic attraction basin of Equilibria.

2. Viability Kernel. Let us define:

F (x) := {f(x, u) | u ∈ U(x)}.

A closed subset D is a Viability Domain for F if and only if D enjoys the viability

property:

∀x ∈ D, ∃x( · ) ∈ SF (x) | x(t) ∈ D, ∀t ≥ 0

and the Viability Kernel of K for F is the largest closed viability domain for F contained

in K. Let TD(x) be the Bouligand contingent cone2 at x to D. We recall that

Theorem 2.1. Let F be a Marchaud3 map and D be a closed subset of X. The

following properties are equivalent :

D is a viability domain,(2)

∀x ∈ D, F (x) ∩ TD(x) 6= ∅,(3)

∀x ∈ D, ∃w ∈ F (x) | ∀p ∈ NPD(x), 〈p, w〉 ≤ 0,(4)

where NPD(x) denotes the set of proximal normals4 to D at x.

This geometric condition (3) can be exploited thanks to a discretization process.

Indeed, with the system x′ ∈ F (x) we associate a suitable approximation Fε of F and

the discrete system:

xn+1 − xn

ε
∈ Fε(x)

which can be equivalently written:

(5) xn+1 ∈ Gε(x
n) := xn + εFε(x

n).

A closed subset D is a Discrete Viability Domain for Gε if and only if D enjoys the

discrete viability property:

∀x ∈ D, ∃(xn)n∈N solution to (5) such that xn ∈ D, ∀n ∈ N.

We define the Discrete Viability Kernel of K for Gε which is the largest closed discrete

viability domain for Gε contained in K satisfying:
−→
ViabGε

(K) = {x0 ∈ K | ∃ solution (xn)n, xn ∈ K, ∀n ∈ N}.

We can already prove the following:

2 TD(x) := {v ∈ X | limh→0(1/h)dD(x+ hv) = 0}.
3 F is Marchaud if and only if F is upper semicontinuous with compact convex nonempty

values and linear growth.
4 NPD(x) := {p ∈ X | x ∈ ΠD(x+ p)}, where ΠD denote the euclidian projection onto D.
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Theorem 2.2. Let F be a Marchaud set-valued map and K a closed set. Let be

M(x) := maxy∈B(x,1)∩K ‖F (y)‖ and consider any approximation Fε(x) of F satisfying:

Limsup
ε→0

Graph(Fε) ⊂ Graph(F )(6)

∀ǫ ∈

]

0,
1

M(x)

]

, F (x+ εM(x)BX) ⊂ Fε(x)(7)

Let be Gε(x) := x+ εFε(x). Then

(8) lim
ε→0

−→
ViabGε

(K) = ViabF (K).

P r o o f. The proof is a consequence of Proposition 2.3 and Proposition 2.5.

Proposition 2.3. Let F be a Marchaud map and K be a closed subset. Let Fε be an

approximation of F and Kε an approximation of K satisfying assumption (6). Let Vε be

a discrete viability domain for Gε.

Then V ♯ := Limsup
ε→0

Vε is a viability domain for F .

P r o o f. Let us consider x ∈ V ♯ and p ∈ NPV ♯(x). Let εn → 0 be a sequence such

that xn ∈ Vεn
exists converging to x and consider5 zn ∈ ΠVεn

(x+ p).

Lemma 2.4. We have: limn→∞ zn = x.

P r o o f.6 We have

‖x− zn‖
2 = ‖x− xn‖

2 + 2〈zn − xn, p〉 + 2〈xn − zn, x+ p− zn〉 − ‖xn − zn‖
2

and since xn ∈ Vεn
, we have also

〈xn − zn, x+ p− zn〉 ≤ 0

then

(9) ‖x− zn‖
2 ≤ ‖x− xn‖

2 + 2〈zn − xn, p〉.

Let be z any element belonging to Adh(zn), the set of adherence values of the sequence

(zn). From the very definition of V ♯, since x ∈ ΠV ♯(x+ p) we have:

〈z − x, p〉 ≤ 0.

Then when n→ ∞ we deduce from (9) that ‖x− z‖2 ≤ 0.

On one hand, since Vεn
is a discrete viability domain, there exists vn ∈ Gεn

(zn) ∩ Vεn

and since zn is the projection of x+ p on Vεn
, we have

‖zn − (x+ p)‖ ≤ ‖vn − (x + p)‖.

On the other hand, from the definition of Gε there exists wn ∈ Fεn
(zn) such that vn =

zn + εnwn. Then we obtain:

‖zn − (x+ p)‖2 ≤ ‖zn − (x+ p) + εnwn‖
2

= ‖zn − (x+ p)‖2 + 2〈zn − (x+ p), εnwn〉 + ε2n‖wn‖
2

5 We can assume that zεn is unique since, if not, one can replace p by p′ = 1/2p and then the

projection becomes unique.
6 This version of the proof is a revisited version by P. Cardaliaguet.
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So

〈p, wn〉 ≤
1

2
εn‖wn‖

2 − 〈zn − x,wn〉.

Let n tend to ∞.

Since

Limsup
n→∞

Graph(Fεn
) ⊂ Graph(F ),

from Lemma 2.4 we deduce that limn→∞(zn, wn) = (x,w) ∈ Graph(F ) exists such that

〈p, w〉 ≤ 0. So condition (4) of Theorem 2.2 holds true. This prove that V ♯ is a viability

domain.

The Marchaud property of F is not sufficient to prove that the viability kernel of K

for F can be approached exactly by a sequence of discrete viability kernels. We need a

stronger regularity assumption on F which is satisfied when F is Lipschitz but which is

quite general including many situations where F is only upper semicontinuous.

Proposition 2.5. Let F be a Marchaud set-valued map and D a viability domain

for F . Let us consider any approximation Fε(x) of F satisfying assumption (7) and set

Gε(x) := x+ εFε(x). Then D is a discrete viability domain for Gε

P r o o f. Let be x ∈ D and consider any solution x( · ) ∈ SF (x) viable in D. We know

that

∀t ≥ 0, x(t) = x+

∫ t

0

x′(τ)dτ.

Let be θ := max{t | x(t) ∈ B(x, 1)}. Since x′(τ) ∈ F (x(τ)) for almost all τ ∈ [0, θ], we

have:

‖x(τ) − x‖ ≤ τM(x)

and so, for all τ ≤ (1/M(x)), x(τ) ∈ B(x, 1). In particular x(1/M(x)) ∈ B(x, 1). So

θ ≥ (1/M(x)) and

(10) ∀τ ≤
1

M(x)
, ‖x(τ) − x‖ ≤ τM(x)

On the other hand,

x(t) − x =

∫ t

0

x′(τ) dτ ∈

∫ t

0

F (x(τ)) dτ ⊂

∫ t

0

F (x+ ‖x(τ) − x‖B) dτ

and from (10) we have for all t ≤ (1/M(x))

(11) x(t) − x ∈

∫ t

0

F (x+ τM(x)B) dτ ⊂ tF (x+ tM(x)B).

Then from assumption (7), for all x ∈ D and for all ε ≤ (1/M(x)), we have

x(ε) ∈ x+ εF (x+ εM(x)B) ⊂ x+ εFε(x) = Gε(x).

So, since xε ∈ D, we have proved that

Gε(x) ∩D 6= ∅

that is to say that D is a discrete viability domain for Gε.
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Corollary 2.6. Let be F a Marchaud and ℓ-Lipschitz map. Assume that M :=

supx∈K M(x) is finite. Let be Fε(x) := F (x) + (Mℓ/2)εB and Gε := x+ εFε(x). Then

ViabF (K) = lim
ε→0

−→
ViabGε

(K)

P r o o f. Assumption (6) is satisfied for Fε. On the other hand, for any x ∈ ViabF (K)

and for any viable solution x( · ) ∈ SF (x), from inclusion (11) we get:

x(ε) ∈ x+ εF (x) +

∫ ε

0

MℓτB dτ = x+ εF (x) +
Mℓ

2
ε2B := x+ εFε(x)

and so

x(ε) ∈ Gε(x) ∩ ViabF (K) 6= ∅.

The viability kernel of K for F is a discrete viability domain for Gε contained in
−→
ViabGε

(K). From Proposition 2.3, equality ensues.

The Viability Kernel Algorithm. To compute the discrete viability kernel of K

for G we need the following

Proposition 2.7. Let G : X  X be an upper semicontinuous set-valued map with

compact values and K be a closed set. Consider the decreasing sequence of sets Kn defined

by

(12)

{

K0 := K
Kn+1 := {x ∈ Kn | G(x) ∩Kn 6= ∅}.

Let be K∞ := limn→∞Kn =
⋂∞

n=0K
n. Then

K∞ =
−→
ViabG(K)

One can find in [10] the fully discrete algorithm and convergence results which allow

to compute fully discrete viability kernels defined on grids7.

3. Applications

3.1. Calculus of the minimal time function for constrained control prob-

lems. Amongst many applications we show how this result can be applied to prove the

convergence of algorithms which allow approximation of the minimal time function for

target problems with state constraints and without local controllability assumptions on

a neighbourhood of the target. This is a joint work with P. Cardaliaguet and M. Quin-

campoix (see [5] for control problem and [7] for Differential Games)

7 We call grid of size h any countable subsetXh of points ofX satisfying the following property:

∀x ∈ X ∃xh ∈ Xh such that d(x, xh) ≤ h



248 P. SAINT-PIERRE

Let be C a closed target and K the set of constraints and consider the system:

(x′, y′) =

{

(f(x, u),−1) if x 6∈ C,

Co{(f(x, u),−1), (0, 0)} if x ∈ C,

u ∈ U(x),

(x(t), y(t)) ∈ K × R
+ ∀t ≥ 0.

Let us denote F the set-valued map x F (x) := {f(x, u), u ∈ U(x)} The minimal time

— or hitting time — function is defined by:

ϑK
C (x0) := inf

x( · )∈SF (x0)
{τ | x(τ) ∈ C, x(t) ∈ K, ∀t ≤ τ}

Proposition 3.1. If F is Marchaud then:

• ϑK
C (·) is lower semicontinuous,

• the infimum value is reached for some solution.

We refer to [5] for the proof of this Proposition.

3.1.1. Characterization through Viability Theory. Let us denote Z := X × R and Φ

the expanded set-valued map defined by:

Φ(x, y) =

{

F (x) × {−1} if x ∈ D
Co((F (x) × {−1}) ∪ ({0} × {0})) if x ∈ C

and consider the differential inclusion

(14) (x′(t), y′(t)) ∈ Φ(x(t), y(t)), a.e. t ≥ 0.

Let us note that if F is a Marchaud set-valued map, Φ is also Marchaud. We have the

following:

Theorem 3.2 Let F : X  X be a Marchaud map, K and C two closed subsets of

X. We set

H := {(x, y) ∈ (K ∩X\C) × R
+}

Let ϑK
C ( · ) be the hitting time function of C for solutions in SF ( · ) which remains in K.

Then the epigraph of ϑK
C ( · ) is the viability kernel of H for Φ:

ViabΦ(H) = Epi(ϑK
C ).

3.1.2. Algorithm. For the sake of simplicity, we consider in this section the case when

F is ℓ-Lipschitz and M -bounded.

Fix τ > 0 and let us now define the following nondecreasing sequence of maps defined

on K:

(15)

ϑ0
τ (x) :=

{

0 if x ∈ K
+∞ if x 6∈ K

ϑk+1
τ (x) :=

{

τ + infu∈U, ‖w‖≤1{ϑ
k
τ (x+ τf(x, u) + Mℓτ2

2 w)} if dC(x) > Mτ
0 if dC(x) ≤Mτ .

From the Convergence Theorem, we deduce the following convergence result:

Theorem 3.3. Under the asumptions of Theorem 3.2 ϑ∞τ (x) := lim
k→∞

ϑk
τ (x) exists and

we have
∀x ∈ K, lim

τ→0
ϑ∞τ ( · ) = ϑK

C ( · )
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P r o o f. We set

Φ(x, y) :=

{

{F (x)} × {−1} if x 6∈ C

Co[{F (x)} × {−1} ∪ {0, 0}] otherwise

and we introduce

Γτ (x, y) :=

{

(x, y) + τ
[

{F (x) + Mℓτ
2 B} × {−1}

]

if dC(x) > Mρ

(x, y) + τCo
[{

F (x) + Mℓτ
2 B

}

× {−1} ∪ {0, 0}
]

otherwise

Then combining Theorem 3.2 with Theorem 2.2 yields that

Limτ→0+

−→
ViabΓτ

(K × R
+) = Epi(ϑK

C )

Now Proposition 2.7 states that the following decreasing sequence of closed sets:

A0 := K × R
+

Ak+1 := {(x, y) ∈ Ak Γρ(x, y) ∩Ak 6= ∅}

converges to
−→
Viab Γρ

(K ×R
+). It is easy to check that the Ak are the epigraph of some

function ϑk
τ . Now, exploiting the very definition of Ak gives (15).

3.1.3. Example. In control theory, Zermelo described the problem of the swimmer

that can be summed up as follows: the dynamic of the river is given by the water current

function f(x, y). The current is choosen to be decreasing with the distance to the middle

axes of the river, with a constant direction: f(x, y) := 1 − a|y|2 (a = 0.04).

The swimmer has his own dynamic: he can swim in any direction at a speed s whose

norm ranges between [0, 0.5].

1. Minimal time function for Zermelo problem with obstacles
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Also the global dynamic is given by:

(16)
x′(t) = (1 − ay2) + u

y′(t) = v with u2 + v2 ≤ c2

In the numerical example we have choosen C = {(x, y) ∈ R
2 | x2 + y2 ≤ 0.44} for the

island-target and K = [−6, 2] × [−5, 5] × R
+. Taking into account the symmetry of the

problem, we have just viewed half part of the problem.

2. Level Curves of the Minimal time function for Zermelo problem with obstacles

The swimmer aims to reach an island as quickly as possible. We assume that if he

pass over some “waterfall” ahead the island, he completely fails and that he has to avoid

some precised area or obstacles which are shown on the figure.

The domain of the minimal time function is precisely the set of initial points x0 from

which the swimmer is able to reach the island. Out of this domain the minimal time

function takes the value +∞.

Let us notice that in this case the swimmer can follow up the bank since c is greater

than (1 − a|y|2) whenever y ≥ y⋆ = (1 − c/a)1/2 (y⋆ ≃ 3.53).

Figure 1 represents the graph and Figure 2 the level curves of the approximate minimal

time function obtained for a grid of 4163 points.

A barrier phenomena can be observed showing the discontinuity of the minimal time

function.

Relations with viscosity super solution of Hamilton Jacobi Bellman equations are

given in [5] and [6].
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3.2.Equilibria for set-valued dynamics. A second application of the Convergence

Theorem of Viability Kernels lies in the calculus of the set of all equilibria for upper

semi-continuous set-valued maps.

Let F : X  X be a set-valued map and K a closed subset of X . We denote

EquiF (K) := {x ∈ K | 0 ∈ F (x)}

the set of all equilibria for F contained in K.

3.2.1. Characterization of the set of Equilibria. Let be F : X  Y and Z := X × Y .

We define Φ : Z  Z by:

(17) Φ(x, y) =

(

0
F (x)

)

.

We consider the differential inclusion system

(18) (x′(t), y′(t)) ∈ Φ(x(t), y(t)), a.e. t ≥ 0

and for any c ≥ 0, the constraint set:

(x(t), y(t)) ∈ K × cB, ∀t ∈ [0,+∞).

Let ΠX denote the projection (x, y) → x.

Proposition 3.4. Let F be a Marchaud set-valued map and K ⊂ X closed. Then

(19) ∀c ∈ R
+ EquiF (K) = ΠX(ViabΦ(K × cB)).

For c = 0 the result still holds true: the projection of the viability kernel of K × {0}

is the set of equilibria of the system (18).

We can also apply Proposition 3.4 with φ(x) := miny∈F (x) ‖y‖, or φ(x) := ‖f(x)‖

when F is a single-valued continuous map f : X → Y , and consider the differential

equation system
{

x′(t) = 0,
z′(t) = φ(x(t)),

under the constraint

(x(t), z(t)) ∈ K × [0, c], ∀t ∈ [0,+∞)

3.3. Approximation of Lyapunov functions. In [1] J.-P. Aubin has proved the

existence of a Lyapunov function greater than any given function V which epigraph

is the viability kernel of Epigraph(V ) for the corresponding dynamic F . We give here

an algorithm which allows to compute approximation of such Lyapunov function. This

method is closed to an exploration method in the epigraph of V .

Let ϕ( · ) : X → R
+ be a non negative function such that minx∈X ϕ(x) = 0. The

function ϕ is a Lyapunov function for the differential inclusion

(20) x′(t) ∈ F (x(t)), a.e. t ∈ [0,+∞)

if there exists x0 ∈ X and a solution x⋆( · ) ∈ SF (x0) satisfying

(21)
d

dt
ϕ(x⋆(t)) ≤ 0, ∀t ∈ [0,+∞).
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So if we know a Lyapunov function, we know already the behavior of the solution x⋆( · )

when t increases to infinity.

If equation ϕ(x) = 0 has a unique solution x, then limt→∞ x⋆(t) = x.

If there exist x0 6= x and ϕ( · ) a Lyapunov function such that x0 ∈ Dom(ϕ), then x0

belongs to the attraction basin of x and there exists a solution of (20) starting from x0

which converges to x. Along the solution ϕ is not increasing.

The Lyapunov function ϕ is not unique. For instance ϕ(x) := 0 if x = x and +∞

elsewhere is a Lyapunov function.

The following result due to J. P. Aubin states a characterization of “some best”

Lyapunov function insuring asymptotic stability.

Let V ( · ) : X → R
+ be a non negative function, Epi(V ) the epigraph of V and

consider the differential inclusion:

(22)

{

x′(t) ∈ F (x(t)) a.e. t ∈ [0,+∞),
y′(t) = −ay(t).

Proposition 3.5. Let F : X  X be a Marchaud map. Let be K ⊂ X closed.

Let V : X → R such that Epi(V ) is closed. We denote Φ(x, y) := (F (x),−ay) and

H := Epi(V ) ∩K × R
+. Then

ViabH(Φ) = Epi(ϕ),

where ϕ( · ) is the minimal lower semi-continuous Lyapunov function greater than V :

∀x ∈ K, ϕ(x) ≥ V (x).

From this Proposition, the domain of the minimal function ϕ( · ) is the subset of

initial points x0 such that a solution exists in SF (x0), viable in K, which converges

asymptotically to x.

3.3.1. Approximation of Lyapunov Function Algorithm. The function ϕ is the limit8

of a sequence of lower semicontinuous functions ϕn.

Let be ϕ0( · ) = V ( · ). For all ρ > 0 we define:

ϕn(x) = max

[

ϕn(x), inf
z∈Fρ(x)

ϕn−1(x+ ρz)

1 − aρ

]

.

Proposition 3.6. The sequence of functions {ϕn( · )}n converges pointwisely to ϕ( · )

as n → +∞ and ρ → 0, which is the lowest lower semicontinuous Lyapunov function

minorated by V .

P r o o f. From the very definition of ϕn( · ), we have already

Epi(ϕn) =

{

(x, y) ∈ Epi(ϕn−1)

∣

∣

∣

∣

(

x+ ρFρ(x)
y(1 − aρ)

)

∩ Epi(ϕn−1) 6= ∅

}

.

So from the Viability Kernel Approximation Theorem we can easily check that Epi(ϕ) is

the viability kernel of Epi(V ) and so that

ViabH(Φ) = Epi(ϕ).

8 in the sense that its epigraph is the upper limit of the sequence of epigraphs of functions ϕn
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Moreover, since Epi(ϕn) is a decreasing sequence of imbedded epigraphs, for any

x ∈ K we have

ϕn(x) ≤ ϕn+1(x)

so

ϕn(x) ≤ ϕ(x).

On the other hand from Theorem 2.2, since Epi(ϕ) = ViabH(Φ), we have

lim
n→∞

ϕn(x) ≥ ϕ(x)

thus implies

lim
n→∞

ϕn(x) = ϕ(x).

Let us check now that ϕ is a Lyapunov function. Let be (x0, ϕ(x0)) ∈ Epi(ϕ). Starting

from this point, there exists a solution (x( · ), ϕ(x( · )) viable in Epi(ϕ).

Then for all t > 0, (x′(t), ϕ′(x(t)).x′(t)) satisfies

(x′, ϕ′(x).x′) ∈ TViabH(Φ)
(x, ϕ(x)) ∩ (F (x), {−a.ϕ(x)}).

Then
d

dt
ϕ(x(t)) = ϕ′(x(t)).x′(t) = −aϕ(x(t)) ≤ 0, p.p. t > 0

so ϕ is a Lyapunov function.

Lower semicontinuity derives from closedness of the viability kernel Epi(ϕ).

The lowest Lyapunov function property derives from the very definition of viability

kernels that are maximal viability domains and from the simple remark that the epigraph

of any lower semicontinuous Lyapunov function ψ minorated by V i a viability domain

of Epi(V ) for Φ included necessarily in Epi(ϕ).

3.4.Asymptotic stability for Equilibria. Let us consider the graph of a set-valued

map F with closed graph. A way to explore Graph(F ) so as to find equilibria for F is to

consider the following dynamical system
{

x′(t) ∈ B

y′(t) = −ay(t)

and to consider the Viability Kernel of Graph(F ) for the set-valued map Γ defined by

Γ(x, y) := B × {−ay}.

It is the closed graph of a set-valued map F∞ : X  Y which have same equilibria

than F .

From the very definition of the Viability Kernel, for any initial value x0 ∈ Dom(F∞),

there exists x( · ) such that:

∀t ≥ 0, y(t) = e−aty0 ∈ F∞(x(t)) ⊂ F (x(t))

and the limit values of x( · ) are equilibria for F .
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3.4.1. Approximation of F∞ and convergent Algorithms. Let be ρ > 0 and F 0
ρ := F .

We define Fn
ρ by:

Fn
ρ (x) := Fn−1

ρ (x)
⋂

(

1

1 − aρ

⋃

u∈B

Fn−1
ρ (x+ ρu)

)

.

F∞
ρ satisfies

F∞
ρ (x) ⊂

1

1 − aρ

⋃

w∈B

F∞
ρ (x + ρw).

Let be y0 ∈ F∞
ρ (x0), n fixed and consider the set-valued map x Rn

ρ (x) defined by

Rn
ρ (x) := {u ∈ B | Fn

ρ (x+ ρu) ∩ (1 − ρa)Fn
ρ (x) 6= ∅}.

Proposition 3.7. We have

Graph(F∞
ρ ) = ViabΓ(Graph(F )).

Moreover , Rn
ρ ( · ) defines a convergent algorithm: for any x0 ∈ Domain(Rn

ρ ), the sequence

defined by

xk+1 ∈ xk + ρRn
ρ (xk)

converges to a zero of Fρ.

Indeed, since the viability kernel ViabΦ(K) associated with this problem is the set

of initial points (x0, y0) such that a solution (x(t), y(t)) exists satisfying x(t) → x⋆ and

0 ∈ F (x⋆), the projection of ViabΦ(K) onto X is the set of initial values x0 for which

the sequence (xk)k defined by

xk+1 ∈ xk + ρRn
ρ (xk)

satifies yk = (1 − ρa)k ∈ Fρ(x
k) and so yk converges to zero and xk converges to a zero

of Fρ.
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[4] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Some Algorithms for Dif-

ferential Games with two Players and one Target. To appear in Journal of Mathematical

Systems, Estimation and Control, 1994.

[5] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Temps optimaux pour des
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