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Abstract. Using the Clifford bundle formalism we show that Frenet equations of classical
differential geometry or its spinor version are the appropriate equations of motion for a classical
spinning particle. We show that particular values of the curvatures appearing in Darboux bivector
of the spinor form of Frenet equations produce a “classical” Dirac-Hestenes equation. Using the
concept of multivector Lagrangians and Hamiltonians we provide a Lagrangian and Hamiltonian
approach for our theory which then makes immediately contact with Berezin-Marinov model,
the Barut-Zanghi model, and the supercalculus (which acquires an obvious geometrical meaning
in terms of geometrical objects living in ordinary spacetime) and suggests calling our theory the
dynamics of the superparticle.

1. Introduction. Producing a classical spinning model that after quantization gives
Dirac equation has always been a very appealing idea which has been the subject of
several interesting papers containing new physical insights and beautiful mathematics.
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The most popular of such models is due to Berezin-Marinov [3], where they construct
actions both for the non relativistic and relativistic spin dynamics supposing that the
dynamical variables describing spin are elements of a Grassmann algebra. The paper
uses the now famous supercalculus which starts with Berezin [2] and has been further
developed in details with applications to supersymmetry [4,11] and superstring theory.
Good references are [4,6,11,41].

Another approach that has been the subject of many investigations is the Barut-
Zanghi model (BZM) [1] which uses Dirac spinors in the classical action.

In the present paper using the Clifford bundle formalism (CBF) [27,31,36] we show
that Frenet equations (of classical differential geometry [14]), for a Frenet frame {fµ}1
of a time-like curve in spacetime provide appropriate equations of motion for a classical
spinning particle.

Frenet equations have already been used for the description of the relativistic kine-
matics of a classical point particle in a very beautiful paper by Gursey [13] in 1957. What
is new in our approach, besides the use of the Clifford bundle formalism, is that using
the concept of multivector Lagrangians used originally in [8,12,25,26] and developed, e.g.,
in [7,30], we succeded in formulating a Lagrangian and Hamiltonian theory for Frenet
equations and thus for the classical spinning particle dynamics.

Our approach makes immediate contact with the Berezin-Marinov as well as the
Barut-Zanghi model, 2 clearing their physical as well as their mathematical contents. In
particular the geometrical meaning (i.e., meaning in terms of geometrical objects living
in ordinary spacetime) of the Grassmann variables and the supercalculus is disclosed,
by showing the isomorphism of our multivector Lagrangian and the Berezin-Marinov
Lagrangian for the 4-dimensional spacetime case.

Another important result showed below is the following: given a fiducial orthonormal
frame for the spacetime {γµ}, γµ ∈ secTM ⊂ sec C`(M, g), the Frenet frame {fµ} is
related to {γµ} by

(1) ρfµ = ψγµψ̃,

where γµ is the restriction of γµ on σ : R ⊃ I → M (see footnote 1), and ψ is an
inhomogeneous multivector field over the map σ, which is the restriction over σ of ψ ∈
sec(∧0(TM) +∧2(TM) +∧4(TM))) ⊂ sec C`(M, g);ψ is called the representative of the
Dirac-Hestenes spinor field [31] in the fiducial basis {γµ}. (In what follows, for short, we
refer to ψ simply as a DHS). ψ has a canonical decomposition [14,31] when ψψ̃ 6= 0 as

(2) ψ =
√
ρ eβγ5/2U,

where ρ(x) ∈ R+, 0 ≤ β(x) < 2π and U(x) ⊂ Spin+(1, 3) ⊂ C`+1,3,∀x ∈ M, γ5 =
γ0γ1γ2γ3. C`1,3 is the spacetime algebra [9,10,18] and C`+1,3 ' C`3,0 is the even subalgebra

1 fµ, (µ = 0, 1, 2, 3) are a set of vector fields over a map [36] σ : R ⊃ I → M (where σ is a
time-like curve in the spacetime (MD, g)) , which are section of C`(M, g), the Clifford bundle
of multivections [27,36] over (M,D, g).
2 BZ model has already been atudied by the authors in [28,29] using CBF.
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of C`1,3 isomorphic to the Pauli algebra. Eq(2) discloses the hidden geometrical meaning
of Dirac spinors.

Now, Frenet equations for the {fµ} are

(3)
D

dτ
fµ = Ω · fµ, (τ ⊂ I)

where Ω is the so called Darboux bivector [14], given by

(4) Ω = K0f
1 ∧ f0 +K1f

2 ∧ f1 +K2f
3 ∧ f2

where Ki, (i = 0, 1, 2) is the i-curvature, which is the projection of Ω in the fi ∧ fi−1

plane, and · in eq. (3) is the dot product (or contraction [18]) in the Clifford algebra.
We show that the validity of Frenet equations for a congruence of worldlines and

for some particular values of the curvatures appearing in eq. (4) leads to the so called
Dirac-Hestenes equation for ψ (related to the fµ by eq. (2)), which as is now well known
is the representative in the Clifford bundle of the usual Dirac equation.

2. Mathematical background. Let (M,D, g) be a relativistic spacetime [22,34], D
being the Levi-Civita connection of g. ∀x ∈M, TxM = R1,3, where R1,3 is the Minkowski
vector space [22]. C`(M, g) is the Clifford bundle over the relativistic spacetime (M,D, g).
Details on the structure of C`(M, g) can be found e.g., in [9,10,36] and in what follows
we use the notations and conventions of [9]3. Sections of C`(M, g) are called multivector
fields. These objects are isomorphic to the superfields introduced by Salam and Strathdee
[35] (see also [41]) as is clear from their definition and the isomorphisms we exhibit in
Section 6. (It is amazing to discover that ψ, the Dirac-Hestenes spinor is a superfield!).
Then, if {γµ},γµ ∈ sec∧1(TM) ⊂ sec C`(M, g) is an orthonormal basis for M , and if
X ∈ sec C`(M), we have

X = X0 +X1 +X2 +X3 +X4, Xi ∈ sec∧i(TM) ⊂ sec C`(M, g),

or

(5) X = X0 + (X1)µγµ +
1
2

(X2)µνγµ ∧ γν +
1
3!

(X3)µνργµ ∧ γν ∧ γρ + Sγ0γ1γ2γ3.

In what follows all fields used are sections of C`(M, g) or are Clifford fields over the
map σ : R ⊂ I →M , where σ is a time-like vector curve pointing into the future. We need
the following definitions which have been adapted from definitions appearing originally
in [34].

Definition 1. An observer in (M,D, g) is a time-like curve σ : R ⊃ I →M pointing
into the future, such that the assignment τ 7→ σ∗τ ∈ I is by definition the tangent vector
field of σ, denoted simply by σ∗ and g(σ∗, σ∗) = 1. 4

Definition 2. An instantaneous observer is a pair (z, Z), z ∈ M and Z ∈ TzM is a
time like vector field pointing to the future.

3 The only difference is that C`(M, g) refers to the Clifford bundle of differential forms in [9]
and here it is the Clifford bundle of multivectors.
4 σ∗ is an example of a tensor field under a map σ.
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Definition 3. A reference system in (M,D, g) is a time like vector field defined in
an open set U ⊆M such that each of its integral lines is an observer.

Then, if Q ∈ secTU ⊂ secTM ⊂ sec C`(M, g) is a reference frame, then g(Q,Q) =
Q ·Q = 1 where the symbol “ · ” is the dot product in the Clifford bundle [9,10].

Definition 4. A moving system for x ∈ M is an orthonormal basis for TxM . A
moving system for all points x ∈ σ (of definition 1) will be called a comoving frame for
σ.

If {eµ}, µ = 0, 1, 2, 3 is a comoving frame for σ, such that e0 = σ∗, then it can be
proved that there exists a unique bivector field Ω over σ, called the angular velocity, such
that the eµ satisfies the following system of differential equations

(6)

D

dτ
eµ = Ω · eµ,

Ω =
1
2
ωµνeµ ∧ eν =

1
2
ėµ e

µ =
1
2
ėµ ∧ eµ.

For reasons that will be come clear in what follows we call eq. (6) the superparticle
equations of motion.

Definition 5. Let (z, Z) be an instantaneous observer. Span Z is his local time axis
and Z⊥ is called his local rest frame and the direct sum TzM = SpanZ ⊕Z⊥ is the local
decomposition of TzM in time and space.

If p : TzM → Z⊥ denotes the orthogonal projection and σ : R ⊂ I →M is an observer
then corresponding terms for the instantaneous observer (στ, σ∗τ) are used.

Definition 6. The acceleration of σ is given by

aστ = Dσ∗σ∗τ,

or, simply, a = Dσ∗σ∗.

Definition 7. The projection tensor h for an instantaneous observer is such that
h(X,Y ) = g(pX, pY ) ∀X,Y ∈ TZM , where p is projection tensor p : TzM → Z⊥.

As it is well known for an observer σ to decide when a unitary vector X ∈ (σ∗τ)⊥

has the same spatial direction of the unitary vector X ′ ∈ (σ∗τ ′)⊥ (τ ′ 6= τ), he has to
introduce the concept of the Fermi-Walker connection. We have,

Definition 8. Let σ : R ⊃ I →M be an observer and write TσuM = Tu⊕Ru , u ∈ I.
Define pu = TσuM → Ru , qu : TσuM → Tu. If X is a vector field over σ then pX and
qX are vector fields over σ given by (pX)u = pu(Xu), (qX)u = qu(Xu).

Proposition [34]. There exists one and only one connection over σ, such that

FyX = [p(σ∗D)yp+ q(σ∗D)yq]X,

for all vector fields Y in I(σ : R ⊃ I →M) and for all vector fields over σ.

Also σ∗D is the pullback of the Levi-Civita connection D and F is called the Fermi-
Walker connection over σ, and we shall write Fσ∗ , F/dτ or Feo , eo = σ∗ when convenient.
We also shall write D, as usual, for σ∗D in what follows.
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Proposition [34]. Let be X,Y are vector fields over σ, interpreted as sections of the
Clifford bundle. The Fermi-Walker connection F satisfies the properties

(a) FeoX = De0X − (e0 ·X)a+ (a ·X)e0,

where a = De0e0, is the acceleration.

(b)
d

dτ
X · Y = Fe0X · Y +X · Fe0Y.

(c) Feoe0 = 0.
(d) If Xu ∈ Ru ∀u ∈ I, then Fe0X ∈ Ru, ∀u, and

Fe0X · Y = De0X · Y.

As is well known if X is a space-like vector field over σ it will be transported without
rotation over σ if and only if Fe0X = 0. If this is the case then

De0X ≡
D

dτ
X = (e0 ·X)a+ (a ·X)e0 = (a ∧ e0) ·X.

3.Frenet equations and their physical meaning. We already defined a comoving
frame over σ (Definition 4). We now define a Frenet frame over σ.

Definition 9. A comoving frame {fµ} over σ is called a Frenet frame over σ if and
only if the fµ satisfy the Frenet equations:

(7) Df0fµ = Ω · fµ,

with Ω given by 5

(8) Ω = K0f
1 ∧ f0 +K1f

2 ∧ f1 +K2f
3 ∧ f2,

is the Darboux bivector. Ki is called the i−th curvature and is the projection of Ω on
the f i ∧ f i−1 plane.

It is quite clear that after eq. (6), eq. (7) and eq. (8) are particular superparticle
equations of motion.

From eq. (7) and eq. (8) it is clear that a = Df0f0 = K0f
1.

Then we can write Ω as

Ω = a ∧ f0 + ΩR = ΩF + ΩR,

where ΩR is a bivector which can be directly associated with the intrinsic spin bivector
of a classical spinning particle as shown in what follows. Indeed, suppose that {bµ} is a
comoving frame over σ such that Fb0bµ = 0.

Then

(9) Db0bµ = (a ∧ b0) · bµ,

and comparing eq. (9) with Frenet equations eq. (7) it follows that in this case Ω = ΩF .
It is then clear that since bµ, i = 1, 2, 3 can be interpreted as gyroscopic axis [34] that

a general Frenet frame {fµ} over σ rotates with bivector angular velocity ΩR relative to
the tetrad {bµ} which is Fermi-Walker transported.

5 Observe that since the fµ are orthonormal we can write Ω = K0f
1f0 +K1f

2f1 +K3f
3f2,

i.e., we can substitute the ∧ product by the Clifford product denoted by justaposition [9,10].



300 W. A. RODRIGUES ET AL.

It is then obvious that ΩR is (a dimensional appart) the spin bivector being naturally
associated to the so called Spin vector [20,40] (also called the Pauli-Lubanski-Bargmann
vector [5]). To show this, let us observe that ΩR · f0 = Ω · σ∗ = Ω · v = 0. Indeed,

ΩR · v = (K1f
2 ∧ f1 +K2f

3 ∧ f2) · f0 = 0.

Now, let ?ΩR be the Hodge dual of ΩR. In the Clifford bundle formalism [27,36] we
can write (f5 = f0f1f2f3)

?ΩR = −ΩRf5.

Defining the rotation vector by

R = − ? ΩR · v = v · (?ΩR),

we immediately get that
R · v = 0.

Indeed, using the identity [14] Ar · (Bs · Ct) = (Ar ∧ Bs) · Ct, r + s ≤ t, r, s > 0
where Ar ∈ sec∧r(TM) ⊂ sec C`(M, g), etc..., we have

(10) (?ΩR · v) · v = v · (?ΩR · v) = −v · (v · ?ΩR) = −(v ∧ v) · ?ΩR = 0.

Since R · v = 0, then in a reference frame comoving with the particle, v has only spatial
components and it follows that R is a spacelike vector.

From eq. (10) we have that
Df0(R · f0) = 0,

from where it follows that (Df0R) · f0 = −R · a and then

De0R = −R · (a ∧ f0)⇔ Ff0R = 0.

From these results it is clear that the spin-vector S (the Pauli-Lubanski-Bargmann
vector) of the classical spinning particle is given by

(11) S = kh̄R (h̄ = 1),

where k is a real number, h̄ is the Planck constant, inserted here for dimensional reason.
As is well known [20,40] Df0S = −S · (a ∧ f0) is the equation of motion of the intrinsic
spin of a classical spinning particle being accelerated (a = Df0f0) by a force producing
no torque.

4. The spinor form of Frenet equations. In this section let (M,D, g) be Minko-
wski spacetime and γµ = ∂/∂xµ a global orthonormal basis for TM , i.e, γµ ∈ sec∧1(TM)
⊂ sec C`(M, g).

Recalling eq. (1) and eq. (2) we see that the Frenet frame over σ can be expressed
as fµ = ψγµψ̃, where ψ is a unitary Dirac-Hestenes spinor field over σ, that is, ψψ̃ = 1,
ψ(τ) ∈ Spin+(1, 3), ∀τ ∈ R.

From Frenet equations that now reads ḟµ = Ω·fµ, we immediately obtain the equation
of motion for ψ as

(12)
d

dτ
ψ =

1
2

Ωψ.
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This is the spinor form of the Frenet equations. It is obvious that an analogous equation
can be deduced also from eq. (6), the general superparticle equations of motion.

5. “Classical” Dirac-Hestenes equation. Consider now a free classical spinning
particle. Then ḟ0 = 0 and we can take without any loss of generality f0 = γ0 where
γ0 = γ0|σ. In this case the Darboux bivector is simply

(13) Ω = K1f
2 ∧ f1 +K2f

3 ∧ f2

and let us study the spinor equation of motion (eq. (12)) under the condition K2 = 0. 6

Then eq. (12) gives

(14)
dψ

dτ
=

1
2
K1f2f1ψ =

1
2
K1ψγ2γ1,

which has a solution 7

ψ = exp
(
K1

2
γ2γ1τ

)
.

Now, let us suppose that there exists ψ ∈ sec(∧0(TM) + ∧2(TM) + ∧4(TM)) ⊂
sec C`(M, g) such that ψ = ψ|σ. Being ∂ = γµ∇γµ the Dirac operator acting on sections of
the Clifford bundle and writting x = xµγµ, 〈xµ〉 being the global Lorentz chart introduced
above and defining p = K1e0, eq. (14) can be written (since d/dτ = f0 · ∂ = γ0 · ∂) as

f0 · ∂ψ =
K1

2
ψγ2γ1,

or

(15) γ0 · ∂ψ =
K1

2
ψγ2γ1,

and
ψ = eγ2γ1px

is a solution. Also
∂µψ = pµψγ2γ1.

Then,

(16) f0 · ∂ψ = γ0 · ∂ψ = γ0∂ψ = (ψγ0ψ
−1)∂ψ.

Using eq. (16) in eq. (15) gives

∂ψγ2γ1 +
K1

2
ψγ0 = 0.

If we identify with appropriate units K1
2 = m

h̄ , the mass of the spinning particle, we get

h̄∂ψγ2γ1 +mψγ0 = 0,

6 It is important to observe that this is a very reasonable assumption; indeed, it has been shown
in [38] that all worldlines in Barut and Zanghi model (sec.6.2) have vanishing third curvature
(K2 = 0).
7 This equation has other solutions, see [21], and comments at the end of the section.
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which is the Dirac-Hestenes equation for the unitary spinor ψ. If S is the spin bivector
associated to the spin vector defined by eq. (11) and ?S its Hodge dual, i.e.,

S = ?S · v = ?S · e0 = ?S · γ0,

then

(17) S = −kh̄ψγ2γ1ψ̃,

and since m = p · v = p · f0 we get using eq. (13) and eq. (17):

Ω · S = 2km .

It follows that if k = 1/2 we can write p·v = Ω·S = m, an equation that suggests that the
mass of a 1/2 spinning particle has “internal” kinetic origin [15, 28, 29]. It is interesting
to note that this value for k = 1/2 implies the natural unity of angular momentum h̄/2

for the Pauli - Lubanski - Bargmann vetor S =
h̄

2
R (eq. (11)).

Before ending this section let us observe that the Dirac-Hestenes equation is satisfied
by a general Dirac-Hestenes spinor field given by eq. (2), i.e., by

ψ =
√
ρeγ5β/2R,

where ρ is the density function and β is the Takabayasi angle [37] and R(x) ∈ Spin+(1, 3)
∀x ∈ M . It has been proved recently [39] that the transformations eγ5β/2 are directly
associated with the duality transformations of generalized electromagnetism thereby
[8,12,23,24] providing a Clifford algebra proof for the Rainich-Misner-Wheeler Theorem
[39]. From that theorem we know that given P ∈ sec∧2(TM) ⊂ sec C`(M, g) such that
P 2 6= 0, then in each point x ∈ M (Minkowski spacetime) Ω can be reduced to the
form P ′ = ωγ2γ1, (where ω is a real function) by a local active Lorentz transformation
plus a local duality transformation eαγ5 , i.e, we can write P ′ = eγ5β/2ŨΩUeγ5β/2, where
U(x) ∈ Spin+(1, 3) ' S`(2, IC) is the Lorentz transformation.

The general superparticle equation of motion can be written as an equivalent equation
in terms of a general Dirac-Hestenes spinor field in interaction with an electromagnetic
field. This very interesting topic will be described in a following paper [32].

To end this section, we recall that eq. (14) is the equation of motion for a free spinning
particle in the Barut-Zanghi model [1], which has solutions containing a zitterbewegung
motion. The results found above prove without any doubt that contrary to what is thought
the helicoidal motion which is a solution of the model is only partially responsible for the
origin of the spin. Besides that there is also the intrinsic spin present even when particle
trajectories are straight lines. This is a very important conclusion (see also [38]).

6. Multivector Lagrangian formalism. Up to now we have proved that Frenet
equation and the Dirac-Hestenes equation are appropriate equations of motion for a
classical spinning particle. We proceed by developing a Lagrangian and Hamiltonian
formalism for that equations.

In order to do that we must introduce the concept of multivector Lagrangians. It
involves the concept of multivector derivatives first introduced by Hestenes and Sobczyk
[14] and briefly recalled in the appendix.
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In what follows we shall call the classical spinning particle, the superparticle for
reasons that well be clear in a while. For generality in this section we consider a n

dimensional spacetime, i.e, TxM = R1,n−1. We have,

Definition 10. A superparticle is a pair (σ,X), where σ : R ⊃ I →M is a time-like
curve and X : R ⊃ I → sec C`(M, g) is a Clifford-field over σ (or a set of Clifford fields
over σ).

Definition 11. A multivector Lagrangian is a mapping

L : (X(s), Ẋ(s)) 7→ L(X(s), Ẋ(s)) ∈ C`(M, g),

where X is as in eq. (5) and s is an invariant time parameter on σ. L is a multivector
functional, i.e., it has values in the Clifford algebra Cl1,n−1 for each s.

The most general L can then be written as

L =
∑
k

〈L〉 ≡
∑
k

Lk.

To gain confidence in the multivector derivative calculus we start by studying the
most simple case, namely, we choose X = Xr ∈ sec∧r(M) ⊂ sec C`(M, g) and L = 〈L〉0,
a scalar multivector functional.

We postulate next that the action for the superparticle is

A(Xr) =
∫ s2

s1

ds L(Xr(s), Ẋr(s)),

and that the equations of motion can be derived from the principle of stationary action,
that reads (see Appendix for the concept of multivector derivative)

(18)
d

dt
A(Xr + tAr)|t=0 = Ar ∗ ∂XrS(Xr) = 0,

where Ar ∈ sec∧r(TM) ⊂ sec C`(M, g) is a Clifford field over σ such that Ar(s1) =
Ar(s2) = 0. From eq. (18) we get

(19)
∫ s2

s1

ds [(Ar ∗ ∂Xr )L+ Ȧr ∗ ∂ẊrL] = 0.

Since L = 〈L〉0 and Xr, Ar ∈ sec∧r(TM) ⊂ sec C`(M, g) then

(20)
Ar ∗ ∂Xr 〈L〉0 = 〈Ar(∂XrL)〉0 = Ar · (AXrL)r,

Ȧr ∗ ∂Ẋr 〈L〉0 = 〈Ȧr(∂ẊrL)〉0 = Ȧr · (AẊrL)r.

Using eq. (20) into eq. (19) results∫ s2

s1

ds [(Ar · (∂XrL)r −Ar ·
d

ds
(∂ẊrL)r] = 0,

i.e.,

(21) Ar · 〈∂XrL−
d

ds
(∂ẊrL)〉r = 0.
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Since for L = 〈L〉0, we have ∂XrL = 〈∂XrL〉r and ∂ẊrL = 〈∂ẊrL〉 and since Ar is
arbitrary then eq. (21) implies

〈∂XrL−
d

ds
(∂ẊrL)〉r = 0,

or

(22) ∂XrL−
d

ds
(∂ẊrL) = 0,

that is the Euler-Lagrange equation. It is quite clear that the eq. (22) holds for L being
a functional of a general Clifford field X over σ.

Next we study the case where

L =
∑
k

〈L〉k =
∑
k

Lk,

and we restrict ourselves without loss of generality to the case that X = Xr ∈ sec∧r(TM)
∈ sec C`(M, g).

We define
τ =

∑
〈τ〉k =

∑
τk,

where the τk ∈ sec∧k(M) are constant multivectors.
Then,

〈Lτ〉0 = L ∗ τ =
∑
k

Lk ∗ τk =
∑
k

Lk · τk.

In this way 〈Lτ〉0 has the role of a scalar valued Lagrangian and we define the action by

A(X) =
∫ s2

s1

ds〈L(X, Ẋ)τ〉0.

Then, the principle of stationary action gives

(23)

∫ s2

s1

ds[(Ar ∗ ∂X)〈Lτ〉0 + (Ȧr ∗ ∂Ẋ)〈Lτ〉0]

=
∑
k

∫ s2

s1

ds[(Ar ∗ ∂X)(Lk ∗ τk) + c(Ȧr ∗ ∂Ẋ)(Lk ∗ τk)] = 0.

Since (Ar ∗ ∂X)τk = 0, we have

(Ar ∗ ∂X) (Lk ∗ τk) = [(Ar ∗ ∂X) Lk] ∗ τk
= [(Ar ∗ ∂X)Lk]k · τk = [Ar(∂XLk)]k · τk.

But, since X = Xr ∈ sec∧r(TM) ⊂ sec C`(M, g), then

∂XLk = (∂XLk)|r−k| + (∂XLk)|r−k|+2 + . . .+ (∂XLk)r+k,

and we can write,

(24)

(Ar ∗ ∂X)(Lk ∗ τk) = 〈Ar(∂XLk)|r−k〉k · τk
+ 〈Ar(∂XL)|r−k|+2〉k · τk + . . .+ 〈Ar(∂XLk)r+k〉k · τk

=

1
2 (r+k−|r−k|)∑

`=0

〈Ar(∂XLk)|r−k|+2`〉 · τk.
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Also,

(25)

(Ȧr ∗ ∂Ẋ) (Lk ∗ τk) = [Ȧr(∂ẊLk)]k · τk

=

1
2 [r+k−|r−k|]∑

`=0

〈Ȧr(∂ẊLk)|r−k|+2`〉k · τk

=

1
2 [r+k−|r−k|]∑

`=0

[
d

ds
〈Ar(∂ẊLk)|r−k|+2`〉k − 〈Ar

d

ds
(∂ẊLk)|r−k|+2`〉k

]
· τk.

Using eq. (24) and eq. (25) into eq. (23) and taking into account that Ar(s1) =
Ar(s2) = 0 we get

(26)
∑
k

∫ s2

s1

ds

1
2 [r+k−|r−k|]∑

`=0

〈Ar[(∂XLk)|r−k|+2`
d

ds
(∂ẊLk)|r−k|+2`〉k · τk = 0.

Now, the τk are constant sections of ∧k(M) ⊂ C`(M).Then if p =
(
n
k

)
, τk is of the

form (τk)µ1...µp γµ1 . . . γµp where (τk)µ1...µp are arbitrary real constants. Also the term in
the brackets in eq. (26) is of the form 〈 〉k = (〈 〉k)µ1...µpγµ1 . . . γµp and eq. (26) results
in a sum of terms of the form (τ)µ1...µp(〈 〉k)µ1 . . . µp. Since the (τk)µ1...µp are arbitrary
constants, eq. (26) implies that for each k we must have

〈Ar[∂XLk −
d

ds
(∂ẊLk)]|r−k| + . . .+ [∂XLk −

d

ds
(∂XLk)− d

ds
(∂ẊLk)]r+k〉k = 0,

or

(27) 〈Ar[∂XLk −
d

ds
(∂ẊLk)]〉k = 0.

Now we show that eq. (27) implies the multivector Euler-Lagrange equation

(28) ∂XLk −
d

ds
(∂ẊLk) = 0,

which means

(29)

[∂XLk−
d

ds
(∂ẊLk)]|r−k| = 0,

[∂XLk−
d

ds
(∂ẊLk)]|r−k|+2 = 0,

...

[∂XLk−
d

ds
(∂ẊLk)]r+k = 0.

Observe that if k = 0, eq. (28) implies
(
n
k

)
=
(
n
0

)
= 1 equation, whereas the variation

of Ar implies
(
n
r

)
arbitrary variations. Then

(
n
r

)
× 1 =

(
n
r

)
and we conclude the existence

of
(
n
r

)
Euler-Lagrange equations, namely, one for each of the

(
n
r

)
components of [∂XrL0−

d

ds
(∂ẊrL0)] ∈ sec∧r(TM). The same happens with k 6= 0 and r = 0 since in this case we

have
(
n
k

)
× 1 =

(
n
k

)
Euler-Lagrange equations for [∂XrLk − d

ds (∂ẊrLk)] ∈ ∧k(TM) which
has

(
n
k

)
components.
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We now must extend the above reasoning for k 6= 0, r 6= 0. Observe that in this general
case we need

(30)

1
2 [r+k−|r−k|]∑

`=0

(
n

|r − k|+ 2`

)
=
(

n

|r − k|

)
+
(

n

|r − k|+ 2

)
+ . . .+

(
n

r + k

)
≤
(
n

r

) (
n

k

)
; n, k ≤ n, r + k ≤ n

in order to deduce from eq. (27) the validity of eq. (28). This happens because eq. (28)

is equivalent to eq. (29) which is a set of
∑ 1

2 [r+k−|r−k|]
`=0 Euler-Lagrange like equations,

and from eq. (27) we can deduce only
(
n
r

) (
n
k

)
equations of the Euler-Lagrange type.

Now, eq. (30) has been tested in a computer program to be true, and we conclude
for the validity of eq. (28), the multivector Euler-Lagrange equation. Indeed, eq. (28) is
valid also if X is a general multivector field over σ, and we conclude that the principle
of stationary action with L =

∑
k Lk produces the general multivector Euler-Lagrange

equation

(31) ∂XL−
d

ds
(∂ẊL) = 0.

6.1 Multivector Lagrangian formulation of the superparticle equations of motion. Here
{eµ}, µ = 0, 1, 2, 3 is a comoving frame for σ in Minkowski spacetime. Consider the
bivector valued Lagrangian

(32) LS =
1
2
eµ ∧ ėµ −

1
2
ωµνeµ ∧ eν ,

where the ωµν are funcions over σ. From eq. (31) we have four multivector Euler-Lagrange
equations ∂eµLS − (d/ds)(∂ėµLS) = 0.

Taking into acount that if x and b, are vectors then ∂x(x ∧ b) = 3b and ∂x(x · a) = 0
an easy calculation gives eµ = −ωµνeν . Defining Ω = 1

2ωµν e
µ ∧ eν we arrive at

(33) ėµ = Ω · eµ,

which we recognize as the superparticle equations of motion (eq. (6)). For particular
values of ωµν , eq. (33) can be identified with Frenet equations.

6.2 Barut and Zanghi Lagrangian. Let ψ be a Dirac-Hestenes spinor field over σ 8 and
A ∈ sec∧1(TM) ⊂ sec C`(M, g) the electromagnetic potential. The following Lagrangian
defines the Barut-Zanghi model [21]

(34) LBZ = 〈ψ̃ψ̇γ2γ1 + p(ẋ− ψγ0ψ̃) + eAψγ0ψ̃〉0,

where x = xµ(τ)γµ is the parametric equation for σ, τ being proper time in the “center
of mass”. Then, the multivector Euler-Lagrange equation (eq. (31)) gives

(35) ψ̇γ1γ2 + Πψγ0 = 0, ẋ = ψγ0ψ̃, Π̇ = eF · ẋ,

where Π = p− eA is the kinetic momentum.

8 In the Barut-Zanghi model ψ can be a singular spinor also. See [29].
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7. Frenet equations and the Berezin-Marinov model in four dimensional
spacetime. Here we show the connection of the Clifford bundle formalism and the con-
cept of multivector derivatives with the Berezin supercalculus. (See also [17,30])

In 1977 Berezin [3] introduced the following calculus now known as supercalculus.
Let ξi, i = 1, . . . , n be the generations of the Grassmann algebra Gn. Then, {ξi, ξj} = 0,
where { , } is the anticommutator.

Obviously, we have the following isomorphism

(36) ξi ↔ ei ; ξiξj ↔ ei ∧ ej ,

where ei is are orthonormal vector generations of the Clifford algebra C`p,q, p + q = n.
(We leave p, q unespecified at this moment). With the identification above whatever
combination of Grassmann variables is isomorphic to a certain multivector.

Berezin introduced the differentiation by the rules
−→
∂ ξj
∂ξi

= δij ; ξj
←−
∂

∂ξi
= δij

Introducing the reciprocal basis {ei} , ei · ej = δij we have

(37)
−→
∂

∂ξi
↔ ei = ei·,

(38)
←−
∂

∂ξj
↔ ej = ·ej ,

where is the left contraction and the right contraction (see [8,21]).
We can immediately verify with the identification given by eq. (37) and eq. (38) that

differentiation in the Berezin calculus satisfies the so called graded Leibniz rule. Now if
f(ξ) = f(ξ1, . . . , ξn) is a general Grassmann function

(39) f(ξ) = f0 + fiξ
i +

1
2
fijξ

iξj + . . .
1
n!
fin...inξ

in . . . ξin

Berezin defined integration by the rules∫
1dξi = 0 ,

∫
ξidξi = 1,∀i

(40)
∫
f(ξ1 . . . ξn)dξn dξn−1 . . . dξ1 = f(ξ)

←−
∂

∂ξn

←−
∂

∂ξn−1
. . .

←−
∂

∂ξ1
,

f(ξ) is clearly isomorphic to a multivector F with the same coeficients as in eq. (39) and
eq. (40) is equivalent to

(. . . ((F en) en−1) . . .) e1 = F En,

where En = en ∧ en−1 . . . ∧ e1. With this identification all supercalculus as presented,
e.g., in DeWitt [41] reduces to elementary algebraic identities for multivector functions,
i.e., for sections of the Clifford bundle. This also shows that superfields, first introduced
by Salam and Strathdee [35] are isomorphic to sections of the Clifford bundle. Indeed to
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the superfield

A(x, ξ) = A0(x) + (A1(x))iξi +
(

1
2
A2(x)

)
ij

ξiξj + . . .+
(

1
n!
An(x)

)
µ1...µn

ξµ1 . . . ξµn

it corresponds C(x) ⊂ sec C`(M, g) given by

C(x) = A0(x) + (A1(x))iei +
(

1
2
A2(x)

)
ij

eiej + . . .+
(

1
n!
A(x)
n (x)

)
µ1...µn

eµ1 . . . eµn

and we arrive at the conclusion that a superfield has already been discovered since as
we already know the Dirac-Hestenes spinor field can be represented in a given basis by
an even section of the Clifford bundle. These topics are discussed in details in [33]. We
also call the reader’s attention that the generalized electromagnetic field of a theory of
magnetic monopoles [23,24] is also a superfield. To end this section we write a Berezin-
Marinov’s like Lagrangian [3] for a spinning particle in Minkowski spacetime as

LBM =
1
2
ξ̇µξµ −

1
2
ωµνξ

µξν ,

where ξµ, µ = 0, 1, 2, 3 are Grassmann fields over σ, and ωµν are functions over σ, which
in the original Berezin-Marinov model are constant functions.

With the isomorphism defined by eq. (36), namely ξµ 7→ eµ where {eµ} is an or-
thonormal frame over σ we get the isomorphism

LBM ' LS ,

where LS is the bivector Lagrangian defined by eq. (74).
From the identification LBM 7→ LS it becomes clear that in Berezin-Marinov La-

grangian in four dimensional Minkowski spacetime can produce a Dirac-Hestenes equation
as we discussed in Section 3. (Compare this with the original Berezin-Marinov model,
where it is necessary to use a pentadimensional Grassmann algebra in order to obtain
the Dirac equation after quantization).

We think that these nice results are important because they shed a new light on the
very abstract formalism of superfields.

We call the reader’s attention that in [17,30] it is developed the Lagrangian formalism
for Clifford fields and also a study of the Dirac-Hestenes equation in a Riemann-Cartan
spacetime [30].

8. Multivector Hamiltonian formalism. The multivector Hamiltonian formalism
has been originally introduced by Hestenes [16]. Here we present our version of the
theory together with an explicit example, i.e., we present the multivector Hamiltonian
formulation of the Barut-Zanghi model [1].

For a multivector Lagrangian Lk = Lk(X, Ẋ), with X = Xr ∈ sec∧r(TM) ⊂
sec C`(M, g) the multivector Euler-Lagrangian equations (eq. (70)) contains equations
with grades |r − k|, |r − k| + 2, . . . , r + k. Usually, to pass from the Lagrangian to the
Hamiltonian formalism we define

P = ∂ẊL
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as the canonical moment with P = P (X, Ẋ) and then we eliminate Ẋ(X,P ). However in
the case where L = Lk we have

∂ẊLk = 〈∂ẊLk〉|r−k| + 〈∂ẊLk〉|r−k|+2 + . . .+ 〈∂ẊLk〉r+k,

or
P = 〈P 〉|r−k| + 〈P 〉|r−k|+2 + . . .+ 〈P 〉r+k.

Since Ẋ ∈ sec∧r(TM) ⊂ sec C`(M, g)) and P is a sum of inhomogeneous multivec-
tors, it is clear that we cannot in general invert P = P (X, Ẋ) and write Ẋ = Ẋ(X,P ).
When this can be done we can have a multivector Hamiltonian. A nice example is dis-
cussed in detail in [17] where other applications of Clifford algebras to supersymmetry
are also discussed. For what follows we restrict the Hamiltonian formalism to the case of
scalar valued Lagrangians,i.e., L(X, Ẋ) = 〈L(X, Ẋ)〉0, with X a multivector field over σ.
Without loss of generality we take X = 〈X〉r. In this case P = ∂ẊL satisfies P = 〈P 〉k .
From P = P (X, Ẋ) we suppose that we can invert the equation and obtain Ẋ = Ẋ(X,P ).
Then, we define the Hamiltonian by

(41) H = (Ẋ ∗ ∂ẊL− L)|Ẋ=X(X,P ).

It is clear that H = 〈H〉0 and we write eq. (41) as

H = Ẋ ∗ P − L = P ∗ Ẋ − L.

Now, calculating ∂XH we obtain

η ∗ ∂XH = η ∗ ∂X(Ẋ ∗ P − L) = (η ∗ ∂XẊ) ∗ L− (η ∗ ∂X)L

= −η ∗ d

ds
(∂ẊL(X, Ẋ)) = −η ∗ d

ds
P = −η ∗ Ṗ .

Then,

(42) Ṗ = −∂XH.

Now, calculating ∂PH we get,

η ∗ ∂PH = η ∗ ∂P [Ẋ(X,P ) ∗ P − L(X, Ẋ(X,P )] = η ∗ Ẋ,

and then

(43) Ẋ = ∂PH.

We then have Hamiltonian’s equation for the multivectors, X,P .
We can even produce a symplectic structure with the above formalism as done orig-

inally by Hestenes [16]. In what follows we prefer to present the theory by giving the
multivector Hamiltonian formulation of the Barut-Zanghi model.

9.Multivector Hamiltonian formulation of Barut-Zanghi model9. Th Barut-
Zanghi model defined by the Lagrangian given by eq. (34), i.e.,

(44) L = 〈ψ̃ψ̇γ2γ1 + p(ẋ− ψγ0ψ̃) + eAψγ0ψ̃〉0.

9 A preliminary announcement of this section appears in [28].
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From eq. (44) we can write

(45) 〈(p− eA)ψγ0ψ̃〉0 = 〈ψ̄ψ̇〉0 − 〈pẋ〉0 − L,

where we defined ψ = γ2γ1ψ̃.
Eq(45) looks like a Legendre transformation; we have p and ψ as the momentum

canonically conjugate to x and ψ, respectively, and the Hamiltonian H = H(x, p, ψ, ψ̃) is

(46) H = 〈(p− eA)ψγ0ψ̃〉0 = 〈(p− eA)ψγ0γ1γ2ψ̃〉0.

Hamiltonian equations are:

(47) ẋ = ∂pH, ṗ = −∂xH,

(48) ψ̇ = ∂ψH,
˙̄ψ = −∂ψH,

It is trivial to verify that eq. (47) and eq. (48) with the Hamiltonian (46) give of BZ
equations, i.e., eq. (35).

Let us show how to give a symplectic structure to the phase space of BZ model -
illustrating therefore the general method given by Hestenes [16]. First, note that an
equation like ẋ = ∂pH implies γµẋµH, or ẋµ = ∂pµH. Now take a basis {E0, E1, E2, E3}
of R4 such that Ea · Eb = δab(a = 0, . . . , 3) and define X =

∑
a xaEa; take another copy

of R4 and a basis {E′0, E′1, E′2, E′3} with E′a ·E′b = δab and define P ′ =
∑
a paE

′
a. Finally,

take R4 ⊕R4 with a basis {E0, . . . , E3;E′0, . . . , E
′
3} such that Ea ·E′b = 0(∀a, b). We can

give a symplectic structure to R4 ⊕ R4 by defining the symplectic bivector J

J =
∑
a

Ja =
∑
a

Ea ∧ E′a.

Note that E′a = Ea · J = −J · Ea and Ea = −E′a · J = J · E′a. Then X ′ = X · J =
−J ·X,P = J · P ′ = −P ′ · J , and we can define

Q = X ′ + P = X · J + P, ∂Q = ∂X′ + ∂P ,

from which we can write Hamilton equations (47) as

(49) Q̇ = ∂′QH,

where ∂′Q = −J · ∂Q = ∂′P − ∂X .
In order to do the same with eq. (48) remember that R+

1,3 3 ψ = 〈ψ〉0 + 〈ψ〉2 + 〈ψ〉4;
an equation like ψ̇ = ∂ψ̃H gives 〈ψ̇〉0 = ∂〈ψ̃〉0H, 〈ψ̇〉2 = ∂〈ψ̇〉2H and 〈ψ̇〉4 = ∂〈ψ̃〉4 - where
the second one gives (〈ψ̇〉2)µν = ∂〈ψ̃〉µν2

H. Now, take a basis {F0, F1, . . . , F7} of R8 such
that Fm · Fn = δmn(m,n = 0, 1, . . . , 7) and define

Ψ = 〈ψ〉0F0 + (〈ψ〉2)01F1 + . . .+ (〈ψ〉2)23F6 + 〈ψ〉4F7;

take another copy of R8 with a basis {F ′0, F ′1, . . . , F ′7} such that F ′m ·F ′n = δmn and define

Ψ
′

= 〈ψ〉0F ′0 + (〈ψ〉2)01F
′
1 + . . .+ (〈ψ〉2)23F

′
6 + 〈ψ〉4F ′7.

Take R8 ⊕ R8 with a basis {F0, . . . , F7;F ′0, . . . , F
′
7} such that Fm · F ′n = 0(∀m,n), and

define the symplectic bivector K:

K =
∑
m

Km =
∑
m

Fm ∧ F ′m,
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with F ′m = Fm ·K, etc., just like the previous case. If we define

Φ = Ψ′ + Ψ = Ψ ·K + ψ, ∂Φ = ∂Ψ′ + ∂Ψ,

then Hamilton equations (48) can be written as

(50) Φ̇ = ∂′ΦH

where ∂′Φ = −K · ∂Φ = ∂′
Ψ̃
− ∂ψ.

The final step is to take the space (R4 ⊕ R8) ⊕ (R4 ⊕ R8) with a basis {E0, . . . , E3;
F0, . . . , F7; E′0, . . . , E

′
3; F ′0, . . . , F

′
7} with Ea · Fm = Ea · F ′m = E′a · Fm = E′a · F ′mΦ =

Ψ′ + Ψ = Ψ · K + ψ = 0 (∀a,m). The symplectic structure is given by the symplectic
bivector J :

J = J +K =
∑
a

Ea ∧ E′a +
∑
m

Fm ∧ F ′m.

After defining
Π = Q+ Φ,

we write Hamilton equations (49) and (50) as

(51) Π̇ = ∂′ΠH,

where ∂′Π = ∂′Q + ∂′Φ.
We observe that the Poisson brackets are given by

{F,G} = J · (∂ΠG, ∂ΠF )

in terms of which Hamilton equations (51) can be written as

(52) Π̇ = {H,Π}.

10. Conclusions. In this paper we showed that Frenet equations are the appropriate
equations of motion of a classical spinning particle, and from the spinor form of Frenet
equations we even obtain the “classical” Dirac-Hestenes equation. We succeded in giving
a multivector Lagrangian formalism for Frenet equations and showed that it is isomorphic
to a generalization of the 4-dimensional Minkowski spacetime of the Lagrangian of the
famous Berezin-Marinov [3] model, thus providing us with a geometrical interpretation
of the supercalculus of Berezin [2] (see also DeWitt [41]) and maybe more important
than that, we arrive at a geometrical interpretation for the superfields, since we identify
the Dirac-Hestenes spinor field with a superfield (see [33])! These results, we think are
not only nice, they shed a new light on the abstract formalism of supercalculus revealing
their deep geometric contents in terms of objects living in spacetime, i.e, we don’t need
to introduce abstract spaces as, e.g., the supermanifolds.

Also our formulation leaves clear the relation of Frenet equations with the Barut-
Zanghi model and shows that the helicoidal motion of the electron which appears as one
of the possible solutions in this model (zitterbewegung) is not responsable for the electron
spin.
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by the Slovenian Ministry of Science and Technology.
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Appendix: Multivector derivatives. Here M is Minkowski vector space. Let be
x ∈ sec∧1(TM) ⊂ sec C`(M, g) and let be

F : sec∧1(M)→ sec∧r(M), x 7→ F (x),

with F (x) = 〈F (x)〉r.

Definition A1. The vector derivative of F in the direction of a ∈ sec∧1(TM)
⊂ sec C`(M, g) is

a · ∂x〈F (x)〉r =
d

dt
〈F (x+ ta)〉r|t=0 = 〈 d

dt
F (x+ ta)|t=0〉r = 〈a · ∂xF (x)〉r.

Then, by definition, a · ∂x preserves the grade, a · ∂x〈F (x)〉r = 〈a · ∂xF (x)〉r.

Definition A2. ∂xF (x) is defined by

〈a(∂xF (x))〉r = 〈(a · ∂x)F (x)〉r.

Since a ∈ sec∧1(TM) ⊂ sec C`(M, g) we have, where if A,B are multivectors A∗B =
〈AB〉0:

〈a∂xF (x)〉r = a · 〈∂xF (x)〉r+1 + a ∧ 〈∂xF (x)〉r−1.

Definition A3. ∂x ∧ F (x) and ∂x · F (x) are defined by

∂x ∧ F (x) = ∂x ∧ 〈F (x)〉r = 〈∂xF (x)〉r+1,

∂x · F (x) = ∂x · 〈F (x)〉r = 〈∂xF (x)〉r−1.

Then, we have
∂xF (x) = ∂x ∧ F (x) + ∂x · F (x).

Now, let X ∈ sec∧s(TM) ⊂ sec C`(M, g) and

F : sec∧s(TM)→ sec∧r(TM),

that is, F (X) = 〈F (X)〉r. We have

Definition A4. The multivector derivative of F (X) in the direction of the multi-
vector A ∈ sec∧s(M) ⊂ sec C`(M, g) or A-derivative, for short, is

A ∗ ∂X〈F (X)〉r =
d

dt
〈F (X + tA)〉r|t=0 = 〈 d

dt
F (X + tA)|t=0〉r = 〈A ∗ ∂XF (X)〉r,

where if A and B are multivectors: A ∗ B = 〈AB〉0. Accordingly A ∗ ∂X preserves the
grade: A ∗ ∂X〈F (X)〉r = 〈A ∗ ∂XF (X)〉r.

Definition A5. We define ∂XF (X) such that

〈A(∂XF (X))〉r = 〈(A ∗ ∂X)F (X)〉r.

Then
〈A∂XF (X)〉r = 〈A〈∂XF (X)〉r−s〉r + 〈A〈∂XF (X)|r−s|+z〉r

+ . . .+ 〈A〈∂XF (X)〉r+k〉k,
∂XF (X) = ∂〈X〉r 〈F (X)〉r

= 〈∂XF (X)〉r−s + 〈∂XF (X)〉|r−s|+2 + . . .+ 〈∂XF (X)〉r+k,
and we denote 〈∂XF (X)〉r−s = ∂X · F (X) and (∂XF (X)〉r+k = ∂X ∧ F (X).
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