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Abstract. We consider noncoercive functionals on a reflexive Banach space and establish
minimization theorems for such functionals on smooth constraint manifolds. The functionals
considered belong to a class which includes semi-coercive, compact-coercive and P-coercive func-
tionals. Some applications to nonlinear partial differential equations are given.

1. Introduction. Let V be a real reflexive Banach space with dual V ∗ and the pairing
between V and V ∗ denoted by 〈·, ·〉 and the norm by ‖ · ‖. Let

F : V → R ∪ {∞}

be a weakly lower semicontinuous functional and let S ⊂ V be a weakly closed set. If it is
the case that F is coercive, then it is a classical result that there exists u ∈ S such that

(1.1) F (u) = min
v∈S

F (v).

(See e.g.[MW],[St].) On the other hand, if F is not necessarily coercive but there exists
a weakly lower semicontinuous nonnegative functional

G : V → R+ ∪ {∞}

such that the perturbed functionals

Fε(u) = F (u) + εG(u),
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are coercive for ε > 0 and that the solution sets {uε}, of

(1.2) Fε(u) = min
v∈S

Fε(v)

are a priori bounded, then a solutions of the original problem exists and may be obtained
via a limit process, letting ε → 0. For, since V is reflexive, the set {uε}, being assumed
bounded, will have a weakly convergent subsequence, say {uεn}, uεn ⇀ u, where ⇀

denotes weak convergence. Hence, by the weak lower semicontinuity

F (u) ≤ lim inf
n→∞

F (uεn)

≤ lim inf
n→∞

Fεn(uεn)

≤ lim inf
n→∞

Fεn(v), v ∈ S

= F (v), v ∈ S.
This regularization procedure has been used extensively and dates back (for function-

als of a special from) to at least [F] and [LS] and has been widely used (see e.g.[KS],[ASV1-
3],[AV], [BG], [BGT],[H],[LS1-2],[S]). The procedure, of course will work, whenever the
above conditions hold, i.e. we can find a regularizer G and we can show that the solution
set of (1.2) is a priori bounded.

We here provide a class of functionals (functionals with property (P )) (and compatible
manifolds S), a framework, general enough, to include most of the above cited methods of
attack, and include some applications to boundary value problems for nonlinear elliptic
partial differential equations.

2. Functionals with property (P )

2.1. Assumptions and notations. Let

A : V → V ∗

be a mapping such that the functional

ϕ : V → R
given by

u 7→ 〈Au, u〉
is weakly lower semicontinuous. Further assume that

j : V → R ∪ {∞}( 6≡ ∞)

is a convex lower semicontinuous (hence weakly lower semicontinuous) functional satis-
fying (without loss in generality) j(0) = 0.

We shall assume F is of the form

(2.1) F = ϕ+ j.

Let Y be a Banach space with norm ‖ · ‖Y and suppose that

ψ : V → Y

is a completely continuous mapping. Let γ ∈ Y be fixed and let

S = {u ∈ V : ψ(u) = γ}.
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Since ψ is completely continuous, i.e. continuous from V endowed with the weak topology
to Y with the norm topology, S is weakly closed in V . We shall also consider the case
that S is a closed convex set. We assume that S 6= ∅, that j(u) < +∞, for some u ∈ S
and ϕ is bounded from below on S in the sense that there exist constants c > 0 and
0 ≤ β < 2 such that

(2.2) ϕ(u) ≥ −c‖u‖β .

and we consider the minimization problem

(2.3) F (u) = min
v∈S

F (v).

R e m a r k 1. If S is a closed convex set, by changing the definition of F to

F = ϕ+ j + IS ,

where

IS(u) =

{
∞, u 6∈ S
0, u ∈ S

is the indicator function of S, we obtain that problem (2.3) is equivalent to

F (u) = min
v∈V

F (v),

with the modified F .

As before, we introduce a property which together with certain compatibility condi-
tions on S will imply the boundedness of the solution set of the regularized problems.
As we shall see this property will be an extension of the concepts compact coerciveness
and P-coerciveness used in the literature, e.g.[BGT], [BT], [ASV1-3], [AV].

2.2. Property (P ).

Definition. We say that the functional F (or the pair (ϕ, j) or ϕ, if j = 0) has
property (P ) on S whenever the following hold: There exists a constant p > 1 such that:
If {vn} ⊂ S is any sequence in S satisfying, as n→∞,

(2.4)



(a) ‖vn‖ → ∞,

(b) wn =
vn
‖vn‖

⇀ w,

(c) ‖vn‖ ≤ ‖vn − λw‖, ∀n, ∀λ ≥ 1,

(d) lim sup
n→∞

ϕ(vn)
‖vn‖p

≤ 0,

then there exists v0 ∈ S such that

(2.5) lim sup
n→∞

F (vn) > F (v0).

(For a Banach space geometric interpretation of condition (2.4 (c)) see e.g. [J].)
We shall next give a sequence of sufficient conditions guaranteeing that property (P )

holds.
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Proposition 2.1. Suppose that F satisfies the conditions of the definition with (c)
replaced by

(c′) 1 ≤ ‖wn − w‖, ∀ n sufficiently large,

or

(c′′) ‖w‖ < 1, provided V is locally uniformly convex with respect to ‖ · ‖,
or

(c′′′) V is a Hilbert space , and w = 0,

then F satisfies property (P ).

P r o o f. Suppose {vn} and F are as above. We label the cases to be considered as
(c′), (c′′), (c′′′).

Case (c′): Since (by (a)) ‖vn‖ ≥ 1, for n sufficiently large, we have from (c) that

‖vn‖ ≤ ‖vn − ‖vn‖w‖, ∀n sufficiently large,

hence

1 ≤ ‖wn − w‖, ∀n sufficiently large,

and property (P ) holds.
Case (c′′): We first note that if V is reflexive then we may choose (by the Lindenstrauss

- Asplund - Trojanski theorem [PS] or [T]) an equivalent norm on V such that V is locally
uniformly convex with respect to the new norm. The local uniform convexity of V yields
the property that (see e.g.[B])

un → u, whenever un ⇀ u and ‖un‖ → ‖u‖.

Suppose then that the conditions of the definition hold for a sequence {vn} but that (c′′)
is false, i.e. ‖w‖ ≥ 1. We then have

lim sup
n→∞

‖wn‖ = 1 ≤ ‖w‖,

however, since ‖ · ‖ is lower semicontinuous, it follows that

‖w‖ ≤ lim inf
n→∞

‖wn‖,

and hence

‖w‖ = lim
n→∞

‖wn‖,

and thus by the above property

wn → w,

contradicting the fact that for n large

1 ≤ ‖wn − w‖,

which follows from (c).
Case (c′′′): Suppose {vn} is a sequence as in the definition. Choose λ = 1 in (c) and

get

‖vn‖2 ≤ ‖vn − w‖2 = ‖vn‖2 + ‖w‖2 − 2〈vn, w〉,
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(〈·, ·〉 is the inner product of V now) and thus

〈wn, w〉 ≤
‖w‖2

2‖vn‖2
,

implying that
‖w‖2 = lim

n→∞
〈wn, w〉 = 0,

hence w = 0.
Thus in either of the three cases we have shown that property (P ) holds.

Proposition 2.2. Assume that F satisfies: If {vn} is a sequence in S such that

(2.6)


• ‖vn‖ → ∞, wn =

vn
‖vn‖

⇀ w

• sup
n∈N

F (vn) < +∞,

then
wn =

vn
‖vn‖

→ w.

Then F has property (P ).

P r o o f. Let {vn} ⊂ S be a sequence such that (2.4) holds, we claim that

lim sup
n→∞

F (un) = +∞

and hence taking v ∈ S such that j(v) < ∞ we complete the proof. If the claim were
false we get that

F (vn) ≤ c, n ∈ N

for some constant c and hence by assumption

wn → 0,

a contradiction to ‖wn‖ = 1.

The following example shows that the conditions given by proposition 2.2 are a strict
special case of property (P ), even in the case of Hilbert spaces.

Example. Let V be an infinite dimensional Hilbert space and let

F (u) =
‖u‖

1 + ‖u‖
.

We shall show that F is weakly lower semicontinuous, has property (P ), yet does not
satisfy the conditions of proposition 2.2. In fact, suppose that {un} is a sequence with
un ⇀ u. Select a subsequence {unk} ⊂ {un} such that

lim
k→∞

F (unk) = lim inf
n→∞

F (un).

Since {unk} is bounded, we may assume, by passing to a subsequence, if necessary, that
{‖unk‖} is convergent. Moreover, by the weak lower semicontinuity of the norm, we have

‖u‖ ≤ lim
k→∞

‖unk‖.

Since the mapping

G : R+ → R+, x 7→ x

1 + x
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is continuous and increasing, we get

F (u) = G(‖u‖) ≤ G( lim
k→∞

‖unk‖)

= lim
k→∞

G(‖unk‖)

= lim
k→∞

F (unk)

= lim inf
n→∞

F (un).

Hence F is weakly lower semicontinuous. To show that F has property (P ) we use the
definition. Let {vn} be such a sequence, then, since ‖vn‖ → ∞, we have that

lim sup
n→∞

F (vn) = 1 > F (0),

i.e. (2.5) holds and hence F has property (P ). Since V is infinite dimensional, we may
choose a sequence {un} ⊂ V, ‖un‖ = 1 such that it contains no convergent subsequences.
Let vn = nun, then ‖vn‖ → ∞. By passing to a subsequence, we may assume that

un =
vn
‖vn‖

⇀ w.

Also, since F is bounded all the conditions of proposition 2.2 hold, yet un = vn
‖vn‖ does

not converge to w.
We shall give a useful consequence of proposition 2.2 which yields property (P ) for

functionals F which have the property that the associated ϕ is coercive off its zero set
which is assumed a finite dimensional linear space. We prove the following.

Proposition 2.3. Suppose that ϕ is nonnegative and positive homogeneous of degree
p > 1. Further assume that

kerϕ = {u : ϕ(u) = 0}
is a finite dimensional subspace of V such that

(2.7) ϕ(u+ v) = ϕ(v), ∀v ∈ V, ∀u ∈ kerϕ.

Furthermore assume that V = kerϕ⊕X, where X is a closed subspace of V and ϕ|X is
coercive in the sense that there exists c > 0 such that

(2.8) ϕ(v) ≥ c‖v‖p, ∀v ∈ X.

Then F = ϕ+ j satisfies property (P ) for any j satisfying our stated assumptions.

P r o o f. We shall show that the conditions of proposition 2.2 are met. To this end let
{vn} be a sequence satisfying

‖vn‖ → ∞,
vn
‖vn‖

⇀ w,

and

supF (vn) < +∞.
Since j is convex and lower semicontinuous, there exist constants a, b ∈ R such that

j(u) ≥ a‖u‖+ b, ∀u ∈ V.
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Hence

0 ≥ lim sup
n→∞

1
‖vn‖p

[ϕ(vn) + j(vn)]

≥ lim sup
n→∞

ϕ(vn)
‖vn‖p

+ lim inf
n→∞

a‖vn‖+ b

‖vn‖p

= lim sup
n→∞

ϕ

(
vn
‖vn‖

)
= lim sup

n→∞
ϕ(wn)

≥ lim inf
n→∞

ϕ(wn)

≥ ϕ(w) ≥ 0.
Hence

(2.9) w ∈ kerϕ and lim
n→∞

ϕ(wn) = 0.

It follows from (2.6) that vn = ξn + ηn, ξn ∈ kerϕ, ηn ∈ X. Hence (2.4) and (2.5) imply

ϕ(vn) = ϕ(ηn) ≥ c‖ηn‖p

and

ϕ(wn) =
ϕ(vn)
‖vn‖p

≥ c
(
‖ηn‖
‖vn‖

)p
= c

∥∥∥∥ ηn
‖vn‖

∥∥∥∥p
and we conclude by (2.9) that

ηn
‖vn‖

→ 0.

Since wn ⇀ 0, it follows from (2.8) that ξn
‖vn‖ ⇀ 0. Since kerϕ is finite dimensional, we

conclude that ξn
‖vn‖ → 0. We hence conclude that F has property (P ).

Proposition 2.4. Let V be a Hilbert space and let K be a closed convex subset of V ,
S ⊂ K, 0 ∈ K, and assume that A is nonnegative, i.e. 〈Au, u〉 ≥ 0, u ∈ K, and assume
that : If {vn} is a sequence in K such that

‖vn‖ → ∞,
vn
‖vn‖

⇀ 0,

and

(2.10)
ϕ(vn)
‖vn‖2

→ 0,

then

(2.11) lim sup
n→∞

1
‖vn‖

F (vn) > 0.

Then F has property (P ) on S.

P r o o f. Let {un} ⊂ S be a sequence such that (2.4) holds, then since {un} ⊂ K and
(2.10) is valid we get by assumption that (2.11) is true. Since ‖vn‖ → ∞ we must have
that

lim sup
n→∞

F (vn) =∞,
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and therefore

lim sup
n→∞

F (vn) > F (v),

for all v ∈ S with j(v) < +∞; hence (2.5) holds.

The property described in proposition 2.4 is the property called P -coerciveness used
in [ASV3], which in turn is an extension of some earlier properties used in [ASV1-2].

Corollary 2.5. Let V,K be as above and assume again that A is nonnegative and
there exist c > 0, P0, P1 : V → R+ such that for all v ∈ K satisfying

(2.12) ‖v‖ = 1, λv ∈ K, λ ≥ 1

one has

(2.13)
1
λ
〈A(λv), v〉+ P0(v) + P1(v) + j+(v) ≥ c

(j+(v) = max{j(v), 0}), P0(K) is bounded and there exists s > 0 such that

(2.14) P0(λu) ≤ λsP0(u), ∀λ ∈ [0, 1], ∀u ∈ K,

further

(2.15) P1(vn)→ 0, whenever vn ⇀ 0, {vn} ⊂ K.

Then F satisfies property (P ).

P r o o f. The above result is from [ASV3], where it is shown that the above conditions
imply the hypotheses of proposition 2.4 and hence property (P ) holds.

Corollary 2.5 contains exte nsions of the concepts compact coerciveness used in [BGT],
[GT].

If it is the case that V is a Hilbert space and the functional F does not have the
special structure indicated above but is only assumed to be weakly lower semicontinuous
another property appears more convenient, namely we use the following definition (see
[LS2]).

Definition We say that the functional F has property (P ′) on S whenever the
following hold:

If {vn} ⊂ S is any sequence in S satisfying, as n→∞,

(2.16)



• ‖vn‖ → ∞

• wn =
vn
‖vn‖

⇀ 0

• lim sup
n→∞

F (vn)
‖vn‖λ

≤ 0, ∀λ > 0,

then there exists v0 ∈ S such that

(2.17) lim sup
n→∞

F (vn) > F (v0).

One immediately sees that if F has the special structure assumed earlier and F

satisfies property (P ′), the F also satisfies property (P ), one only needs to observe that
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the convexity of j implies that if {vn} is a sequence in S such that

‖vn‖ → ∞,

then

lim inf
n→∞

j(vn)
‖vn‖2

≥ 0.

Also if F is as in propositions 2.2, 2.3, 2.4 and corollary 2.5, then F in fact satisfies
property (P ′).

3. Minimizing functionals. In this section we shall give a typical theorem for the
existence of a minimum for a functional satisfying the earlier assumptions and property
(P ). For more general results and several additional applications we refer to [LS1-2]. We
shall also simplify matters by assuming that V is a Hilbert space.

Associated with the functional j we have the following functional j∞ : V → R∪ {∞}
defined by j

j∞(w) = lim
t→∞

1
t
j(tw).

This functional has the following properties as stated and proved in [ASV1].
(1) j∞ is convex and lower semicontinuous with j∞(0) = 0,
(2) j(u+ v) ≤ j(u) + j∞(v), ∀u, v ∈ H,
(3) j∞(λw) = λj∞(w) ∀λ ≥ 0, ∀w ∈ V,
(4) If ‖un‖ → ∞ and un

‖un‖ ⇀ w, then

j∞(w) ≤ lim inf
n→∞

j(un)
‖un‖

.

Theorem 3.1. Let F satisfy property (P ) on S and suppose the following compatibility
condition is satisfied : If w ∈ V is such that there exists a sequence {un} ⊂ V such that

(3.1)



• ‖un‖ → ∞, wn =
un
‖un‖

⇀ w

• lim sup
n→∞

1
‖un‖

ϕ(un) + j∞(w) ≤ 0

• lim
n→∞

ψ(un)
‖un‖λ

= 0, ∀λ > 0,

then we have

(3.2)

{
u− w ∈ S, ∀u ∈ S

F (u− w) ≤ F (u), ∀u ∈ S.

Under the above assumptions the minimization problem (1.1 ) has a solution u ∈ S.

P r o o f. We employ the method of elliptic regularization (see e.g. [KS]), i.e. we con-
sider the perturbed functionals

(3.3) Fε(u) = F (u) + ε‖u‖2, u ∈ V, ε > 0

and show that the problems

(3.4) Fε(u) = min
u∈S

Fε(v)
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have solutions {uε} ⊂ S. We next show that the family {uε} is uniformly bounded, from
which the result will follow using the argument presented at the beginning.

Thus consider problem (3.4). Since j is lower semicontinuous and convex, there exists
` ∈ V and c ∈ R such that

j(u) ≥ 〈`, u〉+ c, ∀u ∈ V,

Hence
Fε(u) = ε‖u‖2 + 〈Au, u〉+ j(u)

≥ ε‖u‖2 − c‖u‖β − |〈`, u〉| − |c|,
since 0 ≤ β < 2 we obtain immediately that

Fε(u)→∞ as ‖u‖ → ∞,

i.e. Fε is coercive on V , hence on S. Since S is weakly closed in V , there exists uε ∈ S
such that

(3.5) Fε(uε) = min
v∈S

Fε(v).

It suffices therefore to show that {uε} is bounded. Suppose this is not the case. Then
there exists a subsequence

{un = uεn} ⊂ {uε}, εn ↓ 0,

such that
‖un‖ → ∞, n→∞.

It follows from (3.5) that for all v ∈ S

(3.6) F (un) + εn‖un‖2 ≤ F (v) + εn‖v‖2.

Hence

lim sup
n→∞

1
‖un‖

F (un) ≤ lim sup
n→∞

1
‖un‖

(F (un) + εn‖un‖2)

≤ lim sup
n→∞

1
‖un‖

(F (v) + εn‖v‖2)

= 0.
Passing to a subsequence, if necessary, we may assume that

wn =
un
‖un‖

⇀ w.

Using the properties of the functional j∞ (see above) we have

j∞(w) ≤ lim inf
n→∞

j(un)
‖un‖

,

hence

lim sup
n→∞

1
‖un‖

ϕ(un) + j∞(w) ≤

lim sup
n→∞

1
‖un‖

ϕ(un) + lim inf
n→∞

j(un)
‖un‖

≤

lim sup
n→∞

1
‖un‖

F (un) ≤ 0.



NONCOERCIVE FUNCTIONALS 61

Further, since {un} ⊂ S, ψ(un) = γ, therefore we must have

lim sup
n→∞

ψ(un)
‖un‖λ

= 0, λ > 0.

Thus (3.1) holds and consequently, by hypothesis, (3.2) must hold. In particular,

un − w ∈ S, F (un − w) ≤ F (un), ∀n.
Letting v = un − w in (3.6), we get

F (un) + εn‖un‖2 ≤ F (un − w) + εn‖un − w‖2

≤ F (un) + εn‖un − w‖2,
thus

‖un‖2 ≤ ‖un − w‖2, ∀n,
or

‖un‖2 ≤ ‖un‖2 − 2〈un, w〉+ ‖w‖2,
and hence

〈un, w〉 ≤
1
2
‖w‖2.

Therefore

〈wn, w〉 =
1
‖un‖

〈un, w〉 ≤
‖w‖2

2‖un‖
,

and since wn ⇀ w we conclude w = 0, i.e.

wn ⇀ 0.

Using (3.6) again and dividing the inequality by ‖un‖2, we obtain

lim sup
n→∞

1
‖un‖2

F (un) ≤ 0,

i.e.

(3.7) lim sup
n→∞

{
1

‖un‖2
ϕ(un) +

1
‖un‖2

j(un)
}
≤ 0.

Since j is convex and j(0) = 0, we have

lim inf
n→∞

j(un)
‖un‖2

≥ lim inf
n→∞

j

(
un
‖un‖2

)
≥ j

(
lim
n→∞

un
‖un‖2

)
= 0.

Hence (3.7) implies

lim sup
n→∞

1
‖un‖2

ϕ(un) ≤ 0.

We thus have all three conditions in the definition of property (P ) holding, consequently
there must exist u0 ∈ S such that

(3.8) lim sup
n→∞

F (un) > F (u0).

But (3.6) implies

F (un) ≤ Fεn(un) ≤ Fεn(u0) = F (u0) + εn‖u0‖2,
and we obtain a contradiction to (3.8).
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4. Critical point theorems. We now show how theorem 3.1 together with Liuster-
nik’s theorem (Lagrange multipliers, cf. [K]) may be used to obtain results about critical
points of certain functionals. Much of the discussion in the first part follows [LS1].

We assume that V is a Hilbert space and

a : V × V → R

is a continuous bilinear form which is positive, i.e.

(4.1) a(u, u) ≥ 0, ∀u ∈ V,

then

ϕ : V → R
given by

(4.2) ϕ(u) = a(u, u)

is a nonnegative weakly lower semicontinuous functional on V . Let us assume that

(4.3) dimW = dim ker a = dim{u : a(u, u) = 0} < +∞,

and there exists c > 0 such that

(4.4) ϕ(u) ≥ c‖u‖2, ∀u ∈W⊥,

i.e. ϕ is coercive on W⊥. Let

ψ : V → R
be a weakly continuous functional homogeneous of degree α > 1, α 6= 2, i.e.

(4.5) ψ(λu) = λαψ(u), ∀λ ≥ 0, u ∈ H,

and let S be given by

(4.6) S = {u ∈ H : ψ(u) = γ},

which we assume to be nonempty.
We have the following consequence of theorem 3.1

Corollary 4.1. Let ϕ and ψ satisfy the above conditions and assume

(4.7) ψ(u) 6= 0, ∀u ∈ (W = ker a)\{0}.

Then there exists u ∈ S such that

(4.8) ϕ(u) = min
v∈S

ϕ(v).

P r o o f. We check the conditions of theorem 3.1. To this end we let

〈Au, v〉 = a(u, v)

and j ≡ 0. That F = ϕ satisfies property (P ) follows from proposition 2.3.
We next check the compatibility condition of theorem 3.1. To this end, let {un}, {wn},

and w satisfy (3.1). We shall show that w = 0 and hence (3.2) will obviously hold. We
have (since j∞ ≡ 0)

lim sup
n→∞

1
‖un‖

a(un, un) ≤ 0
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(see (3.1)), hence

lim sup
n→∞

a(wn, wn) = lim sup
n→∞

1
‖un‖2

a(un, un)

≤ 0.

Since ϕ is weakly lower semicontinuous

ϕ(w) ≤ lim inf
n→∞

ϕ(wn) ≤ 0,

and therefore

ϕ(w) = a(w,w) = 0,

i.e. w ∈W = ker a. Now using (3.1) for ψ and the weak continuity of ψ, we get

0 = lim
n→∞

1
‖un‖α

ψ(un) = lim
n→∞

ψ

(
un
‖un‖

)
= lim
n→∞

ψ(wn) = ψ(w),

which by hypothesis implies that w = 0.

Corollary 4.2. Assume the conditions of corollary 4.1 and that ψ also satisfies:

(4.9)

{
∃u ∈ V such that ψ(u) < 0

ψ(u) > 0, ∀u ∈W\{0}.

Then the functional f defined by

(4.10) f(u) = ϕ(u) + ψ(u)

has a nontrivial critical point.

P r o o f. If u ∈ V is such that ψ(u) = M < 0, then ψ(|M |−1/αu) = −1. Thus

S = {u : ψ(u) = −1} 6= ∅.

Since ψ is homogeneous, we have that for u ∈ S

〈ψ′(u), u〉 = αψ(u) = −α 6= 0,

hence ψ′(u) 6= 0, u ∈ S. Let u be the minimizer of corollary 4.1, then we obtain from
Liusternik’s theorem (see [K]) the existence of a Lagrange multiplier µ ∈ R such that

(4.11) ϕ′(u) + µψ′(u) = 0.

Hence
0 = 〈ϕ′(u), u〉+ µ〈ψ′(u), u〉 = 2ϕ(u) + µαψ(u)

= 2ϕ(u)− µα.

Since ϕ(u) > 0 for u ∈ S, we get α > 0. Rescaling, i.e. putting v = µ
1

α−2u, we see that v
is a critical point of f .

R e m a r k. Corollary 4.2 is a theorem from [BTW].

The following corollary contains corollary 4.1 and corollary 4.2 as special cases.
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Corollary 4.3. Let ϕ and ψ be as above (i.e. satisfy the condition (4.1 ) - (4.6 )) and
assume that

(4.12) ψ(v − u) = ψ(v), ∀v ∈ V, ∀u ∈W ∩ kerψ,

where kerψ = {u : ψ(u) = 0}, then the problem (4.8 ) has a solution.

P r o o f. We have shown above already that property (P ) holds. We hence must verify
that (3.1) and (3.2) are true. Thus let w, {wn}, and {un} be as in these conditions. We
know that ϕ(w) = ψ(w) = 0, (see corollary 4.1), i.e. w ∈ kerϕ∩ kerψ. By hypothesis we
have (4.12) holding, i.e. ψ(v − w) = ψ(v), ∀v ∈ V . Hence v − w ∈ S, whenever v ∈ S.
Moreover, since w ∈ kerϕ = W , we have

a(w, v) + a(v, w) = 〈ϕ′(w), v〉 = 0, ∀v ∈W,

hence
ϕ(v − w) = ϕ(v) + ϕ(w)− [a(v, w) + a(w, v)]

= ϕ(v)

proving (3.2) and hence the result follows.

Corollary 4.4. Suppose again that ψ ∈ C1 and that ϕ and ψ satisfy the conditions
at the beginning of this section and that

(i) ψ(u) < 0, for some u ∈ V
(ii) ψ(u) ≥ 0, ∀u ∈W

and
(iii) if u ∈W is such that ψ(u) = 0, then ψ(v − u) = ψ(v), ∀v ∈ V .

Then the functional f given by (4.10 ) has a critical point.

P r o o f. It follows from (i) that

S = {u ∈ V : ψ(u) = −1} 6= ∅.

Since 〈ψ′(u), u〉 = −α, we have ψ′(u) 6= 0, ∀u ∈ S, and we again may apply Liusternik’s
theorem ([K]) together with corollary 4.3 to obtain

ϕ′(u) + µψ′(u) = 0

for some µ ∈ R.

As in corollary 4.2 we have

2ϕ(u)− µα = 0

and since ψ ≥ 0 on ker ϕ we have

S ∩ kerϕ = ∅.

This implies that ϕ > 0 on S, hence ϕ(u) > 0 and µ > 0. Again the rescaling

v = λ−1u = µ
1

α−2u

yields the desired conclusion.
Now we apply theorem 3.1 for minimization problems on closed convex sets to de-

rive existence results for constrained critical points, which are solutions of variational
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inequalities. We assume that S is a closed, convex set in V , and ϕ is

(4.13) F = ϕ+ j + IS .

We consider the minimization problem:

(4.14) u ∈ V : F (u) = min
v∈V

F (v),

which is equivalent to the following problem:

u ∈ S : (ϕ+ j)(u) = min
v∈S

(ϕ+ j)(v).

We need the following simple lemma (cf. Sect. 3.5.4, [DL]).

Lemma 4.5. If u is a solution of (4.14 ) then u satisfies the variational inequality :

(4.15)

{
〈ϕ′(u), v − u〉+ j(v)− j(u) ≥ 0,∀v ∈ S
u ∈ S.

P r o o f. Let u ∈ V satisfy (4.14). Since j(w) < ∞ for some w ∈ S, we have F (u) =
minv∈V F (v) <∞. Hence u ∈ S and j(u) <∞.

For v ∈ S, we have w = u+ t(v − u) ∈ S, ∀t ∈ [0, 1], and

ϕ(u) + j(u) = F (u) ≤ F (w) = ϕ(u+ t(v − u)) + j(u+ t(v − u))

≤ ϕ(u+ t(v − u)) + [(1− t)j(u) + tj(v)].

Therefore
ϕ(u+ t(v − u))− ϕ(u) + t[j(v)− j(u)] ≥ 0, ∀t ∈ [0, 1].

Dividing this inequality by t ∈ [0, 1] and letting t→ 0+, we obtain (4.15).

As in [ASV1], we denote by rcS the recession cone of S:

rcS = {w ∈ V : u+ tw ∈ S,∀u ∈ S,∀t ≥ 0}.
It is proved (see e. g. [R]) that

rcS =
⋂
t>0

t(S − u0), u0 ∈ S

is a closed, convex cone in V , and moreover

(4.16)
w ∈ rcS ⇐⇒ w + u ∈ S, ∀u ∈ S

⇐⇒ ∃u ∈ S : u+ tw ∈ S,∀t ≥ 0.

From theorem 3.1 and lemma 4.5, we have the following existence result for (4.15):

Corollary 4.6. Let F have property (P) on S and suppose the following compatibility
condition is satisfied : If w ∈ rcS is such that there exists a sequence {un} ⊂ S such that

(4.17)


• ‖un‖ → ∞,

un
‖un‖

⇀ w

• lim sup
n→∞

1
‖un‖

ϕ(un) + j∞(w) ≤ 0,

then we have −w ∈ rcS, and

(4.18) ϕ(u− w) + j(u− w) ≤ ϕ(u) + j(u),∀u ∈ S.
Under these assumptions, the variational inequality (4.15 ) has a solution.
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P r o o f. We check the conditions of theorem 3.1 with F given by (4.13) and ψ ≡ 0.
Let w, {un} satisfy (3.1); then (4.16) immediately holds. We prove w ∈ rcS. As in the
proof of theorem 3.1, we have un ∈ S,∀n. Let u ∈ S.Since ‖un‖ > 1 for all n large,one
has (

1− 1
‖un‖

)
u+

1
‖un‖

un ∈ S.

Letting n→∞, we obtain from (3.1) and the fact that S is weakly closed that u+w ∈ S.
Since this holds for all u ∈ S, we have w ∈ rcS by (4.16). By hypothesis, we get−w ∈ rcS,
and (4.18). We prove F (u− w) ≤ F (u) for all u ∈ V . If u 6∈ S then F (u) = IS(u) = ∞
and this is clearly true. If u ∈ S then u− w ∈ S by (4.16) and

F (u− w) = ϕ(u− w) + j(u− w) + IS(u− w) = ϕ(u− w) + j(u− w)

≤ ϕ(u) + j(u) = F (u).

We have (3.2); and all conditions of theorem 3.1 are satisfied. By this theorem, (4.14) is
solvable. Applying lemma 4.5, we obtain the existence of a solution of (4.15).

R e m a r k. Corollary 4.6 is, in some sense, similar to Theorem 3 of [ASV3].
Existence results for noncoercive variational inequalities containing non convex func-

tionals j are considered in [LS2].

An immediate consequence of corollary 4.6 is the following:

Corollary 4.7. Assume F has property (P ) on S, and that if w ∈ rcS satisfies
(4.17 ) then w = 0. Then (4.15 ) has a solution.

5. Some applications. In this section we shall consider a boundary value problem
for a semilinear elliptic equation, and a quasilinear variational inequality as applications
of the results derived above.

Let Ω be a bounded domain in RN with smooth boundary. Consider the boundary
value problem

(5.1)

−∇ · (∇u) + g(x, u) = 0, in Ω
∂u

∂ν
= 0, on ∂Ω,

where g : Ω×R→ R is a given function satisfying Carathéodory type conditions and the
growth conditions given below.

This problem has the following weak formulation:

(5.2)


∫

Ω

∇u · ∇v +
∫

Ω

g(x, u)v = 0, ∀v ∈ H1(Ω)

u ∈ H1(Ω),

where V = H1(Ω) is the Sobolev space of L2 functions having L2 first (weak) derivatives,
endowed with the usual norm ‖u‖ = ‖u‖H1(Ω). Concerning g we assume that it is the
growth condition

|g(x, u)| ≤ a+ b|u|q−1,
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where a, b are constants and

(5.3)

{
1 < q < 2∗ = 2N(N − 2)−1, if 2 < N

1 < q < 2∗ =∞, if N = 2.

Let

G(x, u) =
∫ u

0

g(x, s)ds,

then standard arguments give that solutions of (5.2) are given by the critical points of
the functional

(5.4) f(u) = ϕ(u) + ψ(u),

where

ϕ(u) =
1
2

∫
Ω

|∇u|2,

and

ψ(u) =
∫

Ω

G(x, u(x)), u ∈ V.

It follows that ϕ and ψ are of class C1 and
〈ϕ′(u), v〉 =

∫
Ω

∇u · ∇v

〈ψ′(u), v〉 =
∫

Ω

g(x, u(x))v, ∀u, v ∈ V,

where 〈·, ·〉 denotes the pairing between V and V ∗, the inner product of H1.

With this setup we have the following result.

Corollary 5.1. Assume that

(5.5) G(x, tu) = tαG(x, u), ∀t ≥ 0, a.e. x ∈ Ω, ∀u ∈ R,

and

(5.6)
∫

Ω

G(x,±1) > 0,

and

(5.7)
∫

Ω

G(x, u(x)) < 0, for some u ∈ V.

Then (5.2 ) has a nontrivial solution.

P r o o f. We first check that ϕ has property (P ). It is clear that ϕ is nonnegative
and continuous on V and ϕ is convex and hence weakly lower semicontinuous. We shall
employ proposition 2.2 with F = ϕ. Thus let {vn}, {wn}, w be as in the proposition. It
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follows that limn→∞
ϕ(vn)
‖vn‖2 = 0, and hence

0 ≤ ϕ(w) ≤ lim inf
n→∞

ϕ(wn)

≤ lim sup
n→∞

ϕ(wn)

= lim sup
n→∞

ϕ(
vn
‖vn‖

)

= lim sup
n→∞

ϕ(vn)
‖vn‖2

= 0.

Hence ϕ(w) = 0, i.e. w =constant. Thus also∫
Ω

|∇(wn − w)|2 → 0,

which together with the compactness of the embedding V ↪→ L2(Ω) implies that wn → w.

Thus ϕ has property (P ).
The above also shows that

kerϕ = R, ϕ(v − u) = ϕ(v), ∀v ∈ V, ∀u ∈ kerϕ.

The growth conditions on g and (5.3) imply that the embedding V ↪→ Lq(Ω) is
compact and thus if un ⇀ u, then un → u in Lq(Ω) and hence G(·, un) → G(·, u) in
L1(Ω), which implies the complete continuity of ψ. Using the other hypotheses on g we
may now employ part (b) of corollary 4.1 to complete the proof.

A particular choice of g is

g(x, u) = k(x)|u|α−2u,

where k ∈ C(Ω̄), 1 < 2∗α, α 6= 2. In this case the Carathéodory conditions are easily
verified. The other conditions of the corollary will hold whenever k changes sign on Ω
and

∫
Ω
k > 0.

For examples of the type just discussed for more general quasilinear problems, like
the p-Laplacian, we refer to [LS1-2].

The next example is for the existence of solutions of the following quasilinear varia-
tional inequality:

(5.8)


∫

Ω

a(u)∇u∇(v − u) + J(v)− J(u) ≥
∫

Ω

f(v − u),∀v ∈ S

u ∈ S.

Here Ω, V are as in the above example, f ∈ L2(Ω), and

a(u) =
2|∇u|p

1 + |∇u|p
+

p|∇u|p

(1 + |∇u|p)2
, u ∈ H1(Ω),

where p is a given number, 0 ≤ p ≤ 7. We assume

(5.9) S = {u ∈ V : u ≥ ζ a. e. on Ω}

and

(5.10) J(u) =
∫

Ω

ψ(u(x))dx, u ∈ H1(Ω),
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where ζ : Ω → R, ψ : R → R+ are given functions, ζ ∈ L∞(Ω) and ψ is convex,
continuous such that ψ(0) = 0. It can be checked that S is a closed, convex set in
V = H1(Ω),and J is a convex, lower continuous functional from V to [0,∞]. Since

u 7→
∫

Ω

fu, u ∈ V

is a linear bounded functional, j given by

j(u) = J(u)−
∫

Ω

fu, u ∈ V

is convex and lower semicontinuous from V to R∪{∞}. One can show from the convexity
of ψ that the limit

ψ+ = lim
t→∞

ψ(t)
t

exists in R ∪ {∞}. As usual, |Ω| denotes the Lebesgue measure of Ω. We have the
following result:

Corollary 5.2. If

(5.11)
1
|Ω|

∫
Ω

f(x)dx < ψ+

then (5.8 ) has a solution in H1(Ω).

P r o o f. Let A : V → V ∗, ϕ : V → R be given by

〈Au, v〉 =
∫

Ω

|∇u|p

1 + |∇u|p
∇u∇v,

ϕ(u) = 〈Au, u〉 =
∫

Ω

|∇u|p+2

1 + |∇u|p
, ∀u, v ∈ V.

Since ∫
Ω

∣∣∣∣ |∇u|p1 + |∇u|p
∇u∇v

∣∣∣∣ ≤ ∫
Ω

|∇u||∇v| ≤ ‖u‖‖v‖, ∀u, v ∈ V,

A and ϕ are well defined. Moreover, it is directly verified that the function ξ 7→ |ξ|p+2

1+|ξ|p , ξ ∈
RN is of class C1 and convex on RN (if and only if p ≤ 7 (as may easily be checked using
Maple)) with

∇
(
|ξ|p+2

1 + |ξ|p

)
=
|ξ|p[p+ 2(1 + |ξ|p)]ξ

(1 + |ξ|p)2
, ξ ∈ RN .

We have ϕ ∈ C1(V,R), ϕ is convex on V , and

〈ϕ′(u), v〉 =
∫

Ω

a(u)∇u∇v, ∀u, v ∈ V.

Therefore (5.8) is of the form (4.15). Let F be given by (4.13). Since ϕ is convex and
continuous, it is weakly lower semicontinuous It follows that F also has this property. We
now check that F has property (P ) on V by using proposition 2.4. Let {vn} ⊂ V satisfy
the conditions of this proposition. Suppose that (2.11) does not hold, i.e.,

(5.12) lim sup
n→∞

F (vn)
‖vn‖

≤ 0.
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Since wn = vn/‖vn‖ → 0 in L2(Ω), we have

lim
n→∞

1
‖vn‖

∫
Ω

fvn = lim
n→∞

∫
Ω

fwn = 0.

Moreover, since ϕ, J , and IS are non negative on V , it follows from (5.12) that

lim
n→∞

ϕ(vn)
‖vn‖

= 0.

We have on the other hand
ϕ(vn)
‖vn‖

=
∫

Ω

|∇(vn/‖vn‖)|p+2‖vn‖p+1

1 + |∇vn|p

≥ ‖vn‖
∫

Ω

|∇wn|p+2

‖vn‖−p + |∇wn|p

≥
∫

Ω

|∇wn|p+2

1 + |∇wn|p

for all n sufficiently large (such that ‖vn‖ ≥ 1). Hence

lim
n→∞

∫
Ω

|∇wn|p+2

1 + |∇wn|p
= 0.

Putting Ωn = {x ∈ Ω : |∇wn(x)| ≥ 1}, n = 1, 2, ..., one has

|∇wn|p+2

1 + |∇wn|p
≥


1
2
|∇wn(x)|2 if x ∈ Ωn,

1
2
|∇wn(x)|p+2 if x ∈ Ω \ Ωn.

Therefore

lim
n→∞

∫
Ωn

|∇wn(x)|2 = lim
n→∞

∫
Ω\Ωn

|∇wn(x)|p+2 = 0.

Since p ≥ 0, by Hölder’s inequality,∫
Ω\Ωn

|∇wn(x)|2 ≤ |Ω|
p
p+2

(∫
Ω\Ωn

|∇wn(x)|p+2

) 2
p+2

.

Hence limn→∞
∫

Ω
|∇wn(x)|2 = 0. As wn → 0 in L2(Ω), we have from this limit that

wn → 0 in H1(Ω), contradicting the fact that ‖wn‖ = 1,∀n. This proves (2.11) and
therefore F has property (P ).

Now, let w, {un} satisfy (4.17). Since f is linear, we have f∞ = f . Hence j∞ = J∞−f .
From (4.17), we get

(5.13) lim sup
n→∞

ϕ(un)
‖un‖

+ J∞(w) ≤
∫

Ω

fw.

Since J∞ ≥ 0, this inequality implies that

lim sup
n→∞

ϕ(un)
‖un‖2

≤ 0.

Hence

(5.14) lim
n→∞

ϕ(un)
‖un‖2

= 0.
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Using arguments as in the proof of the property (P ) of F , one can conclude from (5.14)
that

lim
n→∞

∫
Ω

|∇wn(x)|2 = 0, (wn = un/‖un‖).

Since u 7→
∫

Ω
|∇u|2 is weakly lower semicontinuous on H1(Ω), we have

0 ≤
∫

Ω

|∇w|2 ≤ lim inf
n→∞

∫
Ω

|∇wn(x)|2 = 0.

Hence ∇w = 0 a. e. in Ω, i. e., w = constant.
On the other hand, it follows from (5.9) that

rcS = {u ∈ V : u ≥ 0 a. e. on Ω}.

Thus w ≥ 0 a. e. on Ω, that is w ∈ R+. Now,

(5.15)

J∞(w) = lim
t→∞

∫
Ω

ψ(tw)
t

= lim
t→∞

|Ω|ψ(tw)
tw

w

=

{
|Ω|ψ+w if w > 0

0 if w = 0.

From (5.13), we have that

J∞(w) ≤
∫

Ω

fw = w

∫
Ω

f.

From (5.11) and (5.15), we see that this inequality happens only if w = 0. Our conclusion
now follows from corollary 4.7.
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