GENERALIZATIONS OF COMPLEX ANALYSIS BANACH CENTER PUBLICATIONS, VOLUME 37 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

SUBORDINATION THEORY FOR HOLOMORPHIC MAPPINGS OF SEVERAL COMPLEX VARIABLES

GABRIELA KOHR and MIRELA KOHR-ILE

Faculty of Mathematics, Babeş-Bolyai University R-3400 Cluj-Napoca, Romania

Abstract. The authors obtain a generalization of Jack–Miller–Mocanu's lemma and, using the technique of subordinations, deduce some properties of holomorphic mappings from the unit polydisc in \mathbb{C}^n into \mathbb{C}^n .

1. Introduction. Let n be a positive integer and \mathbb{C}^n denote the space of n complex variables $z = (z_1, \ldots, z_n)$ with the Euclidean product $\langle z, w \rangle = \sum_{k=1}^n z_k \overline{w}_k$ and the Euclidean norm $|z| = \langle z, z \rangle^{1/2}$. Let U_1^n denote the unit polydisc in \mathbb{C}^n , i.e. the set $\{z \in \mathbb{C}^n : ||z|| < 1\}$, where $||z|| = \max_{1 \le j \le n} |z_j|$, and let B_1^n stand for the open unit Euclidean ball in \mathbb{C}^n . For n = 1, $B_1^n = U_1^n = U = \{z \in \mathbb{C} : |z| < 1\}$, the unit disc in \mathbb{C} .

Recently the present authors [3] have obtained a new generalization of the Jack-Miller-Mocanu lemma and, using the technique of subordinations, arrived at some properties of holomorphic mappings defined on the unit polydisc U_1^n . In this paper one deduces other results concerning partial differential subordinations and some inequalities for holomorphic mappings on U_1^n .

Let Ω be a domain in \mathbb{C}^n and let $H(\Omega)$ be the set of holomorphic mappings on Ω . If $f \in H(\Omega)$, denote by [Df(z)], $z \in \Omega$, its Fréchet matrix $[(\partial/\partial z_j)f_k(z)]_{j,k=1,...,n}$ and by [Df(z)]' its transpose. Also, if F is a holomorphic function defined on a domain $D \subseteq \mathbb{C}^n$, then by $(\partial/\partial z)F$ we denote the complex vector $((\partial/\partial z_1)F, \ldots, (\partial/\partial z_n)F)$ and by $[(\partial/\partial z)F]'$ its transpose. (If $z \in \mathbb{C}^n$, then [z]' means the transpose of z.) Since $(\mathbb{C}^n, |\cdot|)$ is a normed space with respect to the Euclidean norm, if $A : \mathbb{C}^n \to \mathbb{C}^n$ is a continuous and linear operator, then by |A| we denote the norm of A, i.e., $|A| = \sup_{|u|=1} |Au|$. For our purpose we shall use the following result.

LEMMA 1.1 [2]. Let $0 < r_0 < 1$ and $h : r_o \overline{U}_1^n \to \mathbb{C}$ be a holomorphic function on $r_o \overline{U}_1^n$ with h(0) = 0. If $z_0 \in r_o \overline{U}_1^n$ and $|h(z_0)| = \max\{|h(z)| : z \in r_o \overline{U}_1^n\}$, then at $z = z_0$ we

[129]

¹⁹⁹¹ *Mathematics Subject Classification*: Primary 32A10; Secondary 32H99. The paper is in final form and no version of it will be published elsewhere.

have

$$z_0[\frac{\partial h(z_0)}{\partial z}]' = mh(z_0)$$
 and $\operatorname{Re}\{\frac{z_0}{h(z_0)}, \frac{\partial^2 h(z_0)}{\partial z^2}[z_0]'\} \ge m(m-1), \text{ where } m \ge 1.$

2. Main results. We start with

THEOREM 2.1. Let $f: U_1^n \to \mathbb{C}^n$ be a holomorphic mapping on U_1^n such that f(0) = 0and $f(z) \neq 0, z \in U_1^n$. Let $0 < r_0 < 1$ and $z_0 \in r_o \overline{U}_1^n$ be such that

(1)
$$|f(z_0)| = \max\{|f(z)| : z \in r_o \overline{U}_1^n\}$$

Then there exist real numbers m and s such that $s \ge m \ge 1$, and at $z = z_0$ we have

- (i) $\langle [Df(z_0)][z_0]', f(z_0) \rangle = m |f(z_0)|^2$ and
- (ii) $\langle |[Df(z_0)][z_0]'| = s|f(z_0)|.$

Proof. Using the hypothesis we can assume $z_0 \neq 0$ and $f(z_0) \neq 0$. Let $g: U_1^n \to \mathbb{C}$, be defined by $g(z) = \langle f(z), f(z_0) \rangle$, $z \in U_1^n$; then g is holomorphic on U_1^n , g(0) = 0 and g satisfies $|g(z_0)| = \max\{|g(z)| : ||z|| \leq r_0\}$. From Lemma 1.1 we deduce that there exists $m \in \mathbb{R}, m \geq 1$ such that $z_0[(\partial/\partial z)g(z_0)]' = mg(z_0)$. Yet,

$$z_0[\frac{\partial g(z_0)}{\partial z}]' = \sum_{k=1}^n z_0^k \frac{\partial g(z_0)}{\partial z_k} = \sum_{k=1}^n z_0^k [\sum_{j=1}^n \overline{f_j(z_0)} \frac{\partial f_j(z_0)}{\partial z_k}] = \langle [Df(z_0)][z_0]', f(z_0) \rangle.$$

Hence we obtain (i). On the other hand, $|\langle [Df(z_0)][z_0]', f(z_0)\rangle| \leq |f(z_0)||[Df(z_0)][z_0]'|$, so from (i) we have $|[Df(z_0)][z_0]'| \geq m|f(z_0)|$, which implies that there exists $s \in \mathbb{R}$, $s \geq m$, such that $|[Df(z_0)][z_0]'| = s|f(z_0)|$.

Remark 2.1. For n = 1 we obtain the result of Jack-Miller-Mocanu's lemma [5], [6].

Let M and s be real numbers such that M > 0 and $s \ge 1$. Let further $D \subseteq \mathbb{C}^{2n}$ be a domain such that $(0,0) \in D$.

DEFINITION 2.1. Let $K_n = \bigcup_{s \ge 1} K_n^s(M)$, where $K_n^s(M) = \{(u, v) \in \mathbb{C}^{2n} : |u| = M, |v| = sM\}$. Suppose that $K_n \subset D$ and let $V_n(D, M) = \{g : D \to \mathbb{C}^n : g \text{ is continuous}$ on $D, |g(0,0)| < M, |g(u,v)| \ge M$, for all $(u,v) \in K_n\}$.

By using this definition and the result of Theorem 2.1, we deduce

THEOREM 2.2. Let $D \subseteq \mathbb{C}^{2n}$ be a domain and f be a holomorphic mapping from U_1^n into \mathbb{C}^n such that f(0) = 0 and $f(z) \neq 0$, $z \in U_1^n$. Suppose there exists $g \in V_n(D, M)$ such that

 $(f(z), [Df(z)][z]') \in D$ and |g(f(z), [Df(z)][z]')| < M for all $z \in U_1^n$. Then $|f(z)| < M, z \in U_1^n$.

Proof. If the relation |f(z)| < M does not hold everywhere in U_1^n , then, using the continuity of the norm and f(0) = 0, we deduce that there exists $z_0 \in r_0 \overline{U}_1^n$, $0 < r_0 < 1$, and $M = |f(z_0)| = \max\{|f(z)| : ||z|| \le r_0\}$. Then by Theorem 2.1 there exists $s \in \mathbb{R}$, $s \ge 1$, such that at $z = z_0$ we have $|[Df(z_0)][z_0]'| = s|f(z_0)|$. If we set $u = f(z_0)$ and

 $v = [Df(z_0)][z_0]'$, then $(u, v) \in K_n^s(M)$. Hence, by $g \in V_n(D, M)$, we have $|g(u, v)| \ge M$, so we obtain a contradiction with the hypothesis. Therefore |f(z)| < M for all $z \in U_1^n$.

Remark 2.2. It is interesting that this result can be applied for proving that some partial differential equations in \mathbb{C}^n have bounded solutions.

COROLLARY 2.1. Let $F: U_1^n \to \mathbb{C}^n$ be a holomorphic mapping on U_1^n , which satisfies F(0) = 0 and |F(z)| < M for all $z \in U_1^n$. Let $g \in V_n(D, M)$ be a holomorphic mapping and suppose that the differential equation g(f(z), [Df(z)][z]') = F(z), f(0) = 0, has on U_1^n a holomorphic solution f. Then |f(z)| < M for all $z \in U_1^n$.

DEFINITION 2.2. Let $\omega: U_1^n \to \mathbb{C}^n$ be a holomorphic mapping on U_1^n . We say that ω is a Schwarz mapping if $\omega(0) = 0$ and $|\omega(z)| < 1$ for all $z \in U_1^n$.

DEFINITION 2.3. Let f be a holomorphic mapping from U_1^n into \mathbb{C}^n and g be a holomorphic mapping from B_1^n into \mathbb{C}^n . We say that f is subordinate to g $(f \prec g)$ if there exists a Schwarz mapping ω (in the sense of Definition 2.2) such that $f = g \circ \omega$ in U_1^n .

Remark 2.3. If f is subordinate to g, then f(0) = g(0) and $f(U_1^n) \subseteq g(B_1^n)$. Yet, if g is biholomorphic on B_1^n , then we can easily show that $f \prec g$ if and only if f(0) = g(0)and $f(U_1^n) \subseteq g(B_1^n)$. Also, if $f \prec g$, then $f(r\overline{U}_1^n) \subseteq g(r\overline{B}_1^n)$ for all 0 < r < 1.

Let Q_n be denote the family of all biholomorphic mappings g on $\overline{B}_1^n \setminus E(g)$, where

$$E(g) = \{\zeta \in \partial B_1^n : \text{there exists } k, \ 1 \le k \le n, \text{ with } \lim_{\substack{|z| < 1 \\ z \to \zeta}} g_k(z) = \infty \}$$

In the next (except for some examples) we shall suppose that $E(g) = \emptyset$; in the other case we can use in the proofs the class Q_n .

Now we can give the following result:

THEOREM 2.3. Let f be a holomorphic mapping on U_1^n and let g be a biholomorphic mapping on \overline{B}_1^n such that f(0) = g(0). If f is not subordinate to g, then there exist real numbers m and s, $s \ge m \ge 1$, and points $z_0 \in U_1^n$, $0 < ||z_0|| < 1$, $\zeta_0 \in \partial B_1^n$, such that

(i)
$$f(z_0) = g(\zeta_0), f(\{z : ||z|| < ||z_0||\}) \subset g(B_1^n)$$

and at $z = z_0$ we have

- (ii) $\sum_{k=1}^{n} \overline{\zeta}_{0}^{k} \cdot z_{0} [Df(z_{0})]' [(\partial/\partial w) \tilde{g}_{k}(w_{0})]' = m,$ (iii) $s [Dg(\zeta_{0})]^{-1} | ^{-1} \leq |[Df(z_{0})][z_{0}]'| \leq s |[Dg(\zeta_{0})]|,$

where $\zeta_0 = (\zeta_0^1, \dots, \zeta_0^n), w_0 = g(\zeta_0), g^{-1}(w_0) = (\tilde{g}_1(w_0), \dots, \tilde{g}_n(w_0)).$

Proof. Since f is not subordinate to g and f(0) = g(0), then $f(U_1^n) \nsubseteq g(B_1^n)$. Hence there exist $z_0 \in U_1^n$, $||z_0|| = r_0$, $0 < r_0 < 1$ and $\zeta_0 \in \partial B_1^n$ such that $f(z_0) =$ $g(\zeta_0)$ and $f(\{z: ||z|| < ||z_0||\}) \subset g(B_1^n)$. Let $h: r_0\overline{U}_1^n \to \mathbb{C}^n$ be the mapping given by $h(z) = (g^{-1} \circ f)(z), z \in r_0U_1^n$. Then h is holomorphic on $r_0U_1^n, h(0) = 0$ and $1 = |h(z_0)| = \max\{|h(z)| : ||z|| \le r_0\}$. By applying the result of Theorem 2.1 and the continuity and linearity of the operators $Dg(\zeta_0)$ and $[Dg(\zeta_0)]^{-1}$ on $(\mathbb{C}^n, |\cdot|)$, we obtain (ii) and (iii), as desired.

For n = 1 we deduce

COROLLARY 2.2 [5, 6]. Let f and g be holomorphic functions on U and g be univalent on \overline{U} , such that f(0) = g(0). If f is not subordinate to g, then there exist $z_0 \in U$, $\zeta_0 \in \partial U$ and $m \geq 1$ such that $f(z_0) = g(\zeta_0)$ and $z_0 f'(z_0) = m\zeta_0 g'(\zeta_0)$.

Now, using the above results, we are able to introduce the concept of "admissible class" for mappings of several variables.

DEFINITION 2.4. Let $D \subseteq \mathbb{C}^n$, $\Omega \subseteq \mathbb{C}^{2n}$ be domains, $n \geq 1$, let g be a biholomorphic mapping on \overline{B}_1^n , and $\zeta_0 \in \partial B_1^n$. Suppose that $H_n^s(\zeta_0, g) = \{(u, v) \in \mathbb{C}^{2n} : u = g(\zeta_0), s | [Dg(\zeta_0)]^{-1} | ^{-1} \leq |v| \leq s | [Dg(\zeta_0)] | \}$, where $s, s \geq 1$, is a real number. Let further

$$H_n(g) = \bigcup_{\substack{|\zeta_0|=1\\s \ge 1}} H_n^s(\zeta_0, g)$$

and suppose $H_n(g) \subset \Omega$ and $(g(0), 0) \in \Omega$. The *admissible class* $\psi_n^n(\Omega, D, g)$ consists of those mappings $\psi_n : \Omega \times U_1^n \to \mathbb{C}^n$ which are continuous and satisfy $\psi_n(g(0), 0; 0) \in D$ and $\psi_n(v, v; z) \notin D$ for all $(u, v) \in H_n(g)$ and $z \in U_1^n$.

Using the conclusion of Theorem 2.3 and the above definition we obtain:

THEOREM 2.4. Let f be a holomorphic mapping on U_1^n and let g be a biholomorphic mapping on \overline{B}_1^n , such that f(0) = g(0). Suppose that there exists $\psi_n^n(\Omega, D; g)$ such that

$$(f(z), [Df(z)][z]') \in \Omega$$
 and $\psi_n(f(z), [Df(z)][z]') \in D$ for all $z \in U_1^n$.

Then f is subordinate to g.

Proof. If the subordination $f \prec g$ does not hold, then, by Theorem 2.3, there exist $z_0 \in U_1^n, \zeta_0 \in \partial B_1^n$ and $s \in \mathbb{R}, s \geq 1$, such that $f(z_0) = g(\zeta_0)$ and the relations (ii) and (iii) hold. Yet, if we define $u = f(z_0)$ and $v = [Df(z_0)][z_0]'$, then $(u, v) \in H_n^s(\zeta_0, g) \subseteq H_n(g)$. Hence, from Definition 2.4, we deduce $\psi_n(u, v; z_0) \notin D$ which is a contradiction with the hypothesis.

3. Examples. In this section we point out the usefulness of the above results.

Let $z \in \mathbb{C}^n$, $z = (z_1, \ldots, z_n)$; then we say that Re $z \ge 0$ (resp. Re z > 0) if and only if Re $z_k \ge 0$ (resp. Re $z_k > 0$) for all $k \in \{1, \ldots, n\}$. Let $\tilde{1} = (1, \ldots, 1) \in \mathbb{C}^n$. Consider the mapping $g: U_1^n \to \mathbb{C}^n$, given by

(2)
$$g(z) = (\frac{1+z_1}{1-z_1}, \dots, \frac{1+z_n}{1-z_n})$$
 for all $z \in U_1^n$.

Then it is clear that g is univalent on U_1^n and $g(U_1^n) = E_n$, where $E_n = \{w \in \mathbb{C}^n : \text{Re } w > 0\}$. Now, let $A = \{z \in \partial B_1^n : \text{there exists } k, 1 \le k \le n \text{ such that } z_k = 1\}$. In this case E(g) = A.

Moreover, we denote by $G_n^s(\zeta_0, \tilde{1})$ the class

$$G_n^s(\zeta_0, \tilde{1}) = \{(u, v) \in \mathbb{C}^{2n} : u = (\frac{1 + \zeta_0^1}{1 - \zeta_0^1}, \dots, \frac{1 + \zeta_0^n}{1 - \zeta_0^n}), \quad |v| \ge \frac{1}{2}s\},$$

where ζ_0 $(\zeta_0^1, \ldots, \zeta_0^n) \in \partial B_1^n \setminus A$ and $s \ge 1$. Let $G_n(\tilde{1}) = \bigcup_{s \ge 1} \{G_n^s(\zeta_0, \tilde{1}) : \zeta_0 \in \partial B_1^n \setminus A\}$. Let further $\psi_n^n(\tilde{1})$ be the class of those continuous mappings $\psi_n : \Omega \times U_1^n \to \mathbb{C}^n$, which satisfy $\psi_n(\tilde{1},0;0) \in D$ and $\psi_n(u,v;z) \notin D$, for all $z \in U_1^n$ and $(u,v) \in G_n(\tilde{1})$, where $\Omega \subseteq \mathbb{C}^{2n}$ with $G_n(\tilde{1}) \subset \Omega$.

With the above notation we obtain

THEOREM 3.1. Let Ω and D be domains in \mathbb{C}^{2n} and \mathbb{C}^n , respectively, and $f \in H(U_1^n)$, $f(0) = \tilde{1}$. Suppose that there exists $\psi_n \in \psi_n^n(\tilde{1})$ such that

$$(f(z), [Df(z)][z]') \in \Omega$$
 and $\psi_n(f(z), [Df(z)][z]'; z) \in D$ for all $z \in U_1^n$.

Then Re f(z) > 0 in U_1^n .

Proof. It is clear that if we prove $f \prec g$, where g(z) is given by (2), then Re f(z) > 0, $z \in U_1^n$. If this subordination does not hold, then using the same reasons as in the proof of Theorem 2.3, we deduce that there exist points $z_0 \in U_1^n$, $\zeta_0 \in \partial B_1^n \setminus A$ such that

$$f(z_0) = \left(\frac{1+\zeta_0^1}{1-\zeta_0^1}, \dots, \frac{1+\zeta_0^n}{1-\zeta_0^n}\right) \text{ and } |[Df(z_0)][z_0]'| \ge \frac{1}{2}s, \quad s \ge 1.$$

Let $u = f(z_0)$ and $v = [Df(z_0)][z_0]'$; then it is clear that $(u, v) \in G_n^s(\zeta_0, \tilde{1})$, so using the definition of the class $\psi_n^n(\tilde{1})$ we conclude that $\psi_n(u, v; z_0) \notin D$, but this contradicts the hypothesis. Therefore f is subordinate to g, as desired.

An immediate application of Theorem 2.1 is given by the following

THEOREM 3.2. Let M and N be positive numbers, let a, b be functions which satisfy the inequality $|a(z) + mb(z)| \ge N/M^2$ for all $z \in U_1^n$ and $m \ge 1$. Let $f \in H(U_1^n)$, f(0) = 0, and suppose that

$$|a(z)f(z) + b(z)[Df(z)][z]'| < N/M \quad for \ all \quad z \in U_1^n.$$

Then |f(z)| < M in U_1^n .

Proof. If we suppose that the relation |f(z)| < M does not hold in U_1^n , then, using the continuity of the Euclidean norm and the relation f(0) = 0, we deduce that there exists a point $z_0 \in U_1^n$ with the property

$$M = |f(z_0)| = \max\{|f(z)| : ||z|| \le ||z_0||\}$$

Now it is sufficient to apply the conclusion of Theorem 2.1 to see that

$$|a(z_0)f(z_0) + b(z_0)[Df(z_0)][z_0]'| \ge N/M,$$

but this is a contradiction with the hypothesis. Hence |f(z)| < M for all $z \in U_1^n$.

For $a(z) \equiv 0$ in U_1^n , we obtain

COROLLARY 3.1. Let M and N be positive numbers and let f be a holomorphic mapping on U_1^n with f(0) = 0. Suppose that $b : U_1^n \to \mathbb{C}$ is a function which satisfies the conditions

$$b(z)[Df(z)][z]'| < N/M$$
 and $|b(z)| \ge N/M^2$ for all $z \in U_1^n$.

Then |f(z)| < M in U_1^n .

Another application of Theorem 2.3 is given in

THEOREM 3.3. Let $f \in H(U_1^n)$ and g be a biholomorphic mapping on \overline{B}_1^n with g(0) = f(0). Suppose that |[Df(z)][z]'| < M for all $z \in U_1^n$, where $M = \inf_{|\zeta|=1} |[Dg(\zeta)]^{-1}|^{-1}$. Then $f \prec g$.

Proof. If this subordination does not hold, then, by Theorem 2.3, there exist the points $z_0 \in U_1^n$, $\zeta_0 \in \partial B_1^n$ and a real number $s, s \ge 1$, such that

 $f(z_0) = g(\zeta_0)$ and $|[Df(z_0)][z_0]'| \ge s |[Dg(\zeta_0)]^{-1}|^{-1}$,

so $|[Df(z_0)][z_0]'| \ge M$ which contradicts the hypothesis. Hence f is subordinate to g.

References

- [1] B. Chabat, Introduction à l'analyse complexe, tome 2, ed. MIR, Moscou, 1990.
- [2] Sh. Gong and S. S. Miller, Partial differential subordinations and inequalities defined on complete circular domain, Comm. Partial Differential Equations, 11 (1986), 1243–1255.
- [3] G. Kohr and M. Kohr-Ile, Partial differential subordinations and inequalities for holomorphic mappings of several complex variables, Ms., to appear.
- P. Liczberski, Jack's Lemma for holomorphic mappings, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 40 (1986), 131–139.
- S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.
- [6] —, —, Differential subordinations and univalent functions, Michigan Math. J., 20 (1981), 157–171.
- [7] —, —, The theory and applications of second order differential subordinations, Studia Univ. Babeş–Bolyai (Mathematica), 34 (1989), 13–33.
- [8] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970), 241–248.
- [9] —, Starlike and convex maps in Banach spaces, Pacific J. Math., 46 (1973), 575–589.