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Abstract. In this paper we extend the definition of the linearly invariant family and the
definition of the universal linearly invariant family to higher dimensional case. We characterize
these classes and give some of their properties. We also give a relationship of these families with
the Bloch space.

1. Introduction. Ch. Pommerenke has introduced ([1]) the notion of a linearly in-
variant family M as a class of functions f holomorphic in the unit disc ∆ = {z : z ∈
C, |z| < 1} such that
1) f(0) = 0, f ′(0) = 1, f ′(z) 6= 0 in ∆,
2) for all f ∈M and θ ∈ R, f(zeiθ)e−iθ ∈M ,

3) for all f ∈M and a ∈ ∆ fa(z) :=
f( z+a

1+āz )−f(a)

f ′(a)(1−|a|2) = z + · · · ∈M .
The number

ordf = sup
a∈∆

|f ′′a (0)|
2

was called, by Ch. Pommerenke ([1]), the order of a locally univalent function f , and the
number

ordM = sup
f∈M

ordf

- the order of the family M . Moreover,⋃
{M : ordM ≤ α} := Uα
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was called the universal linearly invariant family.
Linearly invariant families play an important part in the theory of conformal map-

pings. Furthermore an interest in the families Uα grows, because of their relationship
with the Bloch class ([2]).

The main goal of this paper is to extend the definition of the linearly invariant families
onto the case of functions defined on the unit polydisc ∆m ⊂ Cm, m ≥ 1, and establish
several properties

Let T = {z : z ∈ C, |z| = 1} and Tm be the unit torus. We will consider the class
H(∆m) of all functions f : ∆m −→ C holomorphic in ∆m. The gradient of a holomorphic
function f we denote by ∇f ; that is ∇f = ( ∂f∂z1 , · · · ,

∂f
∂zm

). For z = (z1, · · · , zm) ∈ Cm we
define the norm

‖z‖ = max
1≤j≤m

|zj |.

Let O = (0, · · · , 0) ∈ Cm. Recall that to every a ∈ ∆ corresponds an automorphism φa
of ∆: φa(z) = (a+ z)/(1 + āz), z ⊂ ∆. The same can be done in the polydisc ∆m. For
a = (a1, · · · , am) ∈ ∆m the Möbius mapping φa of ∆m onto ∆m we define by the formula

φa(z) = (φ1(z1), · · · , φm(zm)),

where
φj(zj) =

zj + aj
1 + ajzj

, j = 1, · · · ,m.

Now, we are ready to introduce the linearly (Möbius) invariant family.

Definition 1.1. Let l = 1, · · · ,m be fixed. The l-Möbius invariant family Ml is the
class of all functions f , f ∈ H(∆m), such that
1) f(O) = 0, ∂f

∂zl
(O) = 1, ∂f

∂zl
(z) 6= 0, for z ∈ ∆m,

2) for all f ∈ Ml and θ = (θ1, · · · , θm) ∈ Rm , f(zeiθ)e−iθl ∈ M , where zeiθ =
(z1e

iθ1 , · · · , zmeiθm).
3) for all f ∈Ml and a = (a1, · · · , am) ∈ ∆m,

fa(z) :=
f(φa(z))− f(φa(O))

∂f
∂zl

(a)(1− |al|2)
∈ Ml.

Examples:
(i) Kl - the class of functions f ∈ H(∆m) satisfying 1) of the above Definition and such

that f(∆m) is a convex domain.
(ii) S∗l - the class of functions f ∈ H(∆m) satisfying 1) of the above Definition and such

that there exists a point wf ∈ f(∆m), such that the domain f(∆m) is starlike with
respect to wf .

(iii) Skl , where k = 1, · · · ,m is fixed, - the class of all functions fk ∈ H(∆m) satisfying 1)
of the above Definition such that F (z) = (f1(z), · · · , fm(z)) is a univalent mapping
of ∆m into Cm.

The following definition extends the Pommerenke’s conception of the order of a func-
tion, ([1]).
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Definition 1.2. Let f satisfy the conditions 1) of Definition 1.1 and let ∂fa

∂zl
(z) =

1 + c1(f)z1 + · · ·+ cm(f)zm + o
(
‖z‖). The l-order of the function f is defined as follows:

ordlf = sup
a∈∆m

1
2
‖∇∂fa

∂zl
(O)‖ =

1
2

sup
a∈∆m

‖(c1(fa), · · · , cm(fa))‖.

Theorem 1.1 If f ∈Ml, a ∈ ∆m, then

ordlf = max
1≤k≤m

sup
z∈∆m

|
∂2f

∂zl∂zk

∂f
∂zl

(z)
1− |zk|2

2
− zkδlk| =

sup
a∈∆m

‖1
2
∇ log(

∂f

∂zl
◦ φa)(O)− (0, · · · , 0, al, 0, · · · , 0)‖,

where

δlk =
{

1, for k = l
0, for k 6= l.

P r o o f. Let us observe that

∂fa
∂zl

(z) =
( ∂f∂zl
◦ φa)(z)

∂f
∂zl

(a)(1 + alzl)2
.

Then

‖∇∂fa
∂zl

(O)‖ = max
1≤k≤m

|
∂2f

∂zl∂zk
(a)

∂f
∂zl

(a)
(1− |ak|2)− 2alδlk|.

The above gives the result.

Now, we introduce the order of a family Ml.

Definition 1.3. The l-order of a l-Möbius invariant family Ml is defined as

ordlMl = sup
f∈Ml

ordlf.

Examples:
1) Ml = {f(z) = Φ(zl) : Φ ∈ Uα} is the l-Möbius invariant family of the l-order α.
2) Let k 6= l and let Φk(zk) be functions holomorphic in ∆ such that Φk(0) = 0. Then

Ml = {f(z) =
∞∑
k=1

λkΦk(zk) : Φl ∈ Uα, λk ∈ C, λl = 1}

is the l-Möbius invariant family of the l-order α.
3) Let

Ψ(z) =
1

2α
[
m∏
k=1

(
1 + zk
1− zk

)α − 1].

Then for all l = 1, · · · ,m the class

{Ψa(zeiθ)e−iθl : a ∈ ∆m, θ ∈ Rm}

is the l-Möbius invariant family of the l-order α.

2. Universal linearly (Möbius) invariant family. In the next definition we in-
troduce a universal linearly (Möbius) invariant family.



118 J. GODULA AND V. STARKOV

Definition 2.1. The universal l-Möbius invariant family U lα of the l-order α is defined
as the union of all families Ml such that ordlMl ≤ α; that is

U lα = ∪{Ml : ordlMl ≤ α}.

Theorem 2.1. For any f ∈ U lα and all z ∈ ∆m we have

(2.1) | log((1− |zl|2)
∂f

∂zl
(z))| ≤ α log

m∏
k=1

1 + |zk|
1− |zk|

,

(2.2)
1

1− |zl|2
m∏
k=1

(
1− |zk|
1 + |zk|

)α ≤ | ∂f
∂zl

(z)| ≤ 1
1− |zl|2

m∏
k=1

(
1 + |zk|
1− |zk|

)α.

The above inequalities are rendered by the functions

Ψ(z) =
1

2α
[
m∏
k=1

(
1 + zk
1− zk

)α − 1],

for α ≥ 1 and real zk.

P r o o f. From Theorem 1.1 we have

|
∂2f
∂z2

l

(z)
∂f
∂zl

(z)
1− |zl|2

2
− zl| ≤ α.

Thus for zl = rle
iθl (if zl 6= 0) we get

| ∂
∂rl

[log(
∂f

∂zl
(z)(1− r2

l ))]| = |
∂2f
∂z2

l

(z)
∂f
∂zl

(z)
eiθl − 2rl

1− r2
l

| ≤ 2α
1− r2

l

.

Now, let
zl = (z1, · · · , zl−1, 0, zl+1, · · · , zm).

Then we obtain

(2.3) | log(
∂f

∂zl
(z)(1− r2

l ))− log
∂f

∂zl
(zl)| = |

∫ r

0

∂

∂rl
[log(

∂f

∂zl
(z)(1− r2

l ))] drl| ≤∫ rl

0

2α
1− r2

l

drl = α log
1 + rl
1− rl

.

By Theorem 1.1 we have

|
∂2f

∂zl∂zk
(z)

∂f
∂zl

(z)
| ≤ 2α

1− r2
k

for all k 6= l and z ∈ ∆m.
Let zl,k be a point in ∆m for which zl = zk = 0. Then

(2.4) | log
∂f

∂zl
(zl)− log

∂f

∂zl
(zl,k)| = |

∫ rk

0

∂2f
∂zl∂zk

(zl)
∂f
∂zl

(zl)
eiθk drk| ≤

∫ rk

0

2α
1− r2

k

drk = α log
1 + rk
1− rk

.
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Now, if l 6= p 6= k, l 6= k, then analogously to (2.4) we get

(2.5) | log
∂f

∂zl
(zl,k)− log

∂f

∂zl
(zl,k,p)| ≤ α log

1 + rp
1− rp

,

where a point zl,k,p ∈ ∆m, and zl = zk = zp = 0. Using the above scheme we obtain, in
the end, an estimation of the type (2.5) of the expression

| log
∂f

∂zl
(z∗)− log

∂f

∂zl
(O)|,

where a point z∗ ∈ ∆m and it has only one component different from zero. Summing
(2.3), (2.4), (2.5),. . .we obtain (2.1). If we put the function Ψ in (2.1), with zk = |zk|, for
all k = 1, · · · ,m then we have the equality in (2.1).

For the proof of (2.2), let us observe that from (2.1) we obtain

α log
m∏
k=1

1− |zk|
1 + |zk|

− log(1− |zl|2) ≤ <[log
∂f

∂zl
(z)− log

∂f

∂zl
(O)] ≤

α log
m∏
k=1

1 + |zk|
1− |zk|

− log(1− |zl|2).

For the function Ψ, with zk = ±|zk| for all k = 1, · · · ,m, we have the equality in (2.2).

R e m a r k. For m = 1 the above Theorem gives the well known result for the class
Uα, ([1]).

Corollary. In the Definition of U lα we have α ≥ 1, because U lα = ∅ for α < 1.

Indeed, if we suppose that α < 1, then from (2.2) it follows that lim|zl|→1− | ∂f∂zl
(z)| =

∞ for fixed rest components of z = (z1, · · · , zl, · · · , zm). The holomorphic, with respect
to zl, function ∂f

∂zl
is not equal zero. Thus min|z|<r | ∂f∂zl

(z)| is attained on {|zl| = r} and
this minimum tends to ∞, if r → 1−. The above contradicts ∂f

∂zl
(O) = 1.

Theorem 2.2. The family U lα is the set of all functions holomorphic in ∆m and satis-
fying the conditions 1 ), 2 ), 3 ) of Definition 1.1 and the condition (2.2 ) in a neighbourhood
of O.

P r o o f. Let F be a family of functions satisfying the conditions mentioned in our
theorem. It is enough to show that F ⊂ Uα(l). Let f ∈ F . Thus, by 2), for all z from a
neighourhood of O we have

(2.6) α log
m∏
k=1

1− rk
1 + rk

− log(1− r2
l ) ≤ < log

∂f

∂zl
(z) ≤ α log

m∏
k=1

1 + rk
1− rk

− log(1− r2
l ),

where zk = rke
iθk .

The above inequalities are true for a function fa, for every a ∈ ∆m. For z = O both
left and right expression of (2.6) are 0. Thus, after the differentiation, with respect to rk,
k = 1, · · · ,m, of (2.6) in the point O we get (if k 6= l)

−2α ≤ <
∂2fa

∂zl∂zk
(O)

∂fa

∂zl
(O)

≤ 2α,
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which is equivalent to

(2.7) |
∂2f

∂zl∂zk
(a)

∂f
∂zl

(a)
(1− |ak|2)| ≤ 2α.

Moreover, if k = l we get

−2α ≤ <[
∂2f
∂z2

l

(1− |al|2)− 2al ∂f∂zl
(a)

∂f
∂zl

(a)
eiγl ] ≤ 2α,

for all γl ∈ R; which is equivalent to

(2.8) |
∂2f
∂z2

l

(a)
∂f
∂zl

(a)
(1− |al|2)− 2al| ≤ 2α.

From (2.7) and (2.8) it follows that ordlf ≤ α. Thus f ∈ U lα.

R e m a r k . For m = 1 we get known result in the class Uα, ([3]).

Now, let for x ∈ [0, 1), q ∈ [−1, 1]

Ξ(x, q) =
∫ x

0

√
1− q2t2

1− t2
dt =

1
2

√
1− q2 log

√
1− q2x2 + x

√
1− q2√

1− q2x2 − x
√

1− q2
+ q arcsinx ≤

1
2

√
1− q2 log

1 + x

1− x
+ arcsinx.

Observe, that the function αΞ(|z|, sinλ
α ) is increasing with respect to α.

In the paper [1] Ch. Pommerenke has obtained an estimate of |<{e−iλ log f ′(z)}| in
the class Uα. Now, we give a similar result for the class U lα.

Theorem 2.3. For all f ∈ U lα and all real λ

|<{e−iλ log
∂f

∂zl
(z)(1− |zl|2)}| ≤ α(log

∏
k 6=l

1 + |zk|
1− |zk|

+ 2Ξ(|zl|,
| sinλ|
α

)).

P r o o f. Let us denote

u(r1, · · · , rm) = max
|zk|≤rk

<{e−iλ log
∂f

∂zl
(z1, · · · , zm)}.

By the maximum principle for harmonic functions

u(r1, · · · , rm) = <{e−iλ log
∂f

∂zl
(r1e

iθ
(0)
1 (r1,···,rm), · · · , rmeiθ

(0)
m (r1,···,rm))}.

Then

− ∂

∂θk
(<{e−iλ log

∂f

∂zl
(r1e

iθ1 , · · · , rmeiθm)})
∣∣∣∣
θ=θ(0)

=

(2.9) ={e−iλ
∂2f

∂zl∂zk

∂f
∂zl

(r1e
iθ

(0)
1 , · · · , rmeiθ

(0)
m )eiθ

(0)
k rk} = 0;

where θ(0) = θ(0)(r1, · · · , rm) = (θ(0)
1 (r1, · · · , rm), · · · , θ(0)

m (r1, · · · , rm)). The function
u(r1, · · · , rm) increases with respect to every variable rk ∈ [0, 1). Thus, by the Lebesgue



LINEARLY INVARIANT FAMILIES 121

theorem everywhere on [0,1) there exists finite derivative ∂u
∂rk

(r1, · · · , rk−1, trk, · · · , rm).
Then

<{e−iλ log
∂f

∂zl
(r1e

iθ
(0)
1 , · · · , rk−1e

iθ
(0)
1 , teiθ

(0)
k , rk+1e

iθ
(0)
k+1 , · · · , rmeiθ

(0)
m )} ≤

(2.10) u(r1, · · · , rk−1, t, rk+1, · · · , rm),

with equality for t = rk. From the above it follows,that for almost all rk:

<{e−iλ
∂2f

∂zl∂zk

∂f
∂zl

(r1e
iθ

(0)
1 , · · · , rkeiθ

(0)
k , · · · , rmeiθ

(0)
m )eiθ

(0)
k } =

∂u

∂rk
(r1, · · · , rk, · · · , rm).

By (2.9) we get

∂u

∂rk
(r1, · · · , rk, · · · , rm) = e−iλ

∂2f
∂zl∂zk

∂f
∂zl

(r1e
iθ

(0)
1 , · · · , rkeiθ

(0)
k , · · · , rmeiθ

(0)
m )eiθ

(0)
k .

From the above and from Theorem 1.1 it follows that for almost all rk (the rest of
variables of the function u are fixed) we have

| ∂u
∂rk

(r1, · · · , rk, · · · , rm)
1− r2

k

2
− rkδlke−iλ| ≤ α,

(
∂u

∂rk

1− r2
k

2
− rkδlk cosλ)2 + r2

kδ
l
k sin2 λ ≤ α2,

and

| ∂u
∂rk
− 2δlk

rk
1− r2

k

cosλ| ≤ 2

√
α2 − r2

kδ
l
k sin2 λ

1− r2
k

.

For k = l we have

| ∂
∂rl

[u+ cosλ log(1− r2
l )]| ≤ 2

√
α2 − r2

l sin2 λ

1− r2
l

.

Integrating, we obtain

|u(r1, · · · , rl, · · · , rm) + cosλ log(1− r2
l )− u(r1, · · · , rl−1, 0, rl+1, · · · , rm)| ≤

2αΞ(rl,
| sinλ|
α

);

and for k 6= l:

|u(r1, · · · , rl−1, 0, rl+1, · · · , rm)− u(r1, · · · , rk−1, 0, rk+1, · · · , rl−1, 0, rl+1, · · · , rm)| ≤∫ rk

0

| ∂u
∂rk

(r1, · · · , rk−1, s, rk+1, · · · , rl−1, 0, rl+1, · · · , rm)| ds ≤ 2
∫ rk

0

α

1− s2
ds =

α log
1 + rk
1− rk

.
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Having (m-1) similar inequalities with k 6= l and summing them we obtain

|u(r1, · · · , rm) + cosλ log(1− r2
l )− u(O)| ≤ α

∑
k 6=l

log
1 + rk
1− rk

+ 2αΞ(rl,
| sinλ|
α

).

Thus we get the Theorem.

For λ = 2πn, n an integer, we have Theorem 2.1, and for eiλ = i we get

Corollary.

| arg
∂f

∂zl
(z)| ≤ α(log

∏
k 6=l

1 + |zk|
1− |zk|

+ 2Ξ(|zl|,
1
α

)) ≤

α log
∏
k 6=l

1 + |zk|
1− |zk|

+
√
α2 − 1 log

1 + |zl|
1− |zl|

+ 2 arcsin |zl|.

For the proof see [1]. Here arg ∂f
∂zl

(O) = 0 and it is continuous with respect to z.
For m = 1 we get Pommerenke’s result for Uα.

R e m a r k . The above estimation is not rough.

To support this we give the following example of function.

Ψ0(z) =
1

2i
√
α2 − 1

∏
k 6=l

(
1 + zk
1− zk

)iα(1 + zl
1− zl

)i√α2−1

− 1

 , α > 1.

(2.11) arg Ψ0(r1, . . . , rm) = α log
∏
k 6=l

1 + rk
1− rk

+
√
α2 − 1 log

1 + rl
1− rl

.

Indeed

sup
z∈∆m

∣∣∣∣∣∣
∂2Ψ0
∂z2

l

∂Ψ0
∂zl

1− |zl|2

2
− z̄l

∣∣∣∣∣∣ = sup
|zl|<1

|1− |zl|
2

1− z2
l

(i
√
α2 − 1− 1 + 2zl)− z̄l| = α

(see:[1], page 128). For all k 6= l

sup
z∈∆m

∣∣∣∣∣
∂2Ψ0
∂zl∂zk

∂Ψ0
∂zl

1− |zk|2

2

∣∣∣∣∣ = sup
|zk|<1

| αi

1− z2
k

(1− |zk|2)| = α.

By the Theorem 1.1 ord lΨ0 = α and the equality (3.11) is fulfilled.

3. Bloch class. Now, we introduce the Bloch class of holomorphic functions.

Definition 3.1. A holomorphic function g : ∆m −→ C is called a Bloch function if

‖g‖B := |g(O)|+ max
k=1,···,m

sup
z∈∆m

| ∂g
∂zk

(1− |zk|2)| <∞.

The set of all Bloch functions we will denote by B := B(∆m).
The following result give a condition which is equivalent to the definition of the Bloch

function. For m = 1 the result was given by the authors in [2].
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Theorem 3.1. Let l = 1, · · · ,m be fixed. Then the following conditions are equivalent
(i) g ∈ B,
(ii) There exists f ∈

⋃
α<∞ U lα such that

g(z)− g(O) = log
∂f

∂zl
(z),

where α = ordlf . Moreover

2(α− 1) ≤ ‖g(z)− g(O)‖B ≤ 2(α+ 1).

P r o o f. (i)⇒ (ii) Let g ∈ B and let F be a function such that

∂F

∂zl
(z) = exp(g(z)− g(O)).

Now, let us consider a function f defined by the formula

f(z) = F (z)− F (O).

One can see, that f satisfies 1) in Definition 1.1. Moreover

log
∂f

∂zl
(z) = log

∂F

∂zl
(z) = g(z)− g(O).

Since

α = ordlf = max
k=1,···,m

sup
z∈∆m

| ∂g
∂zk

(z)
1− |zk|2

2
− zkδlk|

we have
1
2
‖g(z)− g(O)‖B − 1 ≤ α ≤ 1

2
‖g(z)− g(O)‖B + 1

and f ∈ U lα.
(ii)⇒ (i) Let f ∈

⋃
α<∞ U lα and ordlf = α. Let

g(z) = log
∂f

∂zl
(z).

We have g(O) = 0. From Theorem 2.1 it follows that for every k = 1, · · · ,m

sup
z∈∆m

(| ∂g
∂zk

(z)|(1− |zk|2)) ≤ 2α+ 2δkl ≤ 2(α+ 1).

Thus g ∈ B and

2(α− 1)‖g‖B ≤ max
k=1,···,m

sup
z∈∆m

(| ∂g
∂zk

(z)|(1− |zk|2)) ≤ 2(α+ 1).

Now, let us give some properties of Bloch functions in terms of the order.

Theorem 3.2. Let g be a holomorphic function in ∆m. Then g ∈ B if and only if
there exists a positive constant Cg such that for all z ∈ ∆m,

(3.1) sup
a∈∆m

|g(φa(z))− g(a)− 2 log(1 + alzl) + log(1− |zl|2)| ≤ Cg log
m∏
k=1

1 + |zk|
1− |zk|

.

The best value of the constant Cg is equal ord
∫ zl

0
exp g(z1, · · · , zl−1, s, · · · , zm) ds.

P r o o f. Let us suppose that g(O) = 0.
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10. Let g ∈ B. Then there exists a function f ∈ U lα such that g(z) = log ∂f
∂zl

(z). Since

fa(z) :=
f(φa(z))− f(φa(O))

∂f
∂zl

(a)(1− |al|2)

we get
∂fa
∂zl

(z) =
∂f
∂zl

(φa(z))
∂f
∂zl

(a)(1 + alzl)2
.

By (2.1)

log((1− |zl|2)
∂fa(z)
∂zl

)| ≤ α log
m∏
k=1

1 + |zk|
1− |zk|

.

Thus

| log
∂f
∂zl

(φa(z))(1− |zl|2)
∂f
∂zl

(a)(1 + alzl)2
| ≤ α log

m∏
k=1

1 + |zk|
1− |zk|

which is equivalent to (3.1).
20. Now, let a holomorphic function g satisfies (3.1) (with g(O) = 0). Let us consider

a function

f(z) =
∫ zl

0

exp g(z1, · · · , zl−1, s, · · · , zm) ds.

Then

| log
∂f
∂zl

(φa(z))(1− |zl|2)
∂f
∂zl

(a)(1 + alzl)2
| ≤ α log

m∏
k=1

1 + |zk|
1− |zk|

,

Thus

|<[log
∂f

∂zl
(φa(z))− log

∂f

∂zl
(a)− 2 log(1 + alzl)] ≤ α log

m∏
k=1

1 + |zk|
1− |zk|

− log(1− |zl|2).

From the above inequality (differentiating with respect to |zk| in O) for every k and l we
get

−2α ≤ <{
∂2f(a)
∂zl∂zk

(1− |ak|2)eiθk

∂f
∂zl

(a)
− 2aleiθkδlk} ≤ 2α,

Hence ordf = α, f ∈ U lα and

max
k=1,···,m

sup
a∈∆m

| ∂g
∂zk

(a)|(1− |ak|2) ≤ 2(α+ 1).

Thus g ∈ B.

Now, we give corollaries.

Corollary 3.1. The condition (3.1 ) we give in the following equivalent form:

(3.1′) |g(φa(z))− g(a)| ≤ Kg

2
log

m∏
k=1

1 + |zk|
1− |zk|

,

where the best constant Kg is equal ‖g(z)− g(O)‖B.
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P r o o f. If g ∈ B, then

|g(z)− g(z′l)| = |
∫ zl

0

∂g

∂zl
(z1, · · · , zl−1, · · · , zl) ds| ≤∫ |zl|

0

Kg

1− r2
dr =

Kg

2
log

1 + |zl|
1− |zl|

,

where z′l = (z1, · · · , zl−1, 0, · · · , zm). Using this scheme we get

(3.2) |g(z)− g(O)| ≤ Kg

2
log

m∏
k=1

1 + |zk|
1− |zk|

.

If g ∈ B, then g(φa(z))− g(a) ∈ B. Thus, by (3.2) we get the result.
Now, let (3.1’) be fulfilled. Then for all a ∈ ∆m:

|<{g(φa(z))− g(a)}| ≤ Kg

2
log

m∏
k=1

1 + |zk|
1− |zk|

.

Differentiating with respect to zk = |zk|eiθk in a neighbourhood of O we get

|<{ ∂g
∂zk

(a)(1− |ak|2)eiθk} ≤ Kg,

for all k = 1, · · · ,m. Thus
∂g

∂zk
(a)|(1− |ak|2) ≤ Kg,

for all a ∈ ∆m and this ends the proof.

Corollary 3.2. The following conditions are equivalent :
(i) g ∈ B
(ii) the family of functions g(φa(z))− g(a) is finitely normal for a ∈ ∆m.

P r o o f. Let g ∈ B. By (3.1) we get that g(φa(z)) − g(a) belongs to the class B for
all a ∈ ∆m. Thus we have (ii).

Now, let (ii) is fulfilled. The for every sequence an ∈ ∆m there exists a subsequence
anp such that a sequence Gp(z) = g(φanp

(z) − g(anp) is uniformly convergent, in ∆m

to an analytic function (which is not equal ∞). For every k the function ∂
∂zk

Gp(z) is
uniformly convergent to an analytic function. Thus for every k the function ∂

∂zk
g(φa(z))

is uniformly bounded (with respect to a ∈ ∆m) on compact sets K ⊂ ∆m. Then there is
a constant Kg such that

| ∂
∂zk

g(φa(z))| = | ∂g
∂zk

(φa(z))
1− |ak|2

(1 + akzk)2
| ≤ Kg.

Thus
| ∂g
∂zk

(a)(1− |ak|2)| ≤ Kg,

for all a ∈ ∆m.

Corollary 3.3. Let g ∈ B, λ ∈ [0, 2π]. Then the function g(z) − g(O) maps the
polydisc {z : z ∈ C, |z| ≤ r}m into a domain with the boundary :

αeiλ(log(
1 + r

1− r
)m−1 + 2Ξ(r,

sinλ
α

))− log(1− |r|2).
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4. Class U̇ lα. Now, we define a class of derivatives of functions from the class U lα
and give some of its properties.

Definition 4.1. U̇ lα = { ∂f∂zl
: f ∈ U lα}.

The following result give a relationship between classes U ′α(l) (thus between classes
U lα) with different parameters l.

Theorem 4.1. For all α ≥ 2 and all l, k, n ∈ {1, · · · ,m}:

U̇nα−1 ⊂ U̇ lα ⊂ U̇kα+1.

P r o o f. From the Definitions of U lα and U ′α(l) it follows that h ∈ U̇ lα if and only if
(i) h(O) = 1, h(z) 6= 0 for z ∈ ∆m,

(ii) for all a ∈ ∆m and t = [t1, · · · , tm] ∈ Rm, if h ∈ U̇ lα, then

h(φa(z))
h(a)(1 + alz)2

∈ U̇ lα

and
h(zeit) ∈ U̇ lα, where zeit = [z1e

it1 , · · · , zmeitm ],

(iii) if h(z) = 1 + c1z1 + · · ·+ cmzm + o(‖z‖), then

‖(c1, · · · , cm)‖ ≤ 2α.

Let us suppose that h ∈ U ′α(l). Let cj(a) be a coefficient with zj in the expansion of
the function h(φa(z))

h(a) . Since (1 + alzl)−2 = 1− 2alzl + 3(alzl)2 + · · ·, then

h(φa(z))
h(a)(1 + alzl)2

= 1 + c1(a)z1 + · · ·+ (cl(a)− 2al)zl + · · ·+ cm(a)zm + o(‖z‖).

Using (iii) we get
‖(c1(a), · · · , cl(a)− 2al, · · · , cm(a))‖ ≤ 2α

for all a ∈ ∆m. This is a necessary and sufficient condition that a function h holomorphic
in ∆m with h(O) = 1 belongs to U ′α(l). Thus, for k 6= l and all a ∈ ∆m

‖(c1(a), · · · , ck(a)− 2ak, · · · , cm(a))‖ ≤ 2(α+ 1),

and this means that h ∈ Uα+1(k) and moreover U̇ lα ⊂ U̇kα+1. Let us observe that for α≥2
we have U̇nα+1 ⊂ U̇ lα.

R e m a r k 4.1. Let us consider the function

ho(z) =
1

(1− zk)2
=

∂

∂zk

zk
1− zk

∈ U̇k1 .

For the function ho we have that ck(a) = 2(1−|ak|2)
1−ak

, and supa∈∆m |ck(a)| = 4. Thus
ho 6∈ U lα for α < 2. Moreover, we see that in Theorem 4.1 the constant α+ 1 is the best.

Theorem 4.2. For all α ∈< 1,∞) the family U̇ lα is compact in the topology inducted
by locally uniform convergence in ∆m.
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P r o o f. From Theorems 1.1 and 2.1 it follows that for every compact set K ⊂ ∆m

and every function h ∈ U̇ lα there exists a constant C(α,K) such that

sup
z∈K

‖∇h(z)‖
1 + |h(z)|2

≤ C(α,K).

From the result of R.M. Timoney ([4], theorem 3.10) it follows that U̇ lα is a normal family.
If hn ∈ U̇ lα is a sequence which converges uniformly to h on a compact K ⊂ ∆m, then,

by the Theorem 2.1, h(O) = 1 and h(z) 6= 0 in ∆m. Thus h is in U̇ lα, if the conditions
(ii), (iii) in the proof of Theorem 4.1 are fulfield. But these conditions are equivalent to
the following one

ordl
∫ zl

0

h(s) dsl ≤ α,

where s = (s1, · · · , sm); which is equivalent to

max
k=1,···,m

sup
z∈∆m

|
∂h
∂zl

(z)

h(z)
1− |zk|2

2
− zkδlk| ≤ α.

The above inequality is true for hn and thus for h, too.

R e m a r k 4.2. Let us observe that unlike the case m = 1, the families U lα are not
compact in the topology inducted by locally uniform convergence in ∆m, for m ≥ 2.

Indeed, let
Q(zl) = Q(z1, · · · , zl−1, zl+1, · · · , zm)

be a function holomorphic in ∆m−1 such that Q(O)=0. Then for a fixed function h∈ U̇ lα
we have

f(z) =
∫ zl

0

h(s) dsl +Q(zl) ∈ U lα.

Now, we can take a sequence of functions Qn(zl) (of the type of the function Q(zl)) such
that for all z ∈ ∆m−1 \ {O} , Qn(zl) −→∞, if n→∞. But, it is not possible to choose
(from the corresponding sequence fn) a subsequence convergent to a function from U lα.
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