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Abstract. In this paper, we are concerned with the semilinear parabolic equation{
∂u
∂t −∆u = g(t, x, u) if (t, x) ∈ R+ × Ω
u = 0 if (t, x) ∈ R+ × ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and g : R+ × Ω̄ ×R → R is
T-periodic with respect to the first variable. The existence and the multiplicity of T-periodic
solutions for this problem are shown when g(t,x,ξ)

ξ lies between two higher eigenvalues of −∆ in
Ω with the Dirichlet boundary condition as ξ → ±∞.

1. Introduction. Let Ω be a bounded domain in RN with smooth boundary ∂Ω and
g ∈ C1,α(R+× Ω̄×R) with α > 0 is T-periodic with respect to the first variable. In this
paper, we are concerned with unstable T-periodic solutions for the semilinear parabolic
equation

(P )


∂u

∂t
−∆u = g(t, x, u), (t, x) ∈ R+ × Ω

u(t, x) = 0, (t, x) ∈ R+ × ∂Ω.
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Many authors have studied the existence of periodic solutions not only for the problem
(P) but also for a more general problem of the form

(AP )
du

dt
+Au = F (t, u),

where A is an m-accretive operator (linear or nonlinear) on a Banach space X and
F : R+ ×X → X is a continuous mapping which is T-periodic with respect to the first
valiable. The existence and multiplicity of periodic solutions for problem (P) is established
by Amann [2] The abstract problem (AP) is studied in [7], [11] and [12].

For the existence of periodic solutions, it is usually assumed that the operator A−F
satisfies coercivity conditions. In the case of problem (P), the operator −∆ − g(∗) is
coercive if

lim sup
|ξ|→∞

sup{| g(t, x, ξ)/ξ |: (t, x) ∈ [0, T ]× Ω} < λ1.

Here λ1 is the first eigenvalue of the Laplacian on Ω with Dirichlet boundary condition.
Our purpose in this paper is to consider the existence and multiplicity of T-periodic

solutions for (P) when lim sup|ξ|→∞
g(t,x,ξ)

ξ lies between two higher eigenvalues of the
Laplacian on Ω with Dirichlet boundary condition. We also show the instability of T-
periodic solutions for (P). For the stability and instability of periodic solutions for (P),
we refer to Alikakos, Hess and Matano [1], Hess [6], Hirano [9] and Hirsch [10].

2. Case of a general nonlinearity g(t, x, ξ). Throughout the rest of this paper, we
fix a positive number T . Let | · | and ‖ · ‖ be the norms of L2(Ω) and L2(0, T ;L2(Ω)),
respectively. The inner products of L2(Ω) and L2(0, T ;L2(Ω)) are denoted by 〈·, ·〉 and
� ·, · �, respectively. We call u : R+ → H1

0 (Ω) a T-periodic solution for the problem
(P) provided that u ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) satisfies
∂u

∂t
−∆u = g(t, x, u)

in L2(Ω) a.e. in (0, T ) and u(t + T ) = u(t) for all t ∈ R+. A T-periodic solution u is
said to be stable if for any ε > 0, there exists δ(ε) > 0 such that for each v0 ∈ L2(Ω)
with |v0 − u(0)| < δ(ε), it holds that |v(t)− u(t)| < ε for all t > 0, where v(t) : (0,∞)→
H2(Ω) ∩H1

0 (Ω) is the solution of the initial value problem

(I)


∂v

∂t
−∆v = g(t, x, v) in (0,∞)× Ω

v = 0 on (0,∞)× ∂Ω

v(0) = v0 in Ω.

A T-periodic solution u is called unstable if u is not stable.
Let 0 < λ1 < λ2 ≤ λ3 · ·· be the sequence of the eigenvalues of the boundary value

problem {
−∆u = λu in Ω

u = 0 on ∂Ω.
We denote by ϕi an eigenfunction corresponding to λi. Throughout this paper, it is
supposed that g ∈ C1,α(R+ × Ω̄×R) with α > 0 is T-periodic with respect to the first
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variable. We assume the following conditions on g :
i) There exists M > 0 satisfying

λ1 ≤
∂g

∂ξ
(t, x, ξ) ≤M for all (t, x, ξ) ∈ R+ × Ω̄×R

and
∂g

∂ξ
(t, x, 0) > λ1 for some (t, x) ∈ R+ × ∂Ω.

ii) There are m ≥ 1 and α > 0 such that

λm + α ≤ lim inf
ξ→±∞

g(t, x, ξ)
ξ

≤ lim sup
ξ→±∞

g(t, x, ξ)
ξ

≤ λm+1 − α

uniformly for (t, x) ∈ R+ × Ω.
The purpose of this section is to prove the following results.

Theorem 1. Under the hypotheses i) and ii), the problem (P) possesses an unstable
T-periodic solution.

In case that g(t, x, 0) = 0 for all (t, x) ∈ R+ × Ω, u ≡ 0 is a T-periodic solution for
(P). Then u ≡ 0 may be unstable. We can prove the existence of a nontrivial unstable
T-periodic solution for (P) assuming the following condition :

iii) There are 2 ≤ l ≤ m and β > 0 such that

λl−1 + β ≤ lim inf
ξ→0

g(t, x, ξ)
ξ

≤ lim sup
ξ→0

g(t, x, ξ)
ξ

< λ1 − β

uniformly for (t, x) ∈ R+ × Ω.

Theorem 2. Under the assumptions i) - iii), if m − l + 1 is an odd integer , then
there exists a nontrivial unstable T-periodic solution for the problem (P). Moreover if
there exists a nontrivial T-periodic solution u for (P) which is nondegenerate, i.e., 0 is
not an eigenvalue of the problem

(L)


∂u

∂t
−∆v − g′(t, x, u)v = µv in R+ × Ω

v = 0 on R+ × ∂Ω

v(T ) = v(0) in Ω,

then the problem (P) possesses at least two nontrivial unstable T-periodic solutions.

For simplicity, we write H = L2(0, T ;L2(Ω)) and ∂g
∂ξ (t, x, ξ) = g′(t, x, ξ). Let

L =
∂

∂t
−∆

with domain

D(L) = {u ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) : u(0) = u(T )}.

It is well known that there is a unique solution uf for Luf = f for any f ∈ H and the
operator K defined by K = L−1 is a compact mapping from H into H. It is easy to see
that u is a T-periodic solution for (P) if and only if u is a fixed point of K ◦ g.
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Lemma 1. Under the assumptions of Theorem 1 , there is R > 0 such that

deg (I −K ◦ g,BR(0), 0) = (−1)m,

where deg means the Leray-Schauder degree and BR(u) is the closed ball in H with radius
R centered at u.

P r o o f. Let E1 and E2 be the closed subspaces of L2(Ω) spanned by {ϕi : i ≥ m+ 1}
and {ϕi : 1 ≤ i ≤ m + 1}, respectively. We denote by Pi the projection from L2(Ω)
onto Ei for i = 1, 2. Since L2(0, T ;E1) and L2(0, T ;E2) are orthogonal in H and H =
L2(0, T ;E1)⊕ L2(0, T ;E2), Pi is canonically extended to the projection P̃i from H onto
L2(0, T ;Ei) for i = 1, 2. From the assumption ii), we obtain C1, C2 > 0 such that

〈−∆v − g(t, x, v), P1v − P2v〉 ≥ C1|v|2 − C2

for each v ∈ H2(Ω) ∩ H1
0 (Ω) and t ∈ R+ by the usual argument for semilinear elliptic

equations with the Dirichlet boundary condition ( see [8] ). It follows that

� Lv − g(t, x, v), P̃1v − P̃2v �≥ C1‖v‖2 − C2T

for all v ∈ D(L). Therefore there exists R > 0 satisfying

� Lv − g(t, x, v), P̃1v − P̃2v �> 0

for any v ∈ D(L) with ‖v‖ ≥ R. Take λm < a < λm+1. We consider a homotopy of
compact mappings defined by {K(sg + (1 − s)aI) : 0 ≤ s ≤ 1}. For each s ∈ [0, 1] and
v ∈ D(L) with ‖v‖ = R, we get

� Lv − {sg(t, x, v) + (1− s)av}, P̃1v − P̃2v �> 0.

This shows that

v −K(sg(t, x, v) + (1− s)av) 6= 0

for all v ∈ H with ‖v‖ = R. By the homotopy invariance of the Leray-Schauder degree,
we have

deg (I −K ◦ g,BR(0), 0) = deg (I − aK,BR(0), 0).

Now, let ν1, · · ·, νn be the eigenvalues of aK with νi > 1 for 1 ≤ i ≤ n and ψi be an
eigenfunction corresponding to νi for 1 ≤ i ≤ n. Then for 1 ≤ i ≤ n it holds that

Lψi =
a

νi
ψi for 1 ≤ i ≤ n.

From νi > 1, it follows that a
νi

= λj for some j with 1 ≤ j ≤ m. On the other hand,
for each j with 1 ≤ j ≤ m, a

λj
is an eigenvalue of aK with a

λj
> 1. This implies n = m.

Consequently, we see

deg (I − aK,BR(0), 0) = (−1)m.

This completes the proof.

Lemma 2. Under the hypotheses of Theorem 2 , there exists r with 0 < r < R

satisfying

deg (I −K ◦ g,Br(0), 0) = (−1)l−1.

P r o o f. Let F1 and F2 be the closed subspaces of L2(Ω) spanned by {ϕi : i ≥ l} and
{ϕi : 1 ≤ i ≤ l − 1}, respectively. For i = 1, 2, we denote by Qi and Q̃i the projections
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from L2(Ω) onto Fi and from H onto L2(0, T ;Fi), respectively. By the assumptions ii)
and iii), there are d, ρ > 0 such that

(1) 〈−∆v − g(t, x, v), Q1v −Q2v〉 ≥ ρ|v|2

for all v ∈ H2(Ω) ∩H1
0 (Ω) with 0 < |v| < d and t ∈ R+( see [8] ). Take λl−1 < b < λl.

Then we can see that there exists C1 > 0 such that for any s ∈ [0, 1], if v ∈ D(L) satisfies

(2) Lv − {sg(t, x, v) + (1− s)bv} = 0,

then

sup
t∈[0,T ]

|v(t)| ≤ C1‖v‖.

In fact, if v is a solution of (2) for some 0 ≤ s ≤ 1, then we multiply (2) by v and integrate
over [s, t], where |v(τ)| attain its minimal at s. Then

|v(t)| ≤ s‖g‖‖v‖+ (1− s)b‖v‖+ ‖v‖2/T.

for all t ∈ [s, T ].
It then follows from the periodicity of v that the existence of C1 satisfying the in-

equality above. Put r =
d

C1
. Suppose that

Lvs − {sg(t, x, vs) + (1− s)bvs} = 0

for some s ∈ [0, 1] and vs ∈ D(L) with 0 < ‖vs‖ ≤ r. Since

sup
t∈[0,T ]

|vs(t)| ≤ d,

it follows from (1) that

� Lvs − {sg(t, x, vs) + (1− s)bvs}, Q̃1vs − Q̃2vs �> 0.

This is a contradiction. Therefore we have

v −K(sg(t, x, v) + (1− s)bv) 6= 0

for each v ∈ H with 0 < ‖v‖ ≤ r. According to the homotopy invariance of the Leray-
Schauder degree, it follows that

deg (I −K ◦ g,Br(0), 0) = deg (I − bK,Br(0), 0).

By the same method as in the proof of Lemma 1, we obtain

deg (I − bK,Br(0), 0) = (−1)l−1.

This completes the proof.

We next consider a sufficient condition for a T-periodic solution of the problem (P)
to be unstable. Let u be a T-periodic solution for (P). Denote by S(t, s) the evolution
operator for the following problem

(LI)


dv

dt
−∆v = g′(t, x, u)v in (s,∞)× Ω

v = 0 on (s,∞)× ∂Ω

v(s) = z in Ω,
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that is, S(t, s)z = v(t). Then nonzero eigenvalues of U(t) is independent of t ( see [5] ).
It is known that if the periodic map U(t) = S(t+ T, t) for the above problem satisfies

σ(U(t)) ∩ {µ : |µ| > 1} 6= ∅,
where σ(A) means the set of eigenvalues of a linear operator A, then u is unstable ( see
Theorem 8.1.2 of [5] ).

Putting Lu = L + (M − g′(t, x, u)) with domain D(L), it was shown that Lu has
the real principal eigenvalue with an associated positive eigenfunction in Beltramo and
Hess[3].

Lemma 3. Under the assumption i), if u is a T-periodic solution for (P), then u is
unstable.

P r o o f. Suppose that σ(Lu)∩ (−∞,M) = ∅. Let µ be the principal eigenvalue of Lu
and ϕµ be an eigenfunction corresponding to µ. Then we have µ−M ≥ 0, ϕµ > 0 and

(3) Lϕµ − g′(t, x, u)ϕµ = (µ−M)ϕµ.

On the other hand, it holds that

(4) Lϕ1 = λ1ϕ1.

From (3) and (4), it follows that∫ T

0

∫
Ω

(g′(t, x, u) + µ−M − λ1)ϕµϕ1dxdt

=
∫ T

0

∫
Ω

{(ϕµ)tϕ1 − (∆ϕµ)ϕ1 − (−∆ϕ1)ϕµ}dxdt

= 0.

By the assumption i), this is a contradiction. This implies σ(Lu) ∩ (−∞,M) 6= ∅. Let
µ = M + γ be an eigenvalue of Lu with γ < 0 and ϕγ be an eigenfunction corresponding
to M + γ. Then it holds that

dϕγ
dt
−∆ϕγ − g′(t, x, u)ϕγ = γϕγ

and hence
d(e−γtϕγ)

dt
−∆(e−γtϕγ)− g′(t, x, u)(e−γtϕγ) = 0.

This implies that e−γtϕγ is a solution of the initial value problem (LI) with z = ϕγ(0).
Then we get U(0)ϕγ(0) = e−γTϕγ(0), that is, U(0) has an eigenvalue e−γT > 1. Therefore
u is unstable. This completes the proof.

We can prove Theorems 1,2 using Lemmas 1-3.
Proof of Theorem 1. By Lemma 1, we obtain a T-periodic solution u for the

problem (P). Lemma 3 shows that this solution u is unstable.

Proof of Theorem 2. From Lemmas 1 and 2, it follows that

deg (I −K ◦ g,BR(0)\Br(0), 0) 6= 0

since m− l + 1 is an odd integer. Therefore there exists a nontrivial T-periodic solution
u for (P). By Lemma 3, this u is an unstable T-periodic solution of (P). Next assume the
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existence of nondegenerate nontrivial T-periodic solution u for (P). Since the problem
(L) do not have 0 as an eigenvalue, I −K ◦ g′(u) is invertible. Let k be the sum of the
algebraic multipliers of the eigenvalues of (L) greater than 1. Then we have

deg (I −K ◦ g,Bε(u), 0) = (−1)k,

for sufficiently small ε > 0. Therefore it holds from Lemmas 1 and 2 that

deg (I −K ◦ g,BR(0)\(Br(0) ∪Bε(u)), 0) 6= 0.

This implies the existence of another nontrivial T-periodic solution of (P).

R e m a r k 1. Under the hypotheses of Theorem 2, u ≡ 0 is an unstable T-periodic
solution for (P) by Lemma 3.

3. Case of g(t, x, ξ) = f(ξ) +h(t, x). In the present section, we consider the special
case that g(t, x, ξ) = f(ξ) + h(t, x) for (t, x, ξ) ∈ R+ × Ω̄ ×R, where f ∈ C1,α(R) and
h ∈ C1,α(R+ × Ω̄) which is T-periodic with respect to the first variable.

Theorem 3. Under the assumptions i), ii), if λl−1 < f ′(0) < λl for some l ∈ N with
2 ≤ l ≤ m and m− l+ 1 is odd , then the problem (P) with g(t, x, ξ) = f(ξ) + h(t, x) has
at least two unstable T-periodic solutions for h with ‖h‖ sufficiently small. Moreover if
all T-periodic solutions for (P) are nondegenerate, then there exist at least three unstable
T-periodic solutions for (P).

P r o o f. By the same argument as in the proof of Lemma 2, there are positive numbers
δ, ω satisfying that

(5) 〈Lv − f(v), Q1v −Q2v〉 ≥ ω|v|2

for all v ∈ H2(Ω) ∩H1
0 (Ω) with 0 < |v| ≤ δ. Take λl−1 < b < λl. By the same argument

as in the proof of Lemma 2, we obtain C2 > 0 such that for any s ∈ [0, 1], if v ∈ D(L)
satisfies

Lv − {sg(t, x, v) + (1− s)bv} = 0,

then

sup
t∈[0,T ]

|v(t)| ≤ C2(‖v‖+ ‖h‖).

Let r < δ
2C2

and ‖h‖ < min{ δ
2C2

, ωr}. Suppose that

Lvs − {sg(t, x, vs) + (1− s)bvs} = 0

for some s ∈ [0, 1] and vs ∈ D(L) with ‖vs‖ = r. Since

sup
t∈[0,T ]

|vs(t)| ≤ δ,

it follows from (2) that

� Lvs − {sg(t, x, vs) + (1− s)bvs}, Q̃1vs − Q̃2vs �> 0.

This is a contradiction. Therefore we get

v −K{sg(t, x, vs) + (1− s)bv} 6= 0
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for all v ∈ H with ‖v‖ = r. By the same method as in the proof of Lemma 2, it holds
that

deg (I −K ◦ g,Br(0), 0) = (−1)l−1.

In order to show the rest of the proof, it is sufficient to take the same process as in the
proof of Theorem 2.

We next give a sharper result than the above theorem. A solution w of the semilinear
elliptic problem

(S)

{
−∆w = f(w) in Ω

w = 0 on ∂Ω

is said to be nondegenerate if 0 is not an eigenvalue of the linearized problem of (S)

(SL)

{
−∆v − f ′(w)v = λv in Ω

w = 0 on ∂Ω.

The stability and instability of solutions for (S) are defined as same as those of T-periodic
solutions for (P).

Theorem 4. Under the hypotheses of Theorem 3 , if l = m and f ′ is strictly increasing
on [0,+∞) and strictly decreasing on (−∞, 0), then the problem (P) with g(t, x, ξ) =
f(ξ) + h(t, x) possesses at least three unstable T-periodic solutions for h with ‖h‖ > 0
sufficiently small.

R e m a r k 2. From the proof of Theorem 4, we can see that if ‖h‖ is sufficiently small,
then there are three unstable solutions u1, u2, u3and they lie in small neighborhoods in
L2(0, T ;L2(Ω)) of unstable solutions w1, w2, 0 for (S), respectively.

We need the following two lemmas.

Lemma 4. Under the assumptions of Theorem 4 , if w is a solution for (S ), then there
are δ1, ρ1 > 0 such that for δ ≤ δ1 and 0 < ‖h‖ ≤ ρ1δ,

deg (I −K ◦ g,Bδ(w), 0} = (−1)n,

where n is the sum of the multiplicities of the eigenvalues of K ◦ f ′(w) greater than 1.

P r o o f. Let X1 and X2 be closed subspaces of L2(Ω) spanned by eigenfunctions
corresponding to the eigenvalues of (SL) greater and less than 0, respectively. Then X1

and X2 are orthogonal. Denote by Qi and Q̃i the projections of L2(Ω) onto Xi and the
canonically extended projection of Qi on H onto L2(0, T ;Xi) for i = 1, 2, respectively. It
is easy to see the existence of some positive number γ satisfying∫

Ω

(−∆v − f ′(w)v)(Q1v −Q2v)dx ≥ γ|v|2

for all v ∈ H2(Ω) ∩H1
0 (Ω). Since f : H → H is of class C1, we get

f(u) = f(w) + f ′(u− w) + φ(u− w)

for u ∈ H, where φ ∈ o(‖v‖) as ‖v‖ → 0. It follows that

Lu− g(t, x, u) = L(u− w)− f ′(w)(u− w)− φ(u− w)− h.
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Therefore for s ∈ [0, 1] and u ∈ D(L), we have

� s{Lu− g(t, x, u)}+ (1− s){L(u− w)− f ′(w)(u− w)},
Q̃1(u− w)− Q̃2(u− w)�

=� L(u− w)− f ′(w)(u− w)sφ(u− w)− sh,
Q̃1(u− w)− Q̃2(u− w)�

=
∫ T

0

∫
Ω

{ut −∆(u− w)− f ′(w)(u− w)− sφ(u− w)− sh}

{Q1(u− w)−Q2(u− w)}dxdt

=
∫ T

0

∫
Ω

{−∆(u− w)− f ′(w)(u− w)− sφ(u− w)− sh}

{Q1(u− w)−Q2(u− w)}dxdt

≥ γ‖u− w‖2 − (‖φ(u− w)‖+ ‖h‖)‖u− w‖.
By φ(v) ∈ o(‖v‖), for 0 < ε < γ there is δε > 0 such that ‖φ(v)‖ ≤ ε‖v‖ if ‖v‖ ≤ δε.

Taking δ1 < δε and ρ1 = γ − ε, if δ ≤ δ1 and ‖h‖ ≤ ρ1δ, then it holds that

� s{Lu− g(t, x, u)}+ (1− s){L(u− w)− f ′(w)(u− w)},
Q̃1(u− w)− Q̃2(u− w)�> 0

for s ∈ [0, 1] and u ∈ ∂Bδ(w). This shows that

s{u−K ◦ g(t, x, u)}+ (1− s){u− w −K ◦ f ′(w)(u− w)} 6= 0

for s ∈ [0, 1] and u ∈ ∂Bδ(w). According to the homotopy invariance of the Leray-
Schauder degree, it follows that

deg (I −K ◦ g,Bδ(w), 0) = deg (I −K ◦ f ′(w), Bδ(0), 0).

Suppose that

K ◦ f ′(w)v = v,

i.e.,

vt −∆v − f ′(w)v = 0

for some v 6= 0. Multiplying this equality by vt and integrating on (0, T )× Ω, we obtain
vt ≡ 0 and hence

−∆v = f ′(w)v,

which contradicts that w is nondegenerate. This implies that 1 is not an eigenvalue of
K ◦ f ′(w). Consequently, we see

deg (I −K ◦ f ′(w), Bδ(0), 0) = (−1)n,

where n is the sum of the multiplicities of the eigenvalues of K ◦ f ′(w) greater than 1.
This completes the proof.

We investigate a relation for stability and instability between a solution for (S) and
a T-periodic solution for (P). For a solution w of (S) and a T-periodic solution u of (P),
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denote by λw and µu the first eigenvalue of (SL) and a real principal eigenvalue of (L),
respectively.

Lemma 5. Let w ∈ C2(Ω̄) be a solution of the problem (S ) which is nondegenerate.
Then there exist δ2, ρ2 > 0 such that if u ∈ Bδ2(w) is a T-periodic solution for (P) with
g(t, x, ξ) = f(ξ) + h(t, x) with ‖h‖ ≤ ρ2, then u is nondegenerate and the sign of µu
coincides with that of λw.

P r o o f. Suppose that u is a T-periodic solutions for (P) and w is a solution for (S).
Let ϕ and ψ be positive eigenfunctions corresponding to λw and µu, respectively. Then
it holds that

(6)
∫ T

0

∫
Ω

{f ′(u)− f ′(w)− λw + µu}ϕψdxdt = 0.

By f ∈ C1,α(R), there is C1 > 0 satisfying that

(7) |f ′(ξ1)− f ′(ξ2)| ≤ C1|ξ1 − ξ2|α

for ξ1, ξ2 ∈ R. Since u is a T-periodic solution for (P) and w is a solution for (S), it
follows that

∂(u− w)
∂t

−∆(u− w)− {f(u)− f(w)} − h = 0.

On the other hand we have by the same argument as in the proof of Lemma 2, there are
δ2, ρ2 > 0 such that

(8) sup
(t,x)∈[0,T ]×Ω̄

|u(t, x)− w(x)| < (
|λw|
C1

)1/α

if ‖h‖ ≤ ρ2 and u ∈ Bδ2(w) is any T-periodic solution for (P) with g(t, x, ξ) = f(ξ) +
h(t, x) since f is Lipschitz continuous. Let ‖h‖ ≤ ρ2 and u ∈ Bδ2(w) be a solution for
(P). In the case of λw < 0, assuming that µu ≥ 0, we have by (7) and (8),

f ′(u)− f ′(w)− λw + µu > 0,

which contradicts (6). This implies that µu < 0. By the same argument as the above, we
can prove the case of λw > 0. This completes the proof.

Proof of Theorem 4. Under the hypotheses of Theorem 4, there exist at least two
nontrivial solution w1 and w2 in C2(Ω̄) for (S) which are nondegenerate and unstable (see
[4]). It is immediate that 0 is nondegenerate unstable solution for (S). Choosing positive
numbers δ and ρ sufficiently small, by lemmas 4 and 5, there are at least three unstable
T-periodic solutions u1, u2, u3 for (P) with g(t, x, ξ) = f(ξ) + h(t, x) and 0 < ‖h‖ ≤ ρ

such that ui ∈ Bδ(wi) for i = 1, 2 and u3 ∈ Bδ(0).

Both stable T-periodic solutions and unstable ones exist in the following cases.

Theorem 5. Suppose that

f ′(0) < λ1 < lim inf
|ξ|→∞

g(ξ)
ξ
≤ lim sup
|ξ|→∞

g(ξ)
ξ

< λ2
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and f ′ is strictly increasing on [0,∞) and strictly decreasing on (0,∞). Then the problem
(P) with g(t, x, ξ) = f(ξ) + h(t, x) has at least one stable T-periodic solution and two
unstable T-periodic solutions if ‖h‖ > 0 is sufficiently small.

P r o o f. By [4], there are at least two nontrivial solutions of (S) which are nondegen-
erate and unstable. Obviously, 0 is a stable solution for (S). Using Lemmas 4 and 5, we
can obtain the consequence of this theorem.

References

[1] N. D. Al ikakos, P. Hess and H. Matano, Discrete order preserving semigroups and
stability for periodic parabolic differential equaitons, J, Diff. Eq. 82 (1989), 322-341.

[2] H. Amann, Periodic solutions for semi-linear parabolic equations, in ”Nonlinear Analy-
sis: A Collection of Papers in Honor of Erich Rothe”, Academic Press, New York, 1978,
1-29.

[3] A. Beltramo and P. Hess, On the principal eigenvalue of a periodic-parabolic operator ,
Comm. Part. Diff. Eq. 9 (1984), 919-941.

[4] A. Castro and A. Lazer, Critical point theory and the number of solutions of a Dirichlet
problem, Ann. Math. Pure Appl. 70 (1979), 113-137.

[5] D. Henry, Geometric theory of semilinear parabolic equaitons, Lecture Notes in Math.
840, Springer-Verlag, New York, 1981.

[6] P. Hess, On positive solutions of semilinear periodic-parabolic problems in infinite
-dimensional systems, ed. Kappel-Schappacher, Lecture Notes in Math. 1076 (1984),
101-114.

[7] N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations,
Proc. Amer. Math. Soc. 106 (1989), 107-114.

[8] , Existence of nontrivial solutions of semilinear elliptic equaitons, Nonlinear
Anal. 13 (1989), 695-705.

[9] , Existence of unstable periodic solutions for semilinear parabolic equations, to
appear in Nonlinear Analysis.

[10] M. W. Hirsch, Differential equations and convergence almost everywhere in strongly
monotone semiflows, Contemporary Math. 17 (1983), 267-285.

[11] J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979),
601-612.

[12] I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space,
Proc. Amer. Math. Soc. 109 (1990), 653-661.


