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Abstract. Let C be a smooth non-degenerate integral curve of degree d and genus g in P3
over an algebraically closed field of characteristic zero. For each point P in P3 let VP be the
linear system on C induced by the hyperplanes through P . By VP one maps C onto a plane
curve CP , such a map can be seen as a projection of C from P . If P is not the vertex of a cone of
bisecant lines, then CP will have only finitely many singular points; or to put it slightly different:
The secant scheme SP = (VP )12 parametrizing divisors in the second symmetric product C2 that
fail to impose independent conditions on VP will be finite. Hence each such point P gives rise
to a partition {a1 ≥ a2 ≥ . . . ≥ ak} of ∆(d, g) = 1

2 (d− 1)(d− 2)− g, where the ai are the local
multiplicities of the scheme SP . If P is the vertex of a cone of bisecant lines (for example if P
is a point of C), we set a1 = ∞. It is clear that the set of points P with a1 ≥ 2 is the surface
F of stationary bisecant lines (including some tangent lines); a generic point P on F gives a
tacnodial CP .

We give two results valid for all curves C. The first one describes the set of points P with
a1 ≥ 3. The second result describes the set of points with a1 ≥ 4.

1. Introduction. Let C be a smooth non-degenerate integral curve of degree d and
genus g in P3 over an algebraically closed field of characteristic zero. For each point R in
P3, let VR be the linear system on C induced by the hyperplanes through R. If R 6∈ C,
then VR maps C into a plane, corresponding to a projection of C from R. Let CR be the
projected plane curve.

We now pose the following, rather unprecise problem: “Describe strata of P3 \C, such
that the number and types of singularities of each CR are ‘essentially unchanged’ when
R varies in each stratum”. It is well known that if R is outside the following surfaces,
then CR is a curve of degree d with ∆(d, g) = 1

2 (d − 1)(d − 2) − g ordinary nodes of
multiplicity 2:

F1: The union of all tangent lines to C.
F2: The union of all k-secant lines to C, such that k ≥ 3 (counted properly with

multiplicity).
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F3: The surface of stationary bisecant lines; that is: The closure of the union of all
lines that connect two points of C, such that the tangent lines to C at the two points
are contained in the same plane. (This surface contains the tangent lines to C at those
points where the osculating plane intersects C at least 4 times.)

We see that if R is contained in F1, then CR will have a cusp. If R is contained in F2,
then CR will have a k-node, with k ≥ 3 (in general). If R is contained in F3, then CR
will have a tacnode or higher cusp.

R e m a r k. Assume C is contained in a cone that is a union of bisecant lines to C,
with vertex R. Then CR will have degree less than d, and each of the generatrices of the
cone will be a stationary bisecant line if R is outside C. This is true because the tangent
line to the cone stays constant along each generatrix.

Moreover we see that CR will have at least two cusps if R is contained in a nodal
edge of F1, 2 trinodes (in general) if R is contained in a nodal edge of F2, and so on.
Intuitively it therefore seems like the stratification mentioned above must in an intimate
way be connected to stratifications of each of the 3 surfaces into: general stratum, nodal
edge, possible cuspidal edge, intersection of such edges, triple locus, and so on. In addition
we must study intersections of such strata for each pair of surfaces, and for all 3 surfaces
simultaneously.

Instead of studying the complex interplay between all 3 surfaces, we will pose a sim-
pler, but precise stratification problem. It will turn that this simplified problem will be
intimately connected to a stratification of F3.

For each n denote by Cn the n-th symmetric product of C. Let R ∈ P3, and let
(VR)12 be the standard determinantal subscheme of C2, which parametrizes those effective
divisors of degree 2 that fail to impose linearly independent conditions on the linear
system VR. A point (divisor) P +Q, P 6= Q, of (VR)12 corresponds to a node of CR, while
a point 2P corresponds to a cusp. For convenience we will denote (VR)12 by SR.

We have the well-known formula if SR is finite:∑
D∈C2

δR(D) = ∆(d, g) =
1
2

(d− 1)(d− 2)− g,

where δR(D) is the multiplicity of the scheme SR at D. (See [ACGH], p. 351.) Hence
each point R with SR finite gives rise to a partition {a1 ≥ a2 ≥ . . . ≥ ak} of ∆(d, g),
where the ai are the local multiplicities of the scheme SR. If SR is infinite, for example,
if R ∈ C, and in general if R is the vertex of a cone of bisecants, then we set a1 = ∞.
We denote by the stratum at infinity the set {R | a1 = ∞}. We now pose the following
precise

Stratification problem. For each fixed partition {a1 ≥ a2 ≥ . . . ≥ ak} of ∆(d, g)
describe the set (stratum) of those R that give rise to this partition.

Example 1.1. The set corresponding to the partition {1 ≥ . . . ≥ 1} is obviously the
complement of F3 if this surface is non-empty, and the complement of C if F3 = ∅. It is
important to note that the surfaces F1 and F2 do not play any essential role in the last,
precise stratification problem. A point R on F1 only gives rise to a point 2P instead of
P +Q on SR. A point R on F2 gives rise to a k-node of CR, but this k-node is expected
to give rise to

(
k
2

)
points, each of multiplicity 1 on SR.

Furthermore it is clear that the closure of the stratum corresponding to the partition
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{2 ≥ 2 ≥ 1 ≥ . . . ≥ 1} is a nodal edge of F3 if non-empty. Our goal is to describe the union
of the strata with a1 ≥ 3, and the union of the strata with a1 ≥ 4, in form of results valid
for all smooth, non-degenerate integral curves in P3 (Theorems 2.1 and 2.2). We prove
these results in Sections 3 and 4. In Section 4 we also introduce a somewhat new blend
of techniques, suitable for proving local results about parameter spaces (Result 4.1). In
Section 5 we give some remarks to illustrate the significance of the results of Section 2.
It is our hope that not only our main results, but also the proofs of them, will give some
insight into the geometry of space curves.

R e m a r k 1.2. Let V be a base point free linear system of rank 3 on a smooth curve
C, defining a birational map φ onto a plane curve C. Let Q be a (singular) point of C.
Then the δ-invariant, see for example [Te], of C at Q is equal to the sum of multiplicities
of the scheme V 1

2 at the points P1 + P2 and 2P , such that φ(P1) = φ(P2) = Q, and
φ(P ) = Q. This is stated without proof in [LP-I], p. 199. We remark that an easy proof
follows from comparing the calculations of the δ-invariant of C at Q on pp. 611–612 of
[Te], and the calculations of the sum above, performed along the lines of §6 of [LP-I].

Hence our stratification of P3 \ C in terms of partitions of ∆(d, g) is really a strat-
ification of P3 \ C due to the δ-invariants of the branches and pairs of branches of the
singularities of the plane curves CR (when C is birational to CR).

R e m a r k 1.3. Let X ⊆ C2 × P3 be the incidence {(D,R) | R is contained in “the
line spanned by D”}. (“The line spanned by D” is P1P2 if D = P1 +P2, for P1 6= P2 and
the tangent line to C at P if D = 2P .) X is clearly a smooth 3-fold, being a P1-bundle
over C2. Let f be the second projection map from X on P3. We now define strata Si(f):

Si(f) = {x ∈ X | the map (df)x : T (X)x → T (P3)f(x) has rank 3− i}.
Equivalently, x ∈ Si(f) iff the tangent space of the scheme theoretical fibre of f(x) at x
is equal to i. See for example p. 231, and Proposition 2.4, p. 233, of [Ro]. See also [Th]
and [Bo] for similar strata for differentiable maps of real manifolds.

We also see that the condition “R is contained in the line spanned by D”, describing
the incidence X, could be reformulated as: D ∈ (VR)12. We therefore have a natural
identification: f−1(R) = (VR)12 ⊆ C2. Since dimC2 = 2, we have S(f3) = ∅. From
Theorem 2.5 of [LP-II] it follows that the tangent space dimension of (VR)12 at D is 2
iff “the line spanned by D” contains R and is tangent to C at P1 and P2, in the case
D = P1+P2. In the case D = 2P the corresponding condition is that all planes containing
P and R intersect C at least 4 times at P (so PR is a higher flex tangent at P ). One can
show that a1 ≥ 4 for the R appearing in these cases (that is: for R ∈ f(S2(f))). Moreover
there is a natural identification between the higher order singularity subschemes S(q)

1 (f)
of X, defined in [Ro], and

{(D,R) | (VR)12 has tangent space dimension 1 and multiplicity at least q + 1 at D},
for q = 1, 2, . . .. Hence we see that (if R 6∈ stratum at infinity, then): a1 = 2 for R ∈
f(S1(f) \ S(2)

1 (f)), a1 = 3 for R ∈ f(S(2)
1 (f) \ S(3)(f)), and a1 ≥ 4 for R ∈ f(S2(f) ∪

S
(3)
1 (f)). We then see that the stratification problem in terms of the ai is closely connected

to the theory of higher order singularity subschemes, for example as described in [Ro].
For a generic map g between 2 smooth 3-folds, for example, in the sense of [Bo], we

have S2(g) = ∅ and dimS
(q)
1 (g) = 3 − q, for q = 1, 2, . . .. Moreover one can (for such
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generic g) identify S(q)
1 (g) with S1(f | S(q−1)

1 (g)), for q ≥ 2, where S(1)
1 (f) means S1(f).

In other words; the q-th higher singularity locus of g is the singularity locus of g, restricted
to the (q − 1)-th singularity locus, for q ≥ 2.

If we pretend that our map f : X → P3 is generic in the sense above, then we see
that the last statement is very close to saying that

{R | a1 = 3} is the cuspidal edge of the surface F3, and
{R | a1 = 4} is {cusps of the curve {R | a1 = 3}}.

In reality, however, our map f : X → P3 is not generic. The fibres of f over points of C are
not even finite. Moreover, we want results valid for all smooth curves C ⊆ P3, and thus
we do not want to rule out the possibility of “unexpected” phenomena like bitangents,
higher flexes, points outside C being vertices of cones of bitangents, and so on. Therefore,
we are not using the theory of generic maps and higher singularity schemes of these, as
in [Th], [Bo], [Ro]. Instead we are using some local techniques taken from [LP-I], [LP-II],
[MS]. It is therefore natural that we obtain, in Theorems 2.1 and 2.2, a picture which is
more complicated than for that of a generic map. Our results do however imply that for
what we in rough terms would call “a generic curve C of degree d and genus g (d and g

high enough)”, the sets {R | a1 = 3} and {R | a1 = 4} “essentially behave as sets S(2)
1 (g)

and S
(3)
1 (g), respectively, of a generic map g between two 3-folds”. For more details, see

Remarks 5.1 and 5.2.
For such a generic map the union of S(m)

1 (g), for m ≥ 4 (as well as S2(g)), in our
situation corresponding to {R | a1 ≥ 5}, is empty. Since we do not assume that f is in
any way generic, the sets {R | a1 = m},m ≥ 5, may be non-empty, and one could try
to give results describing the sets {R | a1 ≥ m}, for all m, valid for all smooth space
curves. Because of the complexity of the calculations involved, we have chosen to stop at
m = 4. In particular we have problems with describing in a compact way which points
R on bitangent lines and higher flexes (points of f(S2(f))) that have a1 ≥ m, for fixed
m ≥ 5.

This paper can be read as a continuation of §5 in [LP-II], and is the “more detailed
study” referred to at the end of [LP-II].

I am grateful to Ignacio Sols for asking me the question raised in Remark 5.4: Which
curves in P3 are such that the monodromy group of the points of SR, as R varies over
P3, is the full symmetric group?

I am also very grateful to Alf Aure for making me aware of the results from [BM]
quoted in Remark 5.4. These results give a partial answer to that question.

The work of this paper has been supported in part by the Norwegian Research Council
for Science and the Humanities. We thank Brandeis University where the author was a
visitor while receiving this support.

I thank the organizers of the workshop Parameter Spaces at the Banach Center in
Warsaw, 1994, for a pleasant and rewarding conference, and for retyping the manuscript.

2. Main results. Let C be as in the introduction. Let B(C) be the closure in the
dual space P̌3 of the set of points that parametrize planes that contain the tangent lines
of C at 2 distinct points of C.

B(C) may be empty, as when C is a twisted cubic curve. B(C) may be reducible,
as when C is the complete intersection of 2 quadrics (d = 4, g = 1). In this case, for a
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general choice of quadrics, B(C) will consist of 4 degenerate (conic) components, each of
them parametrizing tangent planes to some quadric cone that contains C.

For a reduced, non-degenerate curve S in H, where H is P3 or P̌3, denote by D(S)
the strict dual curve of S. The curve D(S) parametrizes the closure, in the dual space
Ȟ, of the set of those points that parametrize the osculating planes to S at its smooth
points. D(S) will be a non-degenerate curve in Ȟ, and it will be irreducible if S is so.

Give each of the components of B(C) a reduced structure. We are now ready to give
our 2 main results (Theorems 2.1 and 2.2).

Theorem 2.1.
{R ∈ P3 | a1 ≥ 3} = C ∪ C,

where C is the union of the subsets a)—f) of P3:
a) The union of the D(Si) for each irreducible non-degenerate component Si of B(C).
b) The set of points that parametrize planes in P̌3 that contain a degenerate component

of B(C).
c) All flex tangent lines C at some point P .
d) All lines connecting 2 distinct points P and Q of C, such that there is a plane H that

intersects C at least 3 times at P and Q.
e) All lines connecting 2 distinct points P and Q of C, such that there is a plane H that

intersects C at least 3 times at P and at least 2 times at Q, and such that L = PQ is
tangent to C at P .

f) All tangent lines to C at points P , such that there is a plane H that intersects C at
least 6 times at P .

R e m a r k. The set of points of b) may be empty, or finite as in the case with the
elliptic quartic curve that is the complete intersection of 2 quadrics, or infinite as in the
case of a curve possessing a bitangent line. This line is then contained in the infinite
set. We see that each component of C is at most 1-dimensional, since a curve C has
only finitely many bitangents, flexes, tangential trisecants, hyperosculating planes, and
biosculating planes.

R e m a r k. Each D(Si) of part a) is a cuspidal edge of the surface F3 of Section 1.

Theorem 2.2.
{R ∈ P3 | a1 ≥ 4} = M ∪ C,

where M is the union of the subsets a1)—f2) of P3.
a1) The set of cusps of the non-linear components of C.
b1) The set of points that parametrize planes in P3 that contain a degenerate component

of B(C).
c1) The union of all flex lines such that some plane intersects C at least 5 times at the

flex point P .
d1) All lines that contain 2 distinct points P and Q, such that there is a plane H that

intersects C at least 4 times at both P and Q.
d2) For each line L connecting 2 points P and Q such that there is a plane H that

intersects C exactly 3 times at P and Q, and such that L is not a tangent line to C
at any of the points P and Q:
A set of exactly 2 points. Every such point R is:

A vertex of a cone of bisecant lines
or A point where L meets and is tangent to a non-linear component of C.
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In any case R is the vertex of a cubic cone N , such that L 6⊆ SingN , and such that
N intersects C at least 4 times at P and Q.

e1) The union of all tangent lines to C at some point P , reintersecting C at some other
point Q, such that there is a plane H that intersects C at least 4 times at P and at
least 2 times at Q.

f1) The union of all tangent lines L at points P , such that some plane intersects C at
least 8 times at P .

f2) For each tangent line that is not a flex tangent line, and where the osculating plane
intersects C exactly 6 times at the point P of tangency:
A set of exactly one point. This point R is:

A vertex of a cone of bisecants
or A point where L meets and is tangent to a non-linear component of C.

In any case R is the vertex of a cubic cone N , such that L 6⊆ SingN , and such that
N intersects C at least 8 times at P .

3. Proof of main results. We will sketch an argument for proving Theorems 2.1
and 2.2 simultaneously. The proof will be completed in Section 4. By definition a1 =∞ if
R ∈ C, so we can safely disregard the case where R ∈ C. Hence we assume R 6∈ C. Also it
is clear from Example 1.1 that a1 = 1 if R is not contained in the surface F3 of Section 1.
Moreover it is clear that the sets C and M of Theorems 2.1 and 2.2 are contained in F3.
Hence we may assume that R is contained in F3, R 6∈ C, and a1 ≥ 2.

Convention. If we write D = P +Q, we implicitly assume that P 6= Q.

Definition. We denote by I(p,M1 ∩M2) the intersection number at a point p of 2
varieties M1 and M2 of complementary dimension in Pr, for r ≥ 2.

Since a1 ≥ 2, there is at least one point (divisor) D in the symmetric product C2 such
that the multiplicity of SR at D is at least 2.

If D = P +Q, then we denote by L(D) or L the line PQ. This line will be a stationary
bisecant line to C. If L is not tangent to C at both P and Q, then we denote by H(D)
or H the unique plane H containing L, such that I(P,C ∩H) ≥ 2, and I(Q,C ∩H) ≥ 2.

If D = 2P , we denote by L or L(D) the tangent line to C at P . If I(P,C ∩H ′) ≤ 3
for some plane H ′ containing L, we denote by H or H(D) the unique plane such that
I(P,C ∩H) ≥ 4. We note that both in the case D = P +Q, and in the case D = 2P , the
point R will be contained in L. Furthermore D is a point of multiplicity at least 2 of the
scheme SR, for all R ∈ L(D). By convention we say that D is a point of multiplicity ∞
of SR if SR is non-isolated at D.

From [LP-II], §5, it follows that there is a one-dimensional family of stationary bise-
cants, if any at all. Moreover each component of this family envelopes a curve in P3 or
gives rise to a cone of bisecant lines. The curves that arise this way are exactly the D(Si)
described in Theorem 2.1.a). Moreover there is a subcurve S ′ of the second symmetric
product C2 such that S ′ parametrizes divisors D such that there is a point R outside C
with the multiplicity of SR at D at least 2. The family of stationary bisecants, viewed
as a curve S in the Grassmannian G(1, 3), arises as the image of S ′ under the map
D → L(D). For each non-degenerate component Si of B(C) we have a so called complete
triple (D(Si),Si, Si) ⊆ P3 ×G(1, 3)× P̌3, where Si is a component of S. For each branch
S ′ through D, take its associated (image) branch of S through the point ` ∈ G(1, 3)
representing L(D). For each such branch, take the point on L(D) ∈ P3 enveloped by
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the branch. (The tangent line to S at ` in P5 will be globally contained in G(1, 3) as
an intersection between the dual β-plane of H(D) and the α-plane representing all lines
through some fixed point of L. This is the point referred to as “enveloped by the branch
of S”.) Each such point will be a point of some D(Si) or a vertex of a cone of bisecant
lines to C. For each fixed D take the union of the points enveloped by the branches in
question.

We denote by M(D) this union of points in P3. In order to prove Theorems 2.1 and
2.2 it will be enough to prove that one of the following 7 possibilities occurs for each
divisor D ∈ C2 appearing with multiplicity at least 2 for some scheme SR, with R 6∈ C:

(i) D = P +Q, I(P,C ∩H(D)) = I(Q,C ∩H(D)) = 2.
L(D) is tangent to C neither at P nor at Q, and for R ∈ L(D) \ C we have
R ∈M(D)⇔ SR has multiplicity at least 3 at D.
We also have: Due to some branch of S ′ through D, R is either a cusp of some non-
degenerate curve D(Si) or a vertex of a cone of bisecants ⇔ SR has multiplicity at
least 4 at D.

(ii) D = 2P, P is not a flex, and I(Q,C ∩H(D)) = 4.
For R ∈ L(D) \ C we have the same equivalences as in (i).

(iii) SR has multiplicity exactly 2 at D for all R ∈ L(D) \ C
and : All points of M(D) are contained in C,
and : In case D = P +Q, L(D) is neither a bitangent line to C nor a line satisfying

d) or e) of Theorem 2.1.
In case D = 2P , L(D) satisfies neither c) nor f) of Theorem 2.1.

(iv) SR has multiplicity exactly 3 at D for all R ∈ L(D) \ C.
and : All points of M(D) are contained in C.
and : In case D = P + Q, L(D) satisfies d) or e) of Theorem 2.1, is not bitangent

line, and satisfies neither d1) nor e1) of Theorem 2.2.
In case D = 2P , L(D) satisfies c) or f) of Theorem 2.1, but neither c1) nor
f1) of Theorem 2.2.

(v) SR has multiplicity at least 4 at D for all R ∈ L(D)
and : In case D = P +Q, L(D) is bitangent to C at P and Q, or L(D) satisfies d1)

or e1) of Theorem 2.2.
In case D = 2P , L(D) satisfies c1) or f1) of Theorem 2.2.

(vi) We are in the situation described in Theorem 2.1.d) and Theorem
2.2.d2), that is: L(D) is tangent to C neither at P nor at Q, and I(P,C ∩H(D)) =
I(Q,C ∩H(D)) = 3, and SR has multiplicity at least 3 at D for all R ∈ L(D), and
at least 4 for R described in Theorem 2.2.d2).

(vii) We are in the situation described in Theorem 2.1.f) and Theorem 2.2.f2), that
is: P is not a flex, I(P,C ∩H(D)) = 6 and SR has multiplicity at least 3 at D for
all R ∈ L(D), and at least 4 for R described in Theorem 2.2.f2.).

For a given D of multiplicity at least 2 in some scheme SR we now list 17 possibilities
for D. It is immediately clear that one of these 17 possibilities must occur for given D as
mentioned. The proof of the main results will consist of sketching how in each of these
17 cases: 1),. . .,17). we are in one of the cases (i),. . .,(vii) above.

1) D = P +Q. L(D) is tangent neither at P nor at Q.
I(P,C ∩H(D)) = I(Q,C ∩H(D)) = 2.

2) D = P +Q. L(D) is tangent at P , but not at Q.
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I(P,C ∩H(D)) = I(Q,C ∩H(D)) = 2.
3) D = P +Q. L(D) is tangent at both P and Q.
4) D = P +Q. L(D) is tangent neither at P nor at Q.

I(P,C ∩H(D)) ≥ 3. I(Q,C ∩H(D)) = 2.
5) D = P +Q. L(D) is tangent at P , but not at Q.

I(P,C ∩H(D)) = 3.
6) D = P +Q. L(D) is tangent at Q, but not at P .

I(P,C ∩H(D)) ≥ 3. I(Q,C ∩H(D)) = 2.
7) D = P +Q. L(D) is tangent at P , but not at Q.

I(P,C ∩H(D)) ≥ 4.
8) D = P +Q. L(D) is tangent neither at P nor at Q.

I(P,C ∩H(D)) = I(Q,C ∩H(D)) = 3.
9) D = P +Q. L(D) is tangent neither at P nor at Q.

I(P,C ∩H(D)) ≥ 4. I(Q,C ∩H(D)) = 3.
10) D = P +Q. I(P,C ∩H(D)) ≥ 4. I(Q,C ∩H(D)) ≥ 4.
11) D = 2P . P not a flex. I(P,C ∩H(D)) = 4.
12) D = 2P . P not a flex. I(P,C ∩H(D)) = 5.
13) D = 2P . P not a flex. I(P,C ∩H(D)) = 6.
14) D = 2P . P not a flex. I(P,C ∩H(D)) = 7.
15) I(P,C ∩H) ≥ 8 for some plane H.
16) D = 2P . P is a flex of C. I(P,C ∩H(D)) = 4.
17) D = 2P . P is a flex of C. I(P,C ∩H(D)) ≥ 5 for some plane H.

What we will sketch, is a proof of the statements indicated in the following table:

DIVISORS P +Q

Case Case M(D)
1 (i) {R1}, R1 6∈ {P,Q}
2 (iii) {P}
3 (v) Depends on more information
4 (iii) {Q}
5 (iv) {P}
6 (iii) {Q}
7 (v) {P}
8 (vi) {R1, R2}, R1 6= R2, Ri 6∈ {P,Q}, i = 1, 2
9 (iv) {Q}
10 (v) Depends on more information

DIVISORS 2P

Case Case M(D)
11 (ii) {R1}, R1 6= P
12 (iii) {P}
13 (vii) {P,R1}, R1 6= P
14 (iv) {P}
15 (v) Depends on more information
16 (iv) {P}
17 (v) Depends on more information
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In order to proceed, we shall frequently use the following results, among which Lemma
3.1 is standard, and Lemma 3.2 follows for example from [LP-I], §6.

Lemma 3.1. Let V be a linear system of (affine) rank 3 on C, spanned by sections
S1, S2, S3. Let

Si =
∞∑
k=0

ai,j,kt
k
j ,

be local parametrizations of Si at Pj, for i = 1, 2, 3, and j = 1, 2. Then the completion of
the local ring of the secant scheme V at D = P1 +P2 is k[[t1, t2]]/I, where I is generated
by the 2-minors of [∑

a1,1,kt
k
1

∑
a2,1,kt

k
1

∑
a3,1,kt

k
1∑

a1,2,kt
k
2

∑
a2,2,kt

k
2

∑
a3,2,kt

k
2

]
The ti are regarded as indeterminates.

Lemma 3.2. Let V be a linear system of (affine) rank 3 on C, spanned by sections
S1, S2, S3. Let

Si =
∞∑
k=0

ai,kt
k, for i = 1, 2, 3

be local parametrizations of Si at P , for i = 1, 2, 3. Then the completion of the local ring
of the secant scheme V2 at 2P is k[[s1, s2]]/J , where J is generated by the 2-minors of[ ∑

a1,kWk

∑
a2,kWk

∑
a3,kWk∑

a1,kWk−1

∑
a2,kWk−1

∑
a3,kWk−1

]
and

Wj =
[j/2]∑
i=0

(
j − i
i

)
sj−2i
1 · si2.

Here the si are regarded as indeterminates, and [x] means the integral part of the real
number x.

Cases 1) and 2). Let P3 = Proj k[X,Y, Z,W ], and let P = (0, 0, p, 1), Q = (0, 0, q, 1),
and let t, u be local parameters of C at P,Q respectively. Let

X = α1t+ α2t
2 + . . .

Y = β2t
2 + . . .

Z = p+ t
W = 1

and

X = µ1u+ µ2u
2

Y = ν2u
2 + . . .

Z = q + u
W = 1

be local parametrizations of C at P and Q, respectively. One sees that the equations of
L(D) and H(D) are X = Y = 0 and Y = 0, respectively.

β2ν2 6= 0, since I(P,C ∩H(D)) = I(Q,C ∩H(D)) = 2,

and we are in Case 1) or 2), depending on whether a1µ1 6= 0, or not. Either a1 6= 0, or
µ1 6= 0, since L(D) is not a bitangent line.

We will study the curve B(C) at the point h in P̌ 3 corresponding to H(D). Let
Spec k[b1, b2, b3] be an affine piece of P̌ 3, where the point (b1, b2, b3) corresponds to the
plane Y + b1X + b2Z + b3W = 0. From Theorem 2.2 and Formula (3.3) of [MS] it follows
that the completion of the local ring of the branch of B(C) in question at h = (0, 0, 0) is:

Ô = k[[b1, b2, b3]]/(f1(b), f2(b))
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for 2 explicit power series f1 and f2 in the indeterminates b1, b2, b3. Let m = (b1, b2, b3).
We then have

f1 ≡ (b3 + pb2)− 1
4β2

(b2 + α1b1)2 +
α2

4β2
2

(b2 + α1b1)2b1 −
β3

8β3
2

(b2 + α1b1)3

f2 ≡ (b3 + qb2)− 1
4ν2

(b2 + µ1b1)2 +
µ2

4ν2
2

(b2 + µ1b1)2b1 −
ν3

8ν3
2

(b2 + ν1b1)3.

Both congruences are modulo m4. Since p 6= q, the linear parts are independent, and
we see that the tangent space of B(C) is cut out by: b3 = b2 = 0, and that the canonical
image of b1 can be taken as a local parameter of B(C) at h. We then have that the
osculating plane of B(C) at h has the equation: i0b2 + j0b3 = 0, for some (i0, j0) ∈ P1.

(If we allow L(D) to be a bitangent, that is: α1 = µ1 = 0, we now see that both b2
and b3 are of order at least 3 in b1 in Ô, and B(C) has a flex.) Since we have assumed
that L(D) is not bitangent at P and Q, then ν 6= 0, or µ 6= 0, and we see that

(qν2α2
1 − pβ2µ

2
1)b2 + (ν2α2

1 − β2µ
2
1)b3 = 0

is the equation of the osculating plane of B(C) at h (and that h is not a flex of the
(branch of) B(C) (that we study). Dually this osculating plane corresponds to the point

(X,Y, Z,W ) = (0, 0, qν2α2
1 − pβ2µ

2
1, ν2α

2
1 − β2µ

2
1) ∈ P3.

Call this point R1. We have now established

M(D) = {R1}.

We see that in Case 2) we have (α1 = 0)

R1 = (0, 0,−p2β2µ
2
1,−β2µ

2
1) = P

and that if α1µ1 6= 0, then R1 6= P , R1 6= Q.
We will interpret R1 as the unique point R on L(D), such that SR has multiplicity

at least 3 at D. Let R = (0, 0, i, j), for (i, j) ∈ P1. Then the desired interpretation of R1

follows from direct computations using Lemma 3.1 for the case:

S1 = jZ − iW, S2 = X, S3 = Y.

This shows that in Case 2) we are in Case (iii).

R e m a r k 3.3.
a) It is also interesting to note that R1 is the only point R on L such that there

is a quadric cone N with vertex R, not containing L in its singular locus, such that N
intersects C at least 3 times at P and Q.

b) The results of the computations done so far in Case 1) follow directly from the
discussion in [LP-II], §5. The reason why we have started from scratch instead of applying
[LP-II] is the rest of the proof in Case 1).

We finish the proof in Case 1): Let R1 = (0, 0, i0, j0) where i0 = qν2α
2
1 − pβ2µ

2
1,

j0 = ν2α
2
1−β2µ

2
1, and α1µ1ν2β2 6= 0. The osculating plane of B(C) at h has the equation

i0b2 + j0b3 = 0.

By duality R1 is a cusp of (the branch of) D(B(C)) or a vertex of a cone of bisecants if
and only if the osculating plane at h intersects B(C) at least 4 times. From the explicit
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description of the power series f1 and f2 above it follows that i0b2 + j0b3 is congruent to

L(b1) =
α1µ1

8(q − p)β3
2ν

3
2

[α2
1µ1β2ν

2
2 + α1µ

2
1β

2
2ν2 − α3

1β2ν
2
2

− µ3
1β

2
2ν2 + α2

1µ1β3ν
2
2(p− q)− α1µ

2
1β

2
2ν3(p− q)

+ 2α1β
2
2µ1µ2ν2(p− q)− 2α1α2µ1β2(p− q)] · b31

modulo m4 in the ring Ô. Hence R1 is a cusp in Case 1) if and only if the contents of the
parenthesis is zero. On the other hand it follows from direct calculations using Lemma
3.1 that the contents of the parenthesis is zero if and only if the multiplicity of the scheme
SR1 at D is at least 4.

R e m a r k. Let N(X,Y, Z,W ) be the defining polynomial of the cone N of Remark
3.3.a). Then SR1 has multiplicity at least 4 at D if and only if there exists a scalar b such
that the cubic with equation

N(X,Y, Z,W )(j0Z − i0W ) + bX3 = 0

intersects C at least 4 times at P and Q. This description is more handy than doing
calculations from scratch in this case.

The proof is now complete in Cases 1) and 2). We remark that L(b1) = 0 in Case 2)
since α1µ1 = 0 then. Hence P will be a cusp of, and L(D) a cusp tangent to, D(B(C))
in Case 2).

Cases 3), 7) and 10). Along with Cases 15) and 17) below these are the easiest
cases. We see directly that in Cases 3), 7), 10) we are in the cases b1), e1) and d1),
respectively, of Theorem 2.2. All we have to do, in order to show that we are in Case (v),
is to use Lemma 3.1 to prove that SR has multiplicity at least 4 at D, for all R ∈ L(D).
We skip the calculations here. Case 3) is treated in [Pr].

Cases 15) and 17). We see directly that we are in the situations described in parts
f1) and c1) of Theorem 2.2, respectively. To prove that we are in Case (v), we must use
Lemma 3.2 to show that the multiplicity of SR at D is at least 4 for all R ∈ L(D). We
treat Case 17). One treats Case 15) in a similar way. We choose parametrizations:

W = 1, Z = t, X =
∑
k≥3

αkt
k, Y =

∑
k≥5

βkt
k

of C at P = (0, 0, 0, 1) (= (X,Y, Z,W )). We study the 2-minors of: jW1 − i
∑
k≥3

αkWk

∑
k≥5

βkWk

j
∑
k≥3

αkWk−1

∑
k≥5

βkWk−1


We observe that modulo (s1, s2) the first column is

(−i
j

)
, which is non-zero for all (i, j) ∈

P1. Hence our ideal is generated by the minors from the first and second, and first and
third column. We then get the following generators:

iα3s2 − iα3s
2
1 + (2iα4 + jα3)s1s2 − (iα5 + jα4)s22 modulo (s1, s2)3,

iβ5s
2
2 − 3iβ5s

2
1s2 − 3iβ6s1s

2
2 − (iβ7 + jβ6)s32 modulo (s1, s2)4.

If α3 6= 0, we insert s2 ≡ s21 modulo m3, obtained from the first generator, in the second
generator, which is then zero modulo s41. If α3 = 0, we get a complete intersection of
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2 algebroid curves of degrees at least 2. This gives multiplicity at least 4, whatever the
value of α3 is. This finishes the proof of Case 17).

Cases 8) and 13). There is almost nothing to say about these 2 cases. One uses
Lemmas 3.1 and 3.2 in Cases 8) and 13), respectively, and finds that SR has multiplicity
at least 3 at D, for all R ∈ L(D), and least 4 for those R described in Theorem 2.2.d2)
and f2), respectively. So we are in Cases (vi) and (vii), respectively.

R e m a r k. See Result 5.8 of [LP-II] which in these cases identifies the points R such
that SR has multiplicity at least 4 with points where L(D) is tangent to some non-linear
component D(Si) (or with vertices of cones of stationary bisecants). So these points are
not necessarily cusps of some D(Si), but points where 2 components of C meet, and are
tangent to each other.

Cases 9) and 14). We will show that we are in Case (iv). It is clear that in Case 9)
L(D) is not a bitangent and satisfies neither d1) nor e1) of Theorem 2.2, but satisfies d)
of Theorem 2.1.

It is also clear that in Case 14) L(D) satisfies f) of Theorem 2.1, but neither c1) nor
f1) of Theorem 2.2. From straightforward application of Lemmas 3.1 and 3.2 it follows
that the multiplicity of SR at D is exactly 3 for all R ∈ L(D) \ {P,Q} in Case 9), and all
R ∈ L(D) \ {P} in Case 14). The fact that M(D) = {Q} in Case 9) and M(D) = {P}
in Case 14), follows directly from the discussion on pp. 219–220 of [LP-II].

Cases 4) and 12). It is clear that L(D) neither is bitangent at P and Q nor satisfies
d) or e) of Theorem 2.1 in Case 4). It is clear that L(D) satisfies neither c) nor f) of
Theorem 2.1 in Case 12).

Furthermore it follows from direct calculations by using Lemmas 3.1 and 3.2 respec-
tively, that SR has multiplicity exactly 2 for all R ∈ L(D)\{P,Q} and all R ∈ L(D)\{P}
in Cases 4) and 12), respectively. It follows directly from the discussion on pp. 219–220
that M(D) = {Q} in Case 4), and M(D) = {P} in Case 12).

The cases left are 5), 6), 11), and 16). In Case 5) it is clear that L(D) satisfies e) of
Theorem 2.1, and that L(D) neither is bitangent to C at P and Q nor satisfies d1) or
e1) of Theorem 2.2. In Case 6) it is clear that L(D) neither is bitangent nor satisfies d)
or e) of Theorem 2.1. In Case 16) it is clear that L(D) satisfies c) of Theorem 2.1, but
neither c1) nor f1) of Theorem 2.2.

From straightforward calculations, by using Lemma 3.1, it follows that the multiplicity
of SR at D is exactly 3 for R ∈ L(D) \ {P,Q} in Case 5), and exactly 2 for R ∈
L(D) \ {P,Q} in Case 6). Equally straightforward calculations, with the use of Lemma
3.2, yield that the multiplicity of SR at D is exactly 3 for R ∈ L(D) \ {P} in Case 16).

What remains, is to prove the statements: M(D) = {P} in Case 5) and 16), and
M(D) = {Q} in Case 6), and to carry out a proof in Case 11).

So far we have used two techniques to identify points of M(D) for given D, namely
the technique described in [LP-II], §5, and the local study of certain schemes performed
in [MS]. The method of [LP-II], §5, requires that L(D) is tangent neither at P nor at Q
in the case D = P +Q, and that L(D) is not a flex in the case D = P +Q.

The method from [MS], used in order to study the curve B(C) in Cases 1) and 2), is
really developed to study a curve in P̌3, which is the union of the curves B(C) and D(C)
(the strict dual of C, parametrizing osculating planes). This curve is locally isomorphic
to B(C) if we are outside D(C), but not at points of B(C) ∩D(C). In Cases 5), 6), 11)
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and 16) we are at points of B(C)∩D(C). Hence we cannot apply Theorem 2.2 of [MS] in
these cases, as we could in Cases 1) and 2). Likewise, the methods of [LP-II], §5, cannot
be used in Cases 5), 6), 16). In Case 11) the methods from [LP-II], §5, can be used to
show the statement: R ∈M(D)⇔ SR has multiplicity at least 3 at D. (This is essentially
Result 5.8 of [LP-II].) There is however no way to use these methods to show directly:
“R is a cusp of the branch of the D(Si) in question ⇔ SR has multiplicity at least 4 at
D”. In order to prove this one must find out when the osculating plane of B(C) at h is
hyperosculating. We remark that in Case 11) B(C) is smooth at h.

In Section 4 we will sketch a method for studying the curve B(C) locally, Thereby
completing the proof of our main results in Cases 5), 6), 11), 16).

4. A local study of schemes parametrizing hyperplanes with prescribed
intersection properties with respect to a fixed curve. Let C be an abstract non-
singular curve over an algebraically closed field of characteristic zero. Let V be a linear
system on C, where the degree of V is d, and the (affine) rank of V is r + 1. If C is
mapped into Pr by V , we think of PV as parametrizing the hyperplanes in Pr, or as P̌r.
For notational simplicity we will assume that V is base-point free, and that C is mapped
into Pr as described. We then get an injective map φ from PV to Cd, where Cd as before
denotes the d-th symmetric product of (the abstract curve) C with itself:

φ : Hyperplane H −→ Divisor H ∩ C.

Let F ⊆ PV × Cd be the incidence correspondence

{(h,D) | D = φ(h)}.

Let X0, . . . , Xr be coordinates of Pr, and assume that

φ(h) = d1P1 + . . .+ dkPk, where
k∑
i=1

di = d.

Let

(4.1) Xi =
∞∑
`=0

αi,j,`t
`
j , i = 0, . . . , r, j = 1, . . . , k

be local parametrizations of the embedded curve at P1, . . . , Pk. (If all Pi are contained
in the affine space Xr 6= 0, we choose Xr ≡ 1 in all these parametrizations.) Let h be the
point of PV corresponding to X0 = 0. Let

(4.2) X0 + b1X1 + . . .+ brXr = 0

be the equation of “the general hyperplane” in an affine neighborhood
Spec k[b1, . . . , br] of h (with h at the origin).

If, for given j in the range 1, . . . , k, we insert for each Xi in (4.2) its local parametriza-
tion at Pj given as (4.1), we obtain the expression:

(4.3)
dj−1∑
`=0

Aj,`(b1, . . . , br) · t`j +
∞∑
`=dj

(Aj,`(b1, . . . , br) + aj,`) · t`j

where the aj,` are the a0,j,` above, and the Aj,` are homogeneous linear combinations of
the bm, m = 1, . . . , r, depending on the ai,j,` for i = 1, . . . , k, ` = 0, . . . ,∞. If φ(h) =
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D = P1 + . . . + Pd, for d = k distinct points, then it is obvious that the completion of
the local ring of the incidence correspondence F at (h, φ(h)) is

k[[b1, . . . , br, t1, . . . , td]]/F

where the ideal F is generated by the expressions (4.3) for j = 1, . . . , k = d (and dj = 1
for each j). Here we have identified Cd with the Cartesian product Cd locally at D. At
the other extreme, it follows from [LP-I] that if φ(h) = D = dP (and we drop the index
j), then the completion of the local ring of F at (h, φ(h)) is:

k[[b1, . . . , br, s1, . . . , sd]]/F

where s1, . . . , sd (as well as b1, . . . , br) are treated as algebraically independent variables,
and F is generated by:

(4.4)
d−1∑
`=0

A`(b1, . . . , br)W`−s +
∞∑
`=d

(A`(b1, . . . , br) + a`)W`−s

for s = 0, . . . , d− 1, and the Wi are defined as:

Wi =

∣∣∣∣∣∣∣∣∣∣

s1 s2 . . . . . . si
1 s1 . . . . . . si−1

0 1 . . . . . . si−2

...
...

. . . . . .
...

0 . . . 0 1 s1

∣∣∣∣∣∣∣∣∣∣
, i ≥ 1,

W0 = 1, Wi = 0 for i < 0, and sj = 0 for j > d. As an example, when D = 4P , we get:

A0 +A1 · s1 +A2(s21 − s2) +A3(s31 − 2s1s2 + s3)

+ (A4 + α4)(s41 − 3s21s2 + 2s1s3 + s22 − s4) + . . . ,

A1 +A2 · s1 +A3(s21 − s2) + (A4 + α4)(s31 − 2s1s2 + s3) + . . . ,

A2 +A3 · s1 + (A4 + α4)(s21 − s2) + . . . , and

A3 + (A4 + α4)s1 + (A5 + α5)(s21 − s2) + . . .

as generators of F , where Ai = Ai(b1, . . . , br), for all i. These d generators enable us to
express s1, . . . , sd as explicit power series in the Ai modulo the ideal F . Starting from
the top and beginning with calculation modulo (b1, . . . , br)2, one gets

sd = (−1)d
A0

αd

sd−1 = (−1)d−1

[
A1

αd
− αd+1

α2
d

A0

]
sd−2 = (−1)d−2

[
A2

αd
− αd+1

α2
d

A1 +
α2
d+2 − αd+2αd

α3
d

A0

]
. . . . . . . . .

s1 = −
[
Ad−1

αd
+ . . .

]
.

Then one starts from the top and calculates modulo (b1, . . . , br)3 until one has calculated
all si modulo this power of (b1, . . . , br). Calculating modulo higher and higher powers of
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(b1, . . . , br) successively, one obtains expressions

(4.5)

s1 = f1(b1, . . . , br)
...

...
sd = fd(b1, . . . , br)

If D = d1P1+. . .+dkPk, we use the local, analytical isomorphism χ : Cd ' Cd1×. . .×Cdk

at D, and get k sets of equations as above, expressing each element of k sets of elementary
symmetric functions as power series in b1, . . . , br:

s1,1 = f1,1(b) . . . sk,1 = fk,1(b)
...

...
s1,d1 = f1,d1(b) . . . sk,dk

= fk,dk
(b)

We now have the following

Result 4.1. Let M be a subscheme of Cd, and let the completion of the local ring of
M at D = φ(h) be given via χ as

k[[si,j ]]/I
where I is generated by power series of the type

g(s1,1, . . . , sk,dk
).

Then the completion of the local ring of the inverse image scheme φ−1(M) is:

k[[b1, . . . , br]]/Iφ,

where Iφ is generated by a set of power series

g(f1,1(b) . . . , fk,dk
(b))

corresponding to the g(s1,1, . . . , sk,dk
) in a set of generators for I.

This reduces the task of finding the completion of the local ring of a scheme of the
type φ−1(M), for M⊆ Cd, at a point h, to two problems

1) Finding suitable generators g for M locally at φ(D).
2) Finding the expressions fi,j(b).

From now on we will use the same notation as in Section 3.
We now have developed most of the machinery needed to treat Case 11) and what is

left of the proof of Cases 5), 6), 16).

Case 11). D = 2P , L(D) is not a flex, and I(P,C ∩H(D)) = 4. Denote H(D) by h.
Since we are only interested in the branch of S ′ ⊆ C2 corresponding to D, we can assume
φ(h) = 4P + P1 + . . .+ Pd−4, where the Pi are distinct points (different from P ). For all
local purposes we can even assume that d = 4, and φ(h) = 4P = 2D. The curve B(C) is
then obtained as φ−1(F). where F is the surface {2E | E ∈ C2} ⊆ C4. The completion
of the local ring of F at 4P is

k[[s1, s2, s3, s4]]/I,
where I = (s3 − 1

2s1s2 + 1
8s

3
1, s4 + 1

4s1s3 −
1
4s

2
2 + 1

64s
4
1). Finding the first terms of the

power series, f1, f2, f3, f4 (the pullbacks of s1, s2, s3, s4 via φ, respectively), we see that
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modulo (b1, b2, b3)3, the pullbacks of the generators of I are:

A0

α4
− 1

4
· A

2
2

α2
4

and − A1

α4
+
α5

α2
4

A0 +
1
2

[
A3

α4
− α5

α2
4

A2

][
A2

α4

]
.

We choose the parametrization

W = 1
Z = t

X = β2t
2 + β3t

3 + . . .

Y = α4t
4 + α5t

5 + . . .

and take Y +b1X+b2Z+b3W as the equation of the general plane. Hence A0 = b3, A1 =
b2, A` = β`b1, for ` ≥ 2.

We then get that modulo (b1, b2, b3)3 and modulo the pullbacks of the generators of
I, we have:

b3 =
1
4
β2

α2
4

· β2α4 · b21

b2 =
1
4
β2

α2
4

(2β3α4 − β1α5)b21.

This implies that (the image of) b1 is a parameter for the completion of the local ring of
B(C) at h, and that

i0b2 + j0b3 = 0
is the equation of the osculating plane of B(C) at h, where (i0, j0) = (β2α4, β2α5−2β3α4).
Hence M(D) = R1, where R1 = (0, 0, β2α4, β2α5 − 2β3α4). Continuing with the same
kind of calculation, this time modulo (b1, b2, b3)4, one finds that the osculating plane is
hyperosculating if and only if

−α2
4α6β

2
2β3 + 2α4α5α6β

3
2 − α3

4β
3
3 + α2

4α5β2β
2
3 − 2α2

4α5β
2
2β4

−α2
4α7β

3
2 + α4α

2
5β

2
2β3 − α3

5β
3
2 + 2α3

4β
2
2β5 = 0.

On the other hand, if R = (X,Y, Z,W ) = (0, 0, i, j), then in order to find the intersection
multiplicity of SR at D, we study the ideal generated by 2-minors of the matrix[

jW1 − i β2W2 + β3W3 + . . . α4W4 + α5W5 + . . .
j β2W1 + β3W2 + . . . α4W3 + α5W4 + . . .

]
where

W` =
[`/2]∑
i=0

s`−2i
1 · si2, for ` ≥ 1.

One finds that the colenght of this ideal is at least 3 if and only if (i, j) = (i0, j0) =
(β2α4, β2α5 − 2β3α4). Also one finds that for (i, j) = (i0, j0) the colength is at least 4
if and only if a certain condition in α4, α5, α6, α7, β2, β3, β4, β5 holds. This condition
turns out to be exactly the same as the condition that the osculating plane of B(C) at
h is hyperosculating, in other words, that R1 is a cusp of D(Si), for some branch Si of
B(C), or that R1 is a vertex of a cone of bisecants.

Hence the proof is complete in Case 11).
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Case 16). This case is similar to Case 11). In fact we get the same equations:

A0

α4
− 1

4
A2

2

α2
4

= 0

−A1

α4
+
α5

α2
4

A0 +
1
2

[
A3

α4
− α5

α2
4

A2

]
A2

α4
= 0

modulo (b1, b2, b3)3.

Since β2 = 0, we get A2 = 0, hence the 2 equations reduce to:

b2 = b3 = 0 modulo (b1, b2, b3)3

in the completion of the local ring of B(C) at h. This implies that B(C) has a flex at h,
and that we must check which linear combination

ib2 + jb3 that is of order at least 4

in the parameter b1 in our ring.
Modulo (b1, b2, b3)4 our equations reduce to

b3 = 0

b2 =
1
8

[
− β3b1

α4

]3
Hence we see that b3 = 0 is the equation of the osculating plane, corresponding dually to
point (0, 0, 0, 1), which is P . Hence M(D) = {P}, as desired, and the proof is complete
in Case 16).

Cases 5) and 6). We must show that M(D) is {P} and {Q} in Cases 5) and 6),
respectively. As in Cases 11) and 16) we study the scheme φ−1(F), where φ : D → L(D)
is the natural map, and F ⊆ Cd consists of divisors of type D′ + 2D′′, where D′ ∈ Cd−4,
and D′′ ∈ C2. As usual, let h ∈ B(C) represent H(D). Then φ(h) = 3P + rQ+E, where
r = 2 in Case 6) and r ≥ 2 in Case 5), and P and Q are outside the support of E. The
branch of B(C) = φ−1(F) in question is the pull-back of 2 equations:

27s21,3 + 4s31,2 − 18s1,1s1,2s1,3 − s21,1s21,2 + 4s31,1s1,3 = 0

rrsr−1
2,r + (1− r)r−1sr2,r−1 + hr+1 + s2,rhr−1 = 0,

where hr±1 consists of terms of degree r± 1 or more. Here s1,1, s1,2, s1,3 are local param-
eters of C3 at 3P , and s2,1, s2,2, . . . , s2,r are local parameters of Cr at rQ, and we work
via the local analytical isomorphism

Cd ' C3 × Cr × . . . .

The rest of the proof in these cases consists of calculations that are contained in [Pr].

R e m a r k 4.2. We also could have treated Cases 1) and 2) using the techniques
developed in Section 4. Essentially we could have “reproduced” the power series given in
Theorem 2.2 of [MS].

5. Some remarks. In this paragraph we will give some comments in connection with
Theorems 2.1 and 2.2. We will use the words “expected” and “general” without always
specifying what we mean by these terms.



106 T. JOHNSEN

R e m a r k 5.1. A general curve of degree d and genus g (whatever that is) is not
“expected” to have any bitangent lines, flex lines, or planes intersecting the curve more
than four times at a point. Moreover, for each tangential trisecant (reintersecting tangent)
line, the osculating plane at the point of (line) tangency is not expected to be tangent to
C at the point of (line) reintersection. Hence it follows from Theorems 2.1 and 2.2 that
for “a general curve of degree d and genus g” we “expect”:

{R ∈ P3 | a1 ≥ 3} =
⋃
i

D(Si) ∪ {vertices of cones of bisecant to C},

and the closure of {R ∈ P3 | a1 = 3} =
⋃
iD(Si), where {Si} = {non-degenerate compo-

nents of B(C)}. It is not clear to us whether one should expect B(C) to be irreducible
for general C of high enough degree and specified genus. For d = 4, g = 1 we have seen
that B(C) consists of four plane conic components, moreover {R ∈ P3 | a1 ≥ 3} = {R ∈
P3 | a1 =∞} = C ∪ {4 points} in this case (for a general intersection of 2 quadrics). We
sum up by:

In rough terms, it follows from Theorem 2.1 and 2.2 that in “most cases” the closure
of {R ∈ P3 | a1 = 3} = D(B(C)) = cuspidal edge of the surface F3 of Section 1.

We could also add:
From Theorem 2.2 one may deduce that in “most cases” {R ∈ P3 | a1 ≥ 4} =

{cusps of D(B(C))} ∪ C = {cusps of cuspidal edge of the F3} ∪ C.

R e m a r k 5.2. Table of “expected” values of a curve C of degree d and genus g. See
also [vzG], p. 607.

Curve Degree Genus # Cusps # Cusps
(geometric) outside C

C d g 0 0
CG 2d+ 2g − 2 g 0 —
D(C) 3d+ 6g − 6 g 4d+ 12g − 12 —

D(B(C)) 6d2 + 12dg 2d2 + 6dg 14d2 + 34dg 12d2 + 32dg + 20g2

+6g2 − 36d +4g2 − 15d +20g2 − 94d
−60g + 54 −31g + 28 −176g + 156 −84d− 164g + 144

S 2d2 + 2dg − 8d 2d2 + 6dg 0 —
−6g + 6 +4g2 − 15d

−31g + 28
B(C) 2d2 + 4dg 2d2 + 6dg 6d2 + 18dg —

+2g2 − 10d +4g2 − 15d +12g2 − 42d
−14g + 12 −31g + 28 −84g + 72

Here CG is the curve in G(1, 3) parametrizing tangent lines, and we recall that S ⊆ G(1, 3)
parametrizes stationary bisecant lines to C. The values in the table are calculated under
the assumption that B(C), S ′, S and D(B(C)) are irreducible. The degree and number
of cusps of B(C) are determined by the De Jonquieres formula. See for example [ACGH],
p. 359. The cusps ofB(C) correspond to osculating planes that are tangent to C elsewhere.
At these cusps B(C) intersects D(C), which is expected to be smooth at these points.
Otherwise B(C) intersects D(C) at the points corresponding to hyperosculating planes
of C, here D(C) has cusps, while B(C) is expected to be smooth. Elsewhere B(C) is
expected to have a finite number (see [ACGH], p. 364) of trinodes, corresponding to
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tritangent planes of C while D(C) is expected to be smooth.
Furthermore it was shown in [LP-II], §5, that S ′ ⊆ C2 is expected to be smooth. S ′

is expected to differ from S ⊆ G(1, 3) locally, only at points corresponding to tangential
trisecant lines. From the study of Case 2) in Section 3 it follows that at such points B(C)
is expected to be smooth and have no flexes. Hence S will be smooth also at such points,
and S is therefore expected to be smooth. The common expected geometric genus of
B(C), S, S ′, and D(B(C)) is then determined by the correspondence

C −− S ′

P −→ {All P + P ′ | P + P ′ ∈ S ′}
{P, P ′} ←− D = P + P ′.

A general P corresponds to 2d + 2g − 6 divisors. A general D ∈ S ′ corresponds to
two points. A more precise statement in the sense of [GH], p. 282, is to say that the
correspondence is given as a holomorphic map f : C → S ′2d+2g−6, where f(P ) =

∑
ei(P+

P ′1), and ei is the multiplicity of P ′i as a Wronskian point of the (affine) rank 2 linear
system V (−2P ) on C. Each P such that there is a tangential trisecant simply tangent to
C at P , and simply intersecting C at P ′1; and each P such that an osculating (but not
higher osculating) plane at another point P ′1 simply touches C at P , corresponds to only
2d+ 2g − 7 points of S ′. In each of these cases e1 = 2, arising from vanishing sequences
(1, 2) and (0, 3) of V (−2P ) at P ′1 respectively (as opposed to (0, 1) for a general point
of C and (0, 2) for P ′1 such that we have an “usual” bitangent plane touching at P and
P ′1). Hence (P, P + P ′1) appears with multiplicity e1 − 1 = 1 in the ramification divisor
of the map from the graph curve of the correspondence down to C. A general curve is
“expected” to have only such tangential trisecants and 3-2-planes as just described.

EachD = 2P , such that the osculating plane of C at P is hyperosculating, corresponds
to only one point P on C. The curve is expected to have δ1 = 2d2 + 2dg− 10d− 12g+ 12
tangential trisecants, δ2 = 6d2 + 18dg+ 12g2− 42d− 84g+ 72 osculating planes touching
C elsewhere, and δ′ = 4d + 12g − 12 hyperosculating planes. The correspondence gives
that p, the genus of S ′, is determined by

(2d+ 2g − 6)(2g − 2) + δ1 + δ2 = 2(2p− 2) + δ′,

so p = 2d2 + 6dg + 4g2 − 15d− 31g + 28.

The rest of the numbers are determined by the standard Plücker formulas. The difference
between the total number of cusps of D(B(C)) and the number of cusps outside C is due
to the δ1 tangential trisecants, which give rise to cusps of D(B(C)) at the points where
these secant lines are tangent to C. The expected δ2 osculating planes to C that touch
C elsewhere, give rise to δ2 additional points of C ∩ D(B(C)). These are the points Q
of Case 4) of Section 3. At these points C and D(B(C)) are expected to be smooth and
intersect transversally.

We “expect” the following strata to non-empty for a curve C with ∆(d, g) = 1
2 (d −

1)(d− 2)− g ≥ 4.

Partition Closure of stratum
1 ≥ 1 ≥ . . . ≥ 1 ≥ 1 P3

2 ≥ 1 ≥ . . . ≥ 1 Surface F3 of degree 2d2 + 2dg − 8d− 6g + 6
3 ≥ 1 ≥ . . . ≥ 1 Curve D(B(C))

of degree 6d2 + 12dg + 6g2 − 36g − 60g + 54
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and genus 2d2 + 6dg + 4g2 − 15d− 31g + 48
2 ≥ 2 ≥ 1 . . . ≥ 1 The curve which is the closure of B(B(C)) \ C;

of degree 2d4 + 4d3g + 2d2g2 − 18d3 − 32d2g
−14d2g + 46d2 + 52dg + 8g2 − 6d+ 64g − 72

3 ≥ 2 ≥ 1 . . . ≥ 1 Finite stratum: (D(B(C)) ∩B(B(C)) \ C.
Points where a tangent line to D(B(C))
reintersects D(B(C)).

2 ≥ 2 ≥ 2 ≥ 1 ≥ . . . ≥ 1 Finite stratum:
{triple points on the nodal edge of F3} \ C

4 ≥ 1 ≥ . . . ≥ 1 Finite stratum: 12d2 + 32dg + 20g2

−84d− 164g + 144 cusps of D(B(C)) \ C.

R e m a r k 5.3. So far we have described a “projection-stratification” of P3 due to a
curve C. Similarly a reduced curve C ⊆ P3 gives rise to a “section-stratification” of P̌3, We
say that a point h ∈ P̌3, representing a plane H ⊆ P3, is contained in the section-stratum

b1 ≥ b2 ≥ . . . ≥ bk
if H ∩ C = b1P1 + b2P2 + . . .+ bkPk, for distinct points Pi.

Of course bi = I(Pi, C ∩ H) for each Pi, and
∑k
i=1 bi = d =degree of C. Then we

have:
{h | b1 ≥ 2} = dual surface of C, parametrizing planes that are tangent to C;
{h | b2 ≥ 2} = B(C) = nodal edge of the dual surface of C;
{h | b2 ≥ 3} = B(C) = strict dual curve of C = cuspidal edge of the dual

surface of C = {h | h corresponds to an osculating plane of C};
{h | b1 ≥ 4} = {cusps of the strict dual curve of C}

= {h | h corresponds to a hyperosculating plane of C}.
One can say that Theorems 2.1 and 2.2 describe a certain relationship between the

projection-stratification of P3 due to C, and the section-stratification of P3 due to B(C) ⊆
P̌3, at least for curves, which “behave as expected.”

R e m a r k 5.4. Ignacio Sols has asked a question, which in the language of our paper
is as follows: “Let G be monodromy (or Galois) group of the points of SR as R varies
over P3. For which integral smooth non-degenerate curves in P3 is the group G the full
symmetric group in ∆(d, g) = 1

2 (d − 1)(d − 2) − g letters?” For d = 3, g = 0, there is
nothing to prove; for d ≥ 4 the question is essentially: Is the stratum {2 ≥ 1 . . . ≥ 1}
non-empty? It is clear that if d ≥ 4 then {R | a1 ≥ 2} is a surface. What one has to
prove, is that this surface is not the union of the sets {R | a1 ≥ 3} and {R | a2 ≥ 2}. It
is clear from Theorem 2.1 that all components of {R | a1 ≥ 3} have dimension at most
one. One can not prove any such statement for the set {R | a2 ≥ 2}.

Indeed, in [BM] one constructs a rational sextic curve C with a one-dimensional family
of stationary trisecants, that is: trisecants such that for each trisecant the tangent lines
to C at the points of secancy are in the same plane. In addition C possesses 6 bitangent
lines. In this case B(C), which according to the table in 5.2 is expected to have degree
24, breaks up into a non-linear component of degree 6 counted 3 times, and 6 lines, which
are dual to the bitangent lines. The surface, which is the tangent developable of the strict
dual curve of the non-linear component of B(C), and at the same time the union of the
stationary trisecant lines, has degree 10. Since each stationary trisecant is a stationary
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bisecant in 3 ways, this corresponds well with the expected degree of S, which is 30. In
[BM] one proves rigorously that any pair of coplanar tangents is a part of a triple of
coplanar tangents, such that the 3 points of tangency are collinear. Hence a2 ≥ 2 (in
fact: a3 ≥ 2), for each point R on any such line. At each of the 12 points P where the
osculating plane is hyperosculating, the tangent line meets C in another point Q, where
the tangent line of C at Q is contained in the plane of hyper-osculation at P . Hence both
2P and P +Q appear with multiplicity at least 2 in VR for any point R on the line PQ
outside C. For each point R on any of the 6 bitangent lines we of course have a1 ≥ 4.

Hence it is clear that the stratum {2 ≥ 1 ≥ 1 . . . ≥ 1} is empty for the rational sextic
described in [BM]. It would be interesting to investigate whether this curve is the only
one for d ≥ 4 with an empty stratum {2 ≥ 1 ≥ 1 . . . ≥ 1}.

Another example of a curve C with a surface stratum {2 ≥ 2 ≥ 2 ≥ 1 . . . ≥ 1} is a
complete intersection of a quadric cone T and a cubic surface. For all points on T we
have either a2 ≥ 2, or a1 ≥ 3. A general point on a generatrix L of the cone intersets C
in 3 points P1, P2, P3, giving rise to three points P1 + P2, P1 + P3, P2 + P3 of SR, each
of multiplicity 2, since the tangent plane of T is constant along each generatrix. C has
degree 6 and genus 4, and the expected degree of the curves T and S (parametrizing
trisecants and stationary bisecants, respectively) in G(1, 3) are 4 and 54, respectively.
The conic component corresponding to lines on T in a natural way counts twice on T ,
and “fills up” T . This component only counts 3 (and not 27) times on S, and therefore
we expect other stationary bisecant lines in this case.

In the two examples of sextic curves C just mentioned it is not possible to interpret the
projection-stratum {2 ≥ 2 ≥ 2 ≥ 1 . . . ≥ 1} with respect to C as a section stratum of P3

with respect to a reduced curve B. No curve has a 2-dimensional family of tritangent (not
even bitangent) planes. On the other hand, any sensible scheme-theoretical description
of B(C) (as a subscheme of P3) for example the one in Section 4, will give a component
of B(C) that appears with multiplicity at least

(
3
2

)
= 3, so any tangent plane to this

component of B(C); corresponding dually to a point of F3 = {R | a1 ≥ 2}; is in a sense
tritangent, in virtue of being a tangent plane at all.

R e m a r k 5.5. If d = 3, g = 0 then ∆(d, g) = 1
2 (d − 1)(d − 2) − g = 1. Hence

{R | a1 ≥ 2 and a1 finite} = ∅.
If d = 4, g = 1, then ∆(d, g) = 2. Hence {R | a1 ≥ 3 and a1 finite} = ∅. It follows

from Theorem 2.1 that there cannot be any non-degenerate component of B(C). Hence
all components of B(C) are plane, and the surface S is a union of cones. The expected
degree 8 corresponds to 4 quadric cones. The expected genus −3 of B(C) makes sense as
the arithmetic genus of 4 disjoint conics. The expected degree 0 of D(B(C)) also makes
sense, since there is no such curve. It is hard, however, to find natural explanation for
the −16 expected cusps of the non-existent curve D(B(C)).

If d = 4, g = 0 then ∆(d, g) = 3. Hence {R | a1 ≥ 4 and a1 finite} = ∅. It follows from
Theorems 2.1 and 2.2 that there are no cusps of D(B(C)) outside {vertices of cones of
bisecants}. From our table in Remark 5.3 we see that all 4 expected cusps of the rational
curve D(B(C)) of degree 6 are points of C, since C possesses 4 tangential trisecants.
Hence we expect no cusps of D(B(C)) outside C.

If d = 5, g = 2 then ∆(d, g) = 4. Then we expect 96 cusps of D(B(C)) outside C.
From the table in Remark 5.2 it follows that we always expect cusps of D(B(C)) when
∆(d, g) ≥ 4.
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R e m a r k 5.6. A dense open set of the curve C itself is expected to appear as a part
of the section stratum

2 ≥ 2 ≥ . . . ≥ 2 ≥ 1 ≥ . . . ≥ 1
with respect to B(C), where the number 2 occurs 2d + 2g − 6 times in the partition.
We recall that 2d+ 2g − 6 is the number of stationary bisecants through a general point
on C. This implies that C appears as a

(
2d+2g−6

2

)
= (2d2 + 4dg + 2g2 − 13d− 13g + 21)-

fold component of the curve B(B(C)). Therefore the expected degree of the projection-
stratum

2 ≥ 2 ≥ 1 . . . ≥ 1
with respect to C is calculated in the following way:

1
2

(degS − 1)(degS − 2)− genusS − deg (D(B(C)))− d ·
(

2d+ 2g − 6
2

)
.

(Take a plane section of S.) Clearly this number is zero for ∆(d, g) < 4, that is, for
d ≤ 4. In the case d = 4, g = 0, we see that B(C) is a smooth rational quartic curve just
like C, and that B(B(C)) = C. Hence we have some sort of “auto-bitangent duality” in
this case.

In the case d = 4, g = 1, we bravely claim that B(B(C)) = C ∪ {4 points}, and that
C in a natural way is a 6-fold component of B(B(C)), since all points on C correspond
dually to planes that are simultaneously tangent to each of the 4 conics of B(C).
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