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1. Introduction. A major progress in the calculus of variations since ten years is
a systematic treatment of problems with lack of compactness. Our aim is to give an
elementary approach to four typical cases. The methods are perhaps more important
than the results. Lack of compactness is well understood when the problem is invariant
under a non-compact group. Sections 2 and 3 are devoted to problems on RN . In this
case, the problem is invariant under translations. Sections 4 and 5 are devoted to critical
exponents. The problem is then invariant under dilations. We try to emphazise the sim-
ilarities between the two cases. In sections 2 and 4, problems are solved because of their
symmetry. In sections 3 and 5, problems are solved by a symmetry breaking. Although
the results are known, the proofs, specially of theorem 4.4, are simpler.

We will use the following functional spaces.

Definition 1.1. The space

H1(RN ) := {u ∈ L2(RN ) : ∇u ∈ L2(RN )}

with the inner product

(u, v)1 :=
∫
RN

[∇u · ∇v + uv]

and the corresponding norm

||u||1 :=
(∫

RN

|∇u|2 + |u|2
)1/2

is a Hilbert space. Let Ω be an open subset of RN . The space H1
0 (Ω) is the closure of

D(Ω) in H1(RN ).
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Let N ≥ 3 and 2∗ := 2N/(N − 2). The space

D1,2(RN ) := {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )}

with the inner product ∫
RN

∇u · ∇v

and the corresponding norm (∫
RN

|∇u|2
)1/2

is a Hilbert space. The space D1,2
0 (Ω) is the closure of D(Ω) in D1,2(RN ). For the sim-

plicity of notations, we shall write 2∗ =∞ when N = 1 or N = 2.

For the following results, see [3] or [9].

Theorem 1.2. (Sobolev imbedding theorem). The following embeddings are con-
tinuous:

H1(RN ) ⊂ Lp(RN ), 2 ≤ p <∞, N = 1, 2,

H1(RN ) ⊂ Lp(RN ), 2 ≤ p ≤ 2∗, N ≥ 3,

D1,2(RN ) ⊂ L2∗(RN ), N ≥ 3.
In particular , the Sobolev inequality holds:

S := inf
u∈D1,2(RN )
|u|2∗=1

|∇u|22 > 0.

Theorem 1.3. (Rellich imbedding theorem). If |Ω| < ∞, the following embeddings
are compact :

H1
0 (Ω) ⊂ Lp(Ω), 2 ≤ p < 2∗.

Corollary 1.4. (Poincaré inequality). If |Ω| <∞, then

λ1(Ω) := inf
u∈H1

0 (Ω)
|u|2=1

|∇u|22 > 0

is achieved.

R e m a r k s 1.5. a) It is clear that H1
0 (Ω) ⊂ D1,2

0 (Ω).
b) If |Ω| <∞, Poincaré inequality implies that H1

0 (Ω) = D1,2
0 (Ω).

2. Subcritical Sobolev inequalities. Let N ≥ 2 and 2 < p < 2∗. Sobolev theorem
implies that

Sp := inf
u∈H1(RN )
|u|p=1

||u||21 > 0.

In order to prove that the infimum is achieved, we consider a minimizing sequence
(un) ⊂ H1(RN ) :

(1) |un|p = 1, ||un||21 → Sp, n→∞.

Going if necessary to a subsequence, we may assume un ⇀ u in H1(RN ), so that

||u||21 ≤ lim||un||21 = Sp.
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Thus u is a minimizer provided |u|p = 1. But we know only that |u|p ≤ 1. Indeed, for
any v ∈ H1 and y ∈ RN the translated function

vy(x) := v(x+ y)

satisfies

||vy||1 = ||v||1, |vy|p = |v|p.
Hence the problem is invariant by the noncompact group of translations. In order to
overcome this difficulty, we will use the following result.

Lemma 2.1. (Brezis-Lieb, 1983). Let Ω be an open subset of RN and let (un) ⊂
Lp(Ω), 1 ≤ p <∞. If
a) (un) is bounded in Lp(Ω),
b) un → u almost everywhere on Ω, then

lim
n→∞

(|un|pp − |un − u|pp) = |u|pp.

P r o o f. See [4], [9] or [10].

R e m a r k s 2.2. a) The preceding lemma is a refinement of Fatou’s lemma.
b) Under the assumptions of the lemma, un ⇀ u weakly in Lp(Ω). However, weak

convergence in Lp(Ω) is not sufficient to obtain the conclusion, except when p = 2.
c) In any Hilbert space

un ⇀ u⇒ lim
n→∞

(|un|2 − |un − u|2) = |u|2.

Lemma 2.3. Let r > 0 and 2 ≤ q < 2∗. If (un) is bounded in H1(RN ) and if

sup
y∈RN

∫
B(y,r)

|un|q → 0, n→∞,

then un → 0 in Lp(RN ) for 2 < p < 2∗.

P r o o f. See [7].

Theorem 2.4. (P.L. Lions, 1984). Let (un) ⊂ H1(RN ) be a minimizing sequence
satisfying (1 ). Then there exists a sequence (yn) ⊂ RN such that uyn

n contains a conver-
gent subsequence. In particular there exists a minimizer for Sp.

P r o o f. Since |un|p = 1, lemma 2.3 implies that

δ := lim
n→∞

sup
y∈RN

∫
B(y,r)

|un|2 > 0.

Going if necessary to a subsequence, we may assume the existence of (yn) ⊂ RN such
that ∫

B(yn,r)

|un|2 > δ/2.

Let us define vn := uyn
n . Hence |vn|p = 1, ||vn||21 → Sp and

(2)
∫
B(0,r)

|vn|2 > δ/2.



100 M. WILLEM

Since (vn) is bounded in H1(RN ), we may assume, going if necessary to a subsequence

vn ⇀ v in H1(RN ),

vn → v in L2
loc(RN ),

vn → v a.e. on RN .

By Brezis-Lieb lemma,
1 = |v|pp + lim |wn|pp,

where wn := vn − v. Hence we have

Sp = lim ||vn||21 = ||v||21 + lim ||wn||21
≥ Sp[(|v|pp)2/p + (1− |v|pp)2/p].

Since, by (2), v 6= 0, we obtain |v|pp = 1, so that ||v||21 = Sp = lim ||vn||21.

Theorem 2.5. There exists a radially symmetric, positive, C2 minimizer for Sp.

P r o o f. 1) By the preceding theorem, there exists a minimizer u ∈ H1(RN ) for Sp.
Using symmetrization ([6]), we may assume that u is radially symmetric. Replacing u by
|u|, we may also assume that u is non-negative.

2) It follows from Lagrange multiplier rule ([9]) that, for some λ > 0, u is a solution
of

−∆u+ u = λup−1.

By Brezis-Kato theorem, u ∈ C2(RN ). The strong maximum principle implies that u is
positive.

3. Subcritical problem. Motivated by a nonlinear Schrödinger equation, we consider
the following minimization problem:

SV := inf
u∈H1(RN )
|u|p=1

∫
RN

[|∇u|2 + V (x)u2]dx,

where N ≥ 2 and 2 < p < 2∗. We assume that V ∈ C(RN ) satisfies

(3) 0 < inf
x∈RN

V (x) < sup
x∈RN

V (x) = lim
|x|→∞

V (x) = 1.

By scaling, it is easy to replace 1 by any positive number. On H1(RN ), we define the
equivalent norm

||u||2 :=
∫
RN

[|∇u|2 + V (x)u2]dx.

We consider a minimizing sequence (un) ⊂ H1(RN ) satisfying

(4) |un|p = 1, ||un||2 → SV , n→∞.

Theorem 3.1. Let (un) ⊂ H1(RN ) be a minimizing sequence satisfying (4 ). Under
assumption (3 ), (un) contains a convergent subsequence. In particular , there exists a
minimizer for SV .

P r o o f. 1) Let u > 0 be a minimizer for Sp. Assumption (3) implies that

SV ≤ ||v||2 < ||v||21 = Sp.
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2) Since (un) is bounded in H1(RN ), we may assume, going if necessary to a subse-
quence,

un ⇀ u in H1(RN ),

un → u in Lploc(RN ),

un → u a.e. on RN .

Brezis-Lieb lemma leads to

1 = |u|pp + lim |wn|pp,
where wn := un − u. Hence we have

SV = lim ||un||2 = ||u||2 + lim ||wn||2

= ||u||2 + lim ||wn||21
≥ SV |u|2p + Sp(1− |u|pp)2/p.

Since, by the first step, SV < Sp, we obtain |u|p = 1, so that

||u||2 = SV = lim ||un||2.

4. Critical Sobolev inequality. Let N ≥ 3. The optimal constant in Sobolev in-
equality is given by

S := inf
u∈D1,2(RN )
|u|2∗=1

|∇u|22 > 0.

In order to prove that the infimum is achieved, we consider a minimizing sequence (un) ⊂
D1,2(RN ):

(5) |un|2∗ = 1, |∇un|22 → S, n→∞.

Going if necessary to a subsequence, we may assume un ⇀ u in D1,2(RN ), so that

|∇u|22 ≤ lim|∇un|22 = S.

Thus u is a minimizer provided |u|2∗ = 1. But we know only that |u|2∗ ≤ 1. Indeed, for
any v ∈ D1,2, y ∈ RN and λ > 0, the rescaled function

vy,λ(x) := λ(N−2)/2v(λx+ y)

satisfies

|∇vy,λ|2 = |∇v|2, |vy,λ|2∗ = |v|2∗ .
Hence the problem is invariant by translations and dilations. In order to exclude non-
compactness, we will use some results from measure theory (see [9]).

Definition 4.1. Let Ω be an open subset of RN and define

K(Ω) := {u ∈ C(Ω) : supp u is a compact subset of Ω},

BC(Ω) := {u ∈ C(Ω) : |u|∞ := sup
x∈Ω
|u(x)| <∞}.

The space C0(Ω) is the closure of K(Ω) in BC(Ω) with respect to the uniform norm. A
finite measure on Ω is a continuous linear functional on C0(Ω). The norm of the finite
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measure µ is defined by

||µ|| := sup
u∈C0(Ω)
|u|∞=1

|〈µ, u〉|.

We denote by M(Ω) (resp. M+(Ω)) the space of finite measures (resp. positive finite
measures) on Ω. A sequence (µn) converges weakly to µ in M(Ω), written

µn ⇀ µ,

provided

〈µn, u〉 → 〈µ, u〉,∀u ∈ C0(Ω).

Theorem 4.2. a) Every bounded sequence of finite measures on Ω contains a weakly
convergent subsequence.

b) If µn ⇀ µ in M(Ω) then (µn) is bounded and

||µ|| ≤ lim||µn||.

c) If µ ∈M+(Ω) then

||µ|| = 〈µ, 1〉 = sup
u∈BC(Ω)
|u|∞=1

〈µ, u〉.

Following P.L. Lions [8], Bianchi, Chabrowski, Szulkin [2] and Ben Naoum, Troestler,
Willem [1], we describe the lack of compactness of the injection D1,2(RN ) ⊂ L2∗(RN ).

Lemma 4.3. (Concentration-compactness lemma). Let (un)⊂D1,2(RN ) be a sequence
such that

un ⇀ u, in D1,2(RN ),

|∇(un − u)|2 ⇀ µ, in M(RN ),

|un − u|2
∗
⇀ ν, in M(RN ),

un → u, a.e. on RN

and define

µ∞ := lim
R→∞

lim
n→∞

∫
|x|≥R

|∇un|2, ν∞ := lim
R→∞

lim
n→∞

∫
|x|>R

|un|2
∗
.

Then it follows that

(6) ||ν||2/2
∗
≤ S−1||µ||,

(7) ν2/2∗

∞ ≤ S−1µ∞,

(8) lim
n→∞

|∇un|22 = |∇u|22 + ||µ||+ µ∞,

(9) lim
n→∞

|un|2
∗

2∗ = |u|2
∗

2∗ + ||ν||+ ν∞.

Moreover , if u = 0 and ||ν||2/2∗ = S−1||µ||, then ν is concentrated at a single point.

P r o o f. Inequality (6) is proved in [8] and inequality (7) in [2]. Equalities (8) and (9)
are proved in [1]. (See also [9] and [10]).
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Theorem 4.4. (P.L. Lions, 1985). Let (un) ⊂ D1,2(RN ) be a minimizing sequence
satisfying (5 ). Then there exists a sequence (yn, λn) ⊂ RN×]0,∞[ such that (uyn,λn

n )
contains a convergent subsequence. In particular there exists a minimizer for S.

P r o o f. Define the Lévy concentration functions

Qn(λ) := sup
y∈RN

∫
B(y,λ)

|un|2
∗
.

Since, for every u,

lim
λ→0+

Qn(λ) = 0, lim
λ→∞

Qn(λ) = 1,

there exists λn > 0 such that Qn(λn) = 1/2. Moreover, there exists yn ∈ RN such that∫
B(yn,λn)

|un|2
∗

= Qn(λn) = 1/2,

since

lim
|y|→∞

∫
B(y,λn)

|un|2
∗

= 0.

Let us define vn := uyn,λn
n . Hence |vn|2∗ = 1, |∇vn|22 → S and

(10)
1
2

=
∫
B(0,1)

|vn|2
∗

= sup
y∈RN

∫
B(y,1)

|vn|2
∗
.

Since (vn) is bounded in D1,2(RN ), we may assume, going if necessary to a subsequence,

vn ⇀ v, in D1,2(RN ),

|∇(vn − v)|2 ⇀ µ, in M(RN ),

|vn − v|2
∗
⇀ ν, in M(RN ),

vn → v, a.e. on RN .

By the preceding lemma,

(11) S = lim |∇vn|22 = |∇v|22 + ||µ||+ µ∞,

(12) 1 = |vn|2
∗

2∗ = |v|2
∗

2∗ + ||ν||+ ν∞,

where

µ∞ := lim
R→∞

lim
n→∞

∫
|x|>R

|∇vn|2, ν∞ := lim
R→∞

lim
n→∞

∫
|x|>R

|vn|2
∗
.

We deduce from (11), (6), (7) and Sobolev inequality,

S ≥ S
(

(|v|2
∗

2∗)
2/2∗ + ||ν||2/2

∗
+ ν2/2∗

∞

)
.

It follows from (12) that |v|2∗2∗ , ||ν|| and ν∞ are equal either to 0 or to 1. By (10),
ν∞ ≤ 1/2 so that ν∞ = 0. If ||ν|| = 1 then v = 0 and ||ν||2/2∗ ≥ S−1||µ||. The preceding
lemma implies that ν is concentrated at a single point z. We deduce from (10) the
contradiction

1
2

= sup
y∈RN

∫
B(y,1)

|vn|2
∗
≥
∫
B(z,1)

|vn|2
∗
→ ||ν|| = 1.
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Thus |v|2∗2∗ = 1 and so
|∇v|22 = S = lim |∇vn|22.

Theorem 4.5. (Aubin, Talenti, 1976). The instanton

U(x) :=
[N(N − 2)](N−2)/4

[1 + |x|2](N−2)/2

is a minimizer for S.

P r o o f. 1) By the preceding theorem, there exists a minimizer u ∈ D1,2(RN ) for S.
Using symmetrization ([6]), we may assume that u is radially symmetric. Replacing u by
|u|, we may also assume that u is non-negative.

2) It follows from Lagrange multiplier rule ([9]) that, for some λ > 0, u is a solution
of

−∆u = λu
N+2
N−2 .

By Brezis-Kato theorem, u ∈ C2(RN ). The strong maximum principle implies that u is
positive.

3) After scaling, we may assume

−∆u = u
N+2
N−2 .

Moreover we can choose ε > 0 such that

Uε(x) := ε(2−N)/2U(x/ε)

satisfies
Uε(0) = u(0).

But then u and Uε are solutions of the problem{
∂r(rN−1∂rv) = rN−1v

N+2
N−2 , r > 0,

v(0) = u(0) ∂rv(0) = 0.

It follows easily that u = Uε. By invariance, U is a minimizer for S.

Proposition 4.6. For every open subset Ω of RN ,

S(Ω) := inf
u∈D1,2

0 (Ω)

|u|2∗=1

|∇u|22 = S

and S(Ω) is never achieved except when Ω = RN .

P r o o f. 1) It is clear that S ≤ S(Ω). Let (un) ⊂ D(RN ) be a minimizing sequence
for S. We can choose yn ⊂ RN and λn > 0 such that

uyn,λn
n ∈ D(Ω).

Hence we obtain S(Ω) ≤ S.
2) Assume that Ω 6= RN and u ∈ D1,2

0 (Ω) is a minimizer for S(Ω). By the preceding
step, u is also a minimizer for S. We may assume that u ≥ 0, so that u is a solution of

−∆u = λu
N+2
N−2 .

By the strong maximum principle, u > 0 on RN . This is a contradiction, since u ∈
D1,2

0 (Ω).
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5.Critical exponents. This section is devoted to the Brezis-Nirenberg minimization
problem

Sλ := inf
u∈H1

0 (Ω)
|u|2∗=1

∫
Ω

(|∇u|2 + λu2)dx

where N ≥ 2, Ω is a bounded open subset of RN and −λ1(Ω) < λ < 0. On H1
0 (Ω), we

define the equivalent norm

||u||2 :=
∫

Ω

[|∇u|2 + λu2]dx.

We consider a minimizing sequence (un) ⊂ H1
0 (Ω) satisfying

(13) |un|2∗ = 1, ||un||2 → Sλ, n→∞.

Theorem 5.1. (Brezis-Nirenberg, 1983). Let (un)⊂H1
0 (Ω) be a minimizing sequence

satisfying (13 ). If N ≥ 4 and −λ1(Ω) < λ < 0, then (un) contains a convergent subse-
quence. In particular , there exists a minimizer for Sλ.

P r o o f. Since (un) is bounded in H1
0 (Ω), we may assume, going if necessary to a

subsequence,

un ⇀ u in H1
0 (Ω),

un → u in L2(Ω),

un → u a.e. on Ω.

Brezis-Lieb lemma leads to

1 = |u|2
∗

2∗ + lim |wn|2
∗

2∗

where wn := un − u. Hence we obtain

Sλ = lim ||un||2 = ||u||2 + lim ||wn||2

= ||u||2 + lim |∇wn|22
≥ Sλ|u|22∗ + S(1− |u|2

∗

2∗)
2/2∗ .

Since, by the next lemma, Sλ < S, we obtain |u|2∗ = 1, and so

||u||2 = Sλ = lim ||un||2.

If U is the instanton, we have, for λ < 0,

||U ||2

|U |22∗
=
|∇U |22 + λ|U |22

|U |22∗
<
|∇U |22
|U |22∗

= S.

Since U 6∈ H1
0 (Ω), it is necessary to “concentrate” U near a point of Ω after multiplication

by a trunction function.

Lemma 5.2. Under the assumption of theorem 5.1 , there exists a nonnegative v ∈
H1

0 (Ω)\{0} such that

||v||2/|v|22∗ < S.
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P r o o f. We may assume that 0 ∈ Ω. Let ψ ∈ D(Ω) be a nonnegative function such
that ψ ≡ 1 on B(0, ρ), ρ > 0, and define, for ε > 0,

Uε(x) := ε(2−N)/2U(x/ε),

uε(x) := ψ(x)Uε(x).

It follows from theorem 4.5 that

|∇Uε|22 = |Uε|2
∗

2∗ = SN/2.

As ε→ 0+, we have that∫
Ω

|∇uε|2 =
∫
RN

|∇Uε|2 +O(εN−2) = SN/2 +O(εN−2),∫
Ω

|uε|2
∗

=
∫
RN

|Uε|2
∗

+O(εN ) = SN/2 +O(εN ),∫
Ω

|uε|2 =
∫
B(0,ρ)

|Uε|2 +O(εN−2)

≥
∫
B(0,ε)

[N(N − 2)ε2]
N−2

2

[2ε2]N−2
+
∫
ε<|x|<ρ

[N(N − 2)ε2]
N−2

2

[2|x|2]N−2
+O(εN−2)

=
{
dε2|`nε|+O(ε2), if N = 4,
dε2 +O(εN−2), if N ≥ 5,

where d is a positive constant. If N = 4, we obtain

||uε||2

|u|22∗
≤ S2 + λdε2|`nε|+O(ε2)

(S2 +O(ε4))1/2

= S + λdε2|`nε|S−1 +O(ε2) < S,

for ε > 0 sufficiently small. And similarly, if N ≥ 5, we have

||uε||2

|uε|22∗
≤ SN/2 + λdε2 +O(εN−2)

(SN/2 +O(εN ))2/2∗

= S + λdε2S(2−N)/2 +O(εN−2) < S,

for ε > 0 sufficiently small.
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