
GENERALIZATIONS OF COMPLEX ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 37

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1996

SUBORDINATION THEORY FOR HOLOMORPHIC
MAPPINGS OF SEVERAL COMPLEX VARIABLES

GABRIELA KOHR and MIRELA KOHR-ILE

Faculty of Mathematics, Babeş–Bolyai University
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Abstract. The authors obtain a generalization of Jack–Miller–Mocanu’s lemma and, using
the technique of subordinations, deduce some properties of holomorphic mappings from the unit
polydisc in Cn into Cn.

1. Introduction. Let n be a positive integer and Cn denote the space of n com-
plex variables z = (z1, . . . , zn) with the Euclidean product 〈z, w〉 =

∑n
k=1 zkwk and the

Euclidean norm |z| = 〈z, z〉1/2. Let Un1 denote the unit polydisc in Cn, i.e. the set
{z ∈ Cn : ‖z‖ < 1}, where ‖z‖ = max1≤j≤n |zj |, and let Bn1 stand for the open unit
Euclidean ball in Cn. For n = 1, Bn1 = Un1 = U = {z ∈ C : |z| < 1}, the unit disc in C.

Recently the present authors [3] have obtained a new generalization of the Jack-Miller-
Mocanu lemma and, using the technique of subordinations, arrived at some properties of
holomorphic mappings defined on the unit polydisc Un1 . In this paper one deduces other
results concerning partial differential subordinations and some inequalities for holomor-
phic mappings on Un1 .

Let Ω be a domain in Cn and let H(Ω) be the set of holomorphic mappings on Ω.
If f ∈ H(Ω), denote by [Df(z)], z ∈ Ω, its Fréchet matrix [(∂/∂zj)fk(z)]j,k=1,...,n and
by [Df(z)]′ its transpose. Also, if F is a holomorphic function defined on a domain
D ⊆ Cn, then by (∂/∂z)F we denote the complex vector ((∂/∂z1)F, . . . , (∂/∂zn)F ) and
by [(∂/∂z)F ]′ its transpose. (If z ∈ Cn, then [z]′ means the transpose of z.) Since (Cn, |·|)
is a normed space with respect to the Euclidean norm, if A : Cn → Cn is a continuous
and linear operator, then by |A| we denote the norm of A, i.e., |A| = sup|u|=1 |Au|. For
our purpose we shall use the following result.

Lemma 1.1 [2]. Let 0 < r0 < 1 and h : roU
n

1 → C be a holomorphic function on roU
n

1

with h(0) = 0. If z0 ∈ roU
n

1 and |h(z0)| = max{|h(z)| : z ∈ roU
n

1}, then at z = z0 we
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have

z0[
∂h(z0)
∂z

]′ = mh(z0) and Re{ z0
h(z0)

∂2h(z0)
∂z2

[z0]′} ≥ m(m− 1), where m ≥ 1.

2. Main results. We start with

Theorem 2.1. Let f : Un1 → Cn be a holomorphic mapping on Un1 such that f(0) = 0
and f(z) 6≡ 0, z ∈ Un1 . Let 0 < r0 < 1 and z0 ∈ roU

n

1 be such that

(1) |f(z0)| = max{|f(z)| : z ∈ roU
n

1}.

Then there exist real numbers m and s such that s ≥ m ≥ 1, and at z = z0 we have

(i) 〈[Df(z0)][z0]′, f(z0)〉 = m|f(z0)|2 and

(ii) 〈|[Df(z0)][z0]′| = s|f(z0)|.

P r o o f. Using the hypothesis we can assume z0 6= 0 and f(z0) 6= 0. Let g : Un1 → C,
be defined by g(z) = 〈f(z), f(z0)〉, z ∈ Un1 ; then g is holomorphic on Un1 , g(0) = 0 and g
satisfies |g(z0)| = max{|g(z)| : ||z|| ≤ r0}. From Lemma 1.1 we deduce that there exists
m ∈ R, m ≥ 1 such that z0[(∂/∂z)g(z0)]′ = mg(z0). Yet,

z0[
∂g(z0)
∂z

]′ =
n∑
k=1

zk0
∂g(z0)
∂zk

=
n∑
k=1

zk0 [
n∑
j=1

fj(z0)
˙∂fj(z0)
∂zk

] = 〈[Df(z0)][z0]′, f(z0)〉.

Hence we obtain (i). On the other hand, |〈[Df(z0)][z0]′, f(z0)〉| ≤ |f(z0)||[Df(z0)][z0]′|,
so from (i) we have |[Df(z0)][z0]′| ≥ m|f(z0)|, which implies that there exists s ∈ R,
s ≥ m, such that |[Df(z0)][z0]′| = s|f(z0)|.

R e m a r k 2.1. For n = 1 we obtain the result of Jack-Miller-Mocanu’s lemma [5],
[6].

Let M and s be real numbers such that M > 0 and s ≥ 1. Let further D ⊆ C2n be a
domain such that (0, 0) ∈ D.

Definition 2.1. Let Kn = ∪s≥1K
s
n(M), where Ks

n(M) = {(u, v) ∈ C2n : |u| =
M, |v| = sM}. Suppose that Kn ⊂ D and let Vn(D,M) = {g : D → Cn : g is continuous
on D, |g(0, 0)| < M, |g(u, v)| ≥M , for all (u, v) ∈ Kn}.

By using this definition and the result of Theorem 2.1, we deduce

Theorem 2.2. Let D ⊆ C2n be a domain and f be a holomorphic mapping from Un1
into Cn such that f(0) = 0 and f(z) 6≡ 0, z ∈ Un1 . Suppose there exists g ∈ Vn(D,M)
such that

(f(z), [Df(z)][z]′) ∈ D and |g(f(z), [Df(z)][z]′)| < M for all z ∈ Un1 .

Then |f(z)| < M, z ∈ Un1 .

P r o o f. If the relation |f(z)| < M does not hold everywhere in Un1 , then, using the
continuity of the norm and f(0) = 0, we deduce that there exists z0 ∈ r0U

n

1 , 0 < r0 < 1,
and M = |f(z0)| = max{|f(z)| : ||z|| ≤ r0}. Then by Theorem 2.1 there exists s ∈ R,
s ≥ 1, such that at z = z0 we have |[Df(z0)][z0]′| = s|f(z0)|. If we set u = f(z0) and
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v = [Df(z0)][z0]′, then (u, v) ∈ Ks
n(M). Hence, by g ∈ Vn(D,M), we have |g(u, v)| ≥M ,

so we obtain a contradiction with the hypothesis. Therefore |f(z)| < M for all z ∈ Un1 .

R e m a r k 2.2. It is interesting that this result can be applied for proving that some
partial differential equations in Cn have bounded solutions.

Corollary 2.1. Let F : Un1 → Cn be a holomorphic mapping on Un1 , which satisfies
F (0) = 0 and |F (z)| < M for all z ∈ Un1 . Let g ∈ Vn(D,M) be a holomorphic mapping
and suppose that the differential equation g(f(z), [Df(z)][z]′) = F (z), f(0) = 0, has on
Un1 a holomorphic solution f . Then |f(z)| < M for all z ∈ Un1 .

Definition 2.2. Let ω : Un1 → Cn be a holomorphic mapping on Un1 . We say that ω
is a Schwarz mapping if ω(0) = 0 and |ω(z)| < 1 for all z ∈ Un1 .

Definition 2.3. Let f be a holomorphic mapping from Un1 into Cn and g be a
holomorphic mapping from Bn1 into Cn. We say that f is subordinate to g (f≺g) if there
exists a Schwarz mapping ω (in the sense of Definition 2.2) such that f = g ◦ ω in Un1 .

R e m a r k 2.3. If f is subordinate to g, then f(0) = g(0) and f(Un1 ) ⊆ g(Bn1 ). Yet, if
g is biholomorphic on Bn1 , then we can easily show that f ≺ g if and only if f(0) = g(0)
and f(Un1 ) ⊆ g(Bn1 ). Also, if f ≺ g, then f(rU

n

1 ) ⊆ g(rB
n

1 ) for all 0 < r < 1.

Let Qn be denote the family of all biholomorphic mappings g on B
n

1 \ E(g), where

E(g) = {ζ ∈ ∂Bn1 : there exists k, 1 ≤ k ≤ n, with lim
|z|<1
z→ζ

gk(z) =∞}.

In the next (except for some examples) we shall suppose that E(g) = ∅; in the other case
we can use in the proofs the class Qn.

Now we can give the following result:

Theorem 2.3. Let f be a holomorphic mapping on Un1 and let g be a biholomorphic
mapping on B

n

1 such that f(0) = g(0). If f is not subordinate to g, then there exist real
numbers m and s, s ≥ m ≥ 1, and points z0 ∈ Un1 , 0 < ||z0|| < 1, ζ0 ∈ ∂Bn1 , such that

(i) f(z0) = g(ζ0), f({z : ||z|| < ||z0||}) ⊂ g(Bn1 )

and at z = z0 we have

(ii)
∑n
k=1 ζ

k

0 · z0[Df(z0)]′[(∂/∂w)g̃k(w0)]′ = m,

(iii) s|[Dg(ζ0)]−1|−1 ≤ |[Df(z0)][z0]′| ≤ s|[Dg(ζ0)]|,

where ζ0 = (ζ1
0 , . . . , ζ

n
0 ), w0 = g(ζ0), g−1(w0) = (g̃1(w0), . . . , g̃n(w0)).

P r o o f. Since f is not subordinate to g and f(0) = g(0), then f(Un1 ) * g(Bn1 ).
Hence there exist z0 ∈ Un1 , ||z0|| = r0, 0 < r0 < 1 and ζ0 ∈ ∂Bn1 such that f(z0) =
g(ζ0) and f({z : ||z|| < ||z0||}) ⊂ g(Bn1 ). Let h : r0U

n

1 → Cn be the mapping given
by h(z) = (g−1 ◦ f)(z), z ∈ r0U

n
1 . Then h is holomorphic on r0U

n
1 , h(0) = 0 and

1 = |h(z0)| = max{|h(z)| : ||z|| ≤ r0}. By applying the result of Theorem 2.1 and the
continuity and linearity of the operators Dg(ζ0) and [Dg(ζ0)]−1 on (Cn, | · |), we obtain
(ii) and (iii), as desired.

For n = 1 we deduce
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Corollary 2.2 [5, 6]. Let f and g be holomorphic functions on U and g be univalent
on U , such that f(0) = g(0). If f is not subordinate to g, then there exist z0 ∈ U , ζ0 ∈ ∂U
and m ≥ 1 such that f(z0) = g(ζ0) and z0f ′(z0) = mζ0g

′(ζ0).

Now, using the above results, we are able to introduce the concept of ”admissible
class” for mappings of several variables.

Definition 2.4. Let D ⊆ Cn, Ω ⊆ C2n be domains, n ≥ 1, let g be a biholomorphic
mapping on B

n

1 , and ζ0 ∈ ∂Bn1 . Suppose that Hs
n(ζ0, g) = {(u, v) ∈ C2n : u = g(ζ0),

s|[Dg(ζo)]−1|−1 ≤ |v| ≤ s|[Dg(ζ0)]|}, where s, s ≥ 1, is a real number. Let further

Hn(g) =
⋃
|ζ0|=1
s≥1

Hs
n(ζ0, g)

and suppose Hn(g) ⊂ Ω and (g(0), 0) ∈ Ω. The admissible class ψnn(Ω, D, g) consists of
those mappings ψn : Ω × Un1 → Cn which are continuous and satisfy ψn(g(0), 0; 0) ∈ D
and ψn(v, v; z) 6∈ D for all (u, v) ∈ Hn(g) and z ∈ Un1 .

Using the conclusion of Theorem 2.3 and the above definition we obtain:

Theorem 2.4. Let f be a holomorphic mapping on Un1 and let g be a biholomorphic
mapping on B

n

1 , such that f(0) = g(0). Suppose that there exists ψnn(Ω, D; g) such that

(f(z), [Df(z)][z]′) ∈ Ω and ψn(f(z), [Df(z)][z]′) ∈ D for all z ∈ Un1 .

Then f is subordinate to g.

P r o o f. If the subordination f ≺ g does not hold, then, by Theorem 2.3, there exist
z0 ∈ Un1 , ζ0 ∈ ∂Bn1 and s ∈ R, s ≥ 1, such that f(z0) = g(ζ0) and the relations (ii) and (iii)
hold. Yet, if we define u = f(z0) and v = [Df(z0)][z0]′, then (u, v) ∈ Hs

n(ζ0, g) ⊆ Hn(g).
Hence, from Definition 2.4, we deduce ψn(u, v; z0) 6∈ D which is a contradiction with the
hypothesis.

3. Examples. In this section we point out the usefulness of the above results.
Let z ∈ Cn, z = (z1, . . . , zn); then we say that Re z ≥ 0 (resp. Re z > 0) if and only

if Re zk ≥ 0 (resp. Re zk > 0) for all k ∈ {1, . . . , n}. Let 1̃ = (1, . . . , 1) ∈ Cn. Consider
the mapping g : Un1 → Cn, given by

(2) g(z) = (
1 + z1
1− z1

, . . . ,
1 + zn
1− zn

) for all z ∈ Un1 .

Then it is clear that g is univalent on Un1 and g(Un1 ) = En, where En = {w ∈ Cn :
Re w > 0}. Now, let A = {z ∈ ∂Bn1 : there exists k, 1 ≤ k ≤ n such thatzk = 1}. In this
case E(g) = A.

Moreover, we denote by Gsn(ζ0, 1̃) the class

Gsn(ζ0, 1̃) = {(u, v) ∈ C2n : u = (
1 + ζ1

0

1− ζ1
0

, . . . ,
1 + ζn0
1− ζn0

), |v| ≥ 1
2
s},

where ζ0 (ζ1
0 , . . . , ζ

n
0 ) ∈ ∂Bn1 \A and s ≥ 1. Let Gn(1̃) =

⋃
s≥1{Gsn(ζ0, 1̃) : ζ0 ∈ ∂Bn1 \A}.

Let further ψnn(1̃) be the class of those continuous mappings ψn : Ω × Un1 → Cn, which
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satisfy ψn(1̃, 0; 0) ∈ D and ψn(u, v; z) 6∈ D, for all z ∈ Un1 and (u, v) ∈ Gn(1̃), where
Ω ⊆ C2n with Gn(1̃) ⊂ Ω.

With the above notation we obtain

Theorem 3.1. Let Ω and D be domains in C2n and Cn, respectively , and f ∈ H(Un1 ),
f(0) = 1̃. Suppose that there exists ψn ∈ ψnn(1̃) such that

(f(z), [Df(z)][z]′) ∈ Ω and ψn(f(z), [Df(z)][z]′; z) ∈ D for all z ∈ Un1 .

Then Re f(z) > 0 in Un1 .

P r o o f. It is clear that if we prove f ≺ g, where g(z) is given by (2), then Re f(z) > 0,
z ∈ Un1 . If this subordination does not hold, then using the same reasons as in the proof
of Theorem 2.3, we deduce that there exist points z0 ∈ Un1 , ζ0 ∈ ∂Bn1 \A such that

f(z0) = (
1 + ζ1

0

1− ζ1
0

, . . . ,
1 + ζn0
1− ζn0

) and |[Df(z0)][z0]′| ≥ 1
2
s, s ≥ 1.

Let u = f(z0) and v = [Df(z0)][z0]′; then it is clear that (u, v) ∈ Gsn(ζ0, 1̃), so using the
definition of the class ψnn(1̃) we conclude that ψn(u, v; z0) 6∈ D, but this contradicts the
hypothesis. Therefore f is subordinate to g, as desired.

An immediate application of Theorem 2.1 is given by the following

Theorem 3.2. Let M and N be positive numbers, let a, b be functions which satisfy
the inequality |a(z) + mb(z)| ≥ N/M2 for all z ∈ Un1 and m ≥ 1. Let f ∈ H(Un1 ),
f(0) = 0, and suppose that

|a(z)f(z) + b(z)[Df(z)][z]′| < N/M for all z ∈ Un1 .

Then |f(z)| < M in Un1 .

P r o o f. If we suppose that the relation |f(z)| < M does not hold in Un1 , then, using
the continuity of the Euclidean norm and the relation f(0) = 0, we deduce that there
exists a point z0 ∈ Un1 with the property

M = |f(z0)| = max{|f(z)| : ||z|| ≤ ||z0||}.

Now it is sufficient to apply the conclusion of Theorem 2.1 to see that

|a(z0)f(z0) + b(z0)[Df(z0)][z0]′| ≥ N/M,

but this is a contradiction with the hypothesis. Hence |f(z)| < M for all z ∈ Un1 .
For a(z) ≡ 0 in Un1 , we obtain

Corollary 3.1. Let M and N be positive numbers and let f be a holomorphic map-
ping on Un1 with f(0) = 0. Suppose that b : Un1 → C is a function which satisfies the
conditions

|b(z)[Df(z)][z]′| < N/M and |b(z)| ≥ N/M2 for all z ∈ Un1 .

Then |f(z)| < M in Un1 .

Another application of Theorem 2.3 is given in
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Theorem 3.3. Let f ∈ H(Un1 ) and g be a biholomorphic mapping on B̄n1 with g(0) =
f(0). Suppose that |[Df(z)][z]′| < M for all z ∈ Un1 , where M = inf |ζ|=1 |[Dg(ζ)]−1|−1.
Then f ≺ g.

P r o o f. If this subordination does not hold, then, by Theorem 2.3, there exist the
points z0 ∈ Un1 , ζ0 ∈ ∂Bn1 and a real number s, s ≥ 1, such that

f(z0) = g(ζ0) and |[Df(z0)][z0]′| ≥ s|[Dg(ζ0)]−1|−1,

so |[Df(z0)][z0]′| ≥M which contradicts the hypothesis. Hence f is subordinate to g.
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