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Abstract. Quasihomography is a useful notion to represent a sense-preserving automor-
phism of the unit circle T" which admits a quasiconformal extension to the unit disc. For K > 1
let Ap(K) denote the family of all K-quasihomographies of 7. With any f € Ap(K) we asso-
ciate the Douady—FEarle extension E¢ and give an explicit and asymptotically sharp estimate of
the Lo norm of the complex dilatation of Ef.

Introduction. Let Ar denote the family of all sense-preserving automorphisms of
the unit circle . With any f € Ar we associate the Douady-Earle extension £y which
is a homeomorphic automorphism of the unit disc A and has a continuous extension to
f on the boundary T'= 0A (see [DE] and [LP]). If z € A and f € Ay, then Ey(2) is the
unique w € A such that

(0.1) L(f@%ﬂv>ﬂ—V%ud:&

1-wf(¢)/) |z—(]?
Moreover, the correspondence f — Ey is conformally natural in the sense that
(0.2) Ehyofony = h1 0 Efohy

holds for any f € Ap and all Mdbius transformations hy, ho, which map A onto itself.
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The property that a given f € Ap admits a quasiconformal extension to A is equiva-
lent to the assumption that f is a quasihomography (see [Z1]). For K > 1, we denote by
A7 (K) the family of all f € Ay that are K-quasihomographies (see Chap. 1).

Starting with an automorphism f of T, which is the boundary automorphism of a
given K-quasiconformal mapping of A onto itself, Douady and Earle proved that, given
£>0, there exists § >0 such that K(Ey) <43T¢ for 1 < K < 1+ (see [DE, Corollary 2]).
Their explicit estimate starts from 4 - 108¢3®, for K near 1.

Making some refinements and using more subtle tools, Partyka obtained an asymptot-
ically sharp estimate for K(Ey) (see [P1, Theorem 3.1]), improving the result of Douady
and Earle for 1 < K < 50. Using the notion of quasisymmetry for unit circle, intro-
duced by Krzyz [K], he considered also, as the starting point, a given p-quasisymmetric
automorphism f of T'.

It is very natural from different points of view if we may extend an automorphism f
of T that satisfies certain condition on T only, and next to study how particular properties
of such an f effects the extension.

Rotation, but not conformally invariant notion of quasisymmetry of T, mentioned
above, is meaningless in these considerations. This is mostly because neither there exists
p > 1 such that boundary values of Mébius automorphisms of A are p-quasisymmetric
(see [Z1, Example]), nor p-quasisymmetric automorphisms of T represent uniformly
boundary values of K-quasiconformal automorphisms of A, for any K > 1.

We assume that a given automorphism f of T" is a K-quasihomography (= 1-dimen-
sional K-quasiconformal mapping) of T, K > 1. The family Ap(K), K > 1, representing
uniformly K-quasiconformal mappings, with the same K of necessity, is conformally
invariant under composition and thus very natural with respect to the Douady—Earle
extension.

Developing in Sect. 1 the argument of normal families in Ar in a way related to
the Douady-Earle extension and introducing necessary functionals, defined on families
of K-quasihomographies of T', we estimate in Theorem 3 the L,,-norm of the complex
dilatation pp, for the Douady-Earle extension of a given K-quasihomography f of T,
with K close to 1. In Corollary 3 we describe an asymptotically sharp estimate of K(Ey),
expressed explicitly by (2.20), for K close to 1.

In order to be in contact with results mentioned above we give, in Theorem 2, a
relation between some important families in A7 (K) and functions p-quasisymmetric on
the unit circle.

1. Normal families in Ap. Let A be the unit disc in the complex plane C and T' =
OA be the unit circle. We consider the family Ar of all sense-preserving automorphisms
of T as a subspace of the Banach space Cr of all complex-valued continuous functions
on T, with the supremum norm. In this section, we first discuss normality of certain
subfamilies of Ar. As an application, we shall then show that some subfamilies of K-
quasihomographies on 7T, which play an important role for our purpose, turn out to be
families of p-quasisymmetric functions of 7" where p depends on K only.

For f € Ar, we denote by E¢ the Douady-Earle extension of f to A.
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LEMMA 1. The functional Ef(0) is continuous on Ar. ([DE, Prop. 2]).

For every r, 0 < r < 1, we denote by Fp(r) the family of all f € Ap satisfying
|Ef(0)] < r. A family F' in Ap is said to be a normal family if F' is relatively compact
in Ap. Thus a family F' in Ar is a normal family if and only if for any infinite sequence
{fn} in F, there exists a subsequence {f,, } which converges to some f in Ap.

LEMMA 2. Let F be a family in Ap. Then F is normal family in Ar if and only if F
is equicontinuous on T and there exists r, 0 < r < 1, such that F C Fr(r), where F is
the closure of F in the Banach space Crp.

Proof. We note that by the Ascoli-Arzela’s theorem, a family G in Cr is a normal
family in Cp if and only if G is uniformly bounded and equicontinuous on 7T'. Suppose that
F is a normal family in A7. By definition, it then follows that F is compact and F' C Arp.
Thus, by Lemma 1, there exists some fo € F such that |Ey,(0)] = sup 5 |E¢(0)|. Then
F is equicontinuous and F' C Fr(r), where r = |Ey, (0)].

On the contrary, suppose that F is equicontinuous on T and that F C Fr(r) for
some 7, 0 <7 < 1. Then F is a normal family in C, that is, F is compact in C. Since
F C Fr(r) C Ar, then F is a normal family in Ap. q.e.d.

For K > 1, we denote by A (K) the family of all f € A such that

(1.1)  ®yyk([21, 22, 23, 24]) < [f(21), f(22), f(23), f(24)] < Pic([21, 22, 23, 24])

holds for every ordered quadruple of distinct points z1, 29, 23, 24 € T, where

1/2
Z3 — 2o a—@}

[2’1,22,23,24] = :
zZ3 — 21 zZ4 — 21

is the real-valued cross-ratio of {z1, 22, 23,24} (see [Z1]). Moreover, @k in (1.1) is the
Hersch-Pfluger distortion function defined by

(1) ORI S0

where 7 pu(t) stands for the conformal modulus of A\ [0;¢], 0<t < 1. The function x can
be expressed in the form:
K(W1—-1t?)
1.3 )= —5+—7, 0<t<l,
(13) o) = S

where
/2
K(t) = / (1 —t%sin? p)"Y2dyp
0

is the elliptic integral of the first kind. Every f € Ar(K) is called a K-quasihomography
of T.

For every K > 1 and r, 0 < r < 1, we denote by Ar(K,r) the family of all f € Ap(K)
satisfying |Ef(0)| < r. Obviously, Ar(K,r) = Ap(K) N Fr(r). For a € A, we put

zZ—a

(1.5) ha(2) = T—.



38 K. SAKAN AND J. ZAJAC

LEMMA 3. Suppose a, € A converges to €% € T as n tends to infinity. Then the
function hy, (2) converges to —e'® uniformly on every compact set S in A\ {€*}, asn
tends to infinity.

Proof. Let S be any compact set in A\ {¢?}, and let ¢y = dist(e?’, S). For any e,
0 < & < ¢, there exists ng such that |a, — €| < ¢/2, for all n > ng. Then, for every
z € S, we have

(1.6) 1 —Tpz| > 1 —e P2 — (@ — e )2 > [ — 2| =[G, — e > co/2.
For every z € S and n > ng, it then follows from (1.6) that

|ei9 _anl + |e—i9 _anl

|ha, (2) + €] < < 2¢/cp.q.e.d.

|1 — @,z
Now we have the following

THEOREM 1. For every K > 1 and r, 0 < r < 1, the family Ar(K,r) is compact
in Ar(K).

Proof. Let A% (K) be the family of all f € Ap(K), K > 1, normalized by f(z) = z
for every z such that z3 = 1. As it is known, A% (K) is compact in Ar(K) (see [Z2]).
Let {f,} be an infinite sequence in Ap(K,r). Then there exist a,, € A and ¢, € R,
such that g, := e*nh,, o f, belongs to A%.(K) for every n. Taking a subsequence,
if necessary, we may assume g, — g € AN(K), a, — ag € A and ¥ — ¥ as
n — oo. By Lemma 1, E,, (0) converges to E4(0). If |ag| = 1 and ag = €% for some
6 € R, then, since |Ef, (0)] < r, Lemma 3 and conformal naturality of the Douady—
Earle extension imply that E,, (0) = e*h,, (E}, (0)) converges to e!¥~% as n — oo.
This contradiction shows that ag € A and that f, = h_,, o e “ng,(z) converges to
fo(2) :=h_q,e"*g(z) € Ar(K). Hence, by Lemma 1, fo € Ar(K,r), and thus A7 (K,7)
is compact in Ap(K). q.e.d.

In view of Lemma 2, we can easily obtain the following:

COROLLARY 1. For every K > 1 and r, 0 < r < 1, the family Ar(K,r) is equicontin-
uous on T

COROLLARY 2. Let K >1 and let F be a family in Ap(K). Then F is a normal family
(resp. compact) in Ar(K) if and only if there exists some v, 0 < r < 1, such that F is a
subfamily (resp. a closed subfamily) of Ar(K,r).

For every z € T and f € Ap(K), K > 1, we denote by 0(z) the angle of the arc
on T directed counterclockwise from f(z) to f(—z). In this sense 6;(z) = arg f}(_zj) and
we note that 0¢(—z) = 27 — 0¢(2). By continuity of f, there exists zy € T such that

(L.7) Of(z) = min by (2).
For every r, 0 < r < 1, we define
(1.8) O(K,r):= inf minf;(z).

fEAT(K,r) €T

LEMMA 4. For every K > 1 and r, 0 < r < 1, there exist fo € Ap(K,r) and zo € T
such that ,(z0) = 0(K,r).
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Proof. By (1.7) and (1.8) there exist f,, € Ar(K,r), and z, € T satisfying

(1.9) O(K,r)= lim 6y, (z,)
and
(1.10) 05, (zn) = min 0y, (2).

By Theorem 1, we may assume that f,, — fo € Ap(K,r) in Ap(K) and that z, — 29 € T
as n — 0o. Then

(1.11) nh_)rr;o 0, (2n) = 05,(20)

and

(1.12) nlin;o s, (z5,) = 01, (25,)-

By (1.10) 6y, (z5,) > 6y, (zy), then by (1.11) and (1.12) we obtain

(1.13) 050 (250) = 0, (20)-

By (1.7), (1.13), (1.9) and (1.11) we then have 0, (zy,) = 05,(20) = 0(K,1). q.e.d.

LEMMA 5. For every r, 0 < r < 1, the correspondence K — 0(K,r) is lower semi-
continuous in 1 < K < oco. Moreover, the function 0(K,0) is continuous at K =1 and

limg 1 O(K,r) =0(1,0) = .

Proof. Let {K,}, K, > 1, be a sequence converging to Ky as n — oo. Then, by
Lemma 4, there exist f,, € Ap(K,,r) and z, € T such that 0, (z,) = 0(K,,r). By
Theorem 1, we may assume that f, — fo € Ar(Ko,r) and that z, — z9 € T as n — oo.
In a way similar to the proof of Lemma 4, we have

(1.14) Tim (K, ) = 05, (20) = 05, (2,) > 6(Fo, 7).

Therefore, limy ;- 0(K,7) > 0(Ko,r). Next, suppose r = 0. Then A7 (1,0) ={fs:0<
0 < 21}, where fy(z) = e2. In particular, 0(z) = 7 for every f € Ar(1,0) and every
z € T. Hence, 6(1,0) = 7 and (1.14) implies that limg_ .1 0(K,,0) = 0(1,0) = . q.e.d.

Following Krzyz [K], we say that f € Ar is p-quasisymmetric, p > 1, if the inequality

Lp < [f(I)|/If ()] < p

holds for each pair of open, adjacent arcs Iy, Iy C T such that 0 < |I;]| = |[I2| < 7, where
| - | denotes the Lebesgue measure on 7.

Denote by Qr(p) the family of all p-quasisymmetric functions in Ay. It is worth while
to mention that Qr(p) is not conformally invariant and that quasisymmetric functions
of T represent non-uniformly the boundary values of quasiconformal automorphisms of A
(see [Z2]). This and other properties makes p-quasisymmetry of T' not closely related to
quasiconformality of A, and technically similar to p-quasisymmetry of R only.

For K > 1, we recall the distortion function

MEK) = @5(1/v2) /93 1 (1/V2),

where @ g is given by (1.2). By Theorem 2.9 from [Z2, Chap. IT], (1.7), (1.8) and Lemma 5,
we obtain the following:
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THEOREM 2. For every K > 1 and r, 0 < r < 1, there exists a constant p =
p(K,r) such that Ar(K,r) C Qr(p) and p < AK)cot?(0(K,r)/4). In particular,

2. The maximal dilatation of the Douady—Earle extension of f € Ap(K).
Let K > 1 and f € Ap(K). We note that by (0.1) f € Ap(K,0) if and only if f satisfies

[ sraci=o
T
If f € Ap(K,0) then there exist a = a(f) € A and ¢ = ¢(f) € R such that
(2.1) e'h, o f € AT(K),
where h, is the function defined by (1.5), whereas a(f) and e**(¥) are uniquely determined
by (2.1).

Define

-FE

(2.2) C(K)= sup sup w

rea (i) cer |f(Q) — Ef(0)]
LEMMA 6. For every K > 1, there exist frx € A%(K) and Cx € T such that
ISk — By (0)]
|fi(Cx) — By (0)]
Furthermore, C(K) is increasing and right continuous in 1 < K < oco. In particular,

C(K) tends to 1 as K — 1.
Proof. For f € A%(K) set

L K=B0)
(23) ) =0 =By

By the continuity of the correspondence ¢ — % there exists ¢ = ((f) € T

such that the supremum in (2.3) is attained at this point. Hence, by (2.2) there exist
fn € A%(K) and ¢, = ((f,,) satisfying

O(K) =

(2.0 Tim 1(f,) = C(K)
and
(25 l(f) = o 2O

[ (Cn) = Ef, (0)]

Taking a subsequence, if necessary, we may assume that ¢, — (o, and that f,, — fo €
AY(K) with respect to the supremum norm as n — oo. Then, by Lemma 1, Ey, (0) tends
to E,(0) as n — co. Hence, by (2.4) and (2.5), we have

|0 — E, (0)]
[fo(Co) = Ey, (O)
By (2.2) the function C(K) is clearly increasing. Let Ky > 1 be fixed and let K,, \, K.
By (2.6), there exist (x, € T and fg, € A%(K,) such that
S = B, (0)]
K. (CK.) = Efse, (0)

(2.6) C(K) =

(2.7) C(K,) =
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We may assume that fr, tends to f; € A%(Kp), and (k, tends to (; € T as n — oo.
From (2.7) it follows that

: S — B, (0)]
lim C(K,) = < C(Ky).
I =y =y o] = O
This implies that lim,, . C(K,) = C(Kj). Clearly, C(1) = 1 and thus limg_,; C(K) =
1. q.e.d.
For K > 1, define m(K) = sup e 4,.(k,0) la(f)| and
(2.8) M(K) = max [®% (V) — 1]

where a(f) is defined by (2.1) and @ is given by (1.2). Introduced by the second author
functional M (K) was investigated in relation with certain functionals defined on families
of K-quasihomographies of the real line and the unit circle T' (see [Z1]). Surprisingly to
both the authors, the following equality

M(K) =28%(1/v2) - 1

was obtained by Partyka [P3]. This is a one of the truly few final results on special
functions in quasiconformal theory, which may have some further consequences.
By Lemma 2.1 from [Z2, Chap. II] we have

LEMMA 7. For each K > 1 and f € A%(K) the following inequality

(2.9) F(2) -2l <

holds for every z € T.

4
M)

Now we prove

LEMMA 8. For every K > 1, we have m(K) < 1. Moreover,
4

2.10 m(K) < —M(K)C(K).
(2.10) (K) < 7 (K)C(K)
In particular, m(K) — 0 as K — 1.

Proof. If f € Ap(K,0), then g := ¥,y o f € AL(K). Furthermore, by (0.2),
we have E,(0) = —a(f)e’?), and thus |E,(0)| = |a(f)|. Conversely, if g € A%(K) and
E,(0) = b, then hy 0o g € Ap(K,0). Thus, the equality g = h_p o hy o g implies that

|E,(0)| = 1b] = | — b = |a(hy 0 g)|. The above observation shows that
(2.11) m(K) = sup |Ef(0)|.
feAS(K)

By Lemma 1, the correspondence f — |Ef(0)| is continuous on Ar. Since A%(K) is
compact in Ar, then (2.11) implies that there exists some fx € A%.(K) such that m(K) =
|E . (0)]. Since p~1(1) = 1//2, by (2.8), (2.9), the last equality and Lemma 1, we then
see that m(K) < 1 and that m(K) tends to 0 as K — 1.

Let f € A%(K) and put a = E;(0). We then obtain

o e | (M e e
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Since

(—a
—2
= [ @iy =
it follows from (2.12) that

| (1— Ja?)
2.13 al < /w ¢ dg|,
(2.13) ol < 5 [ (O e
where w({) = W The right-hand side of (2.13) is equal to W(a), where W(z)
is a harmonic extension of w(¢) into A. By (2.9) and (2.13), we thus have
¢ — 4
al < max |w = < —=M(K)C(K).
o] < mage (Q)] = max F(0) = (o < S MK)OUR)

This, in view of (2.11), gives (2.10). q.e.d.
For f € Ap(K,0), we put
1 (-
S d
3 | Cract

1
= 5 [ <ro1acl
_ L 2
=5 [ 1?1

and
4
2.14 S(K)=—=M(K)C(K).
(2.14) (K) 7 (K)C(K)
LEMMA 9. For each K > 1 and f € Ar(K,0) the following inequalities hold;
(2.15) |B] < S(K), |C|<2S(K)+S(K)?, |Al>1-S(K)*-S(K).

Moreover, the third estimate is essential for K > 1 satisfying S(K) < (v/5—1)/2.

Proof. Let f € Ap(K,0) and let g = ei“”(f)ha(f) of, b= —a(f)e*P). Then, gc
AS(K), E4(0) = b, and we see that

eI £(¢) = [9(¢) = bl/[1 = bg(Q)]-
As in the proof of Lemma 8, we have
9(¢) —
K ( G )l

Bl = \ [ 50 |d<|\ -1/
9O b b) ‘ e Sd-wE b
/<<1—bg( “3c) 1 *27r/ |1—bg< c—op %

Ny
< =M

Similarly, by Lemma 8, we obtain

L \ [ e 056 1a| =

< [bl* +

1

2

/T{(f’(flgé’)f (i) e

e :
|l < 8877 + 25(K).

g(¢) —b
7|1 —bg(¢)

o
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Since

1 [=(¢=b 1 ¢—=b 112

fe ()

we have

_ L[ coetn _ L
4= 5| [ @ o1 - o

L[ g<<)—b_<—b> e

=0 /Tc(l_bg(o e ) el 2m = )

2z L g(C)—b_C—b _ 2 _
>1— b 27T/T 1 — bg(0) 1—bC’|dC|>1 S(K)* — S(K).q.ed.

Remark 1. For K > 1 satisfying S(K) < (v/5 —1)/2, we have |A| > 0.

3. An estimation of the dilatation. For K > 1 we define

k(K) = sup I(f),
€A (K,0)

where

1) = {2IB<f) +ICUHPIAD] = 1B }/
AN+ B

Since f +— I(f) is continuous on Ar and Ap(K,0) is a compact in Ar(K) hence by

Theorem 1, we infer that there exists some fx € Ar(K,0) such that k*(K) = I(fk).

Moreover, |A(f)| > |B(f)| holds for every f € Ap; because f is sense-preserving (see

[DE, Lemma 3]). We thus see that k*(K) < 1.

THEOREM 3. For each K > 1 and f € Ap(K) the Douady-FEarle extension Ey is
quasiconformal and its complex dilatation pug, satisfies ||jug; | < k*(K). Moreover, if
K >1 is as close to 1, so that S(K) < (v/5 —1)/2 holds, then the following estimate

1/2
(2.16) B (K) < {% +(28(K) + S(K)Q)Q}

holds, where S(K) is the number defined by means of (2.2), (2.8) and (2.14). In partic-
ular, g, lloo — 0 as K — 1.

Proof. Take any zp € A and let wy = Ef(zp). Put f = B, © f o h_,,, where
hﬂ(C) = f%ﬁ"g By (0.2) we have Ef = hy, o Ef o h_, and therefore E(0) = 0, by which
f € Ap(K,0). Moreover, we easily have
(2.17) e, (20)] = e, (0)]-

Let ko = sup |pg, (0)|, where the supremum is taken over all g € A7 (K,0). By (2.17) it
suffices to show that ko < k*(K).

Take any g € Ar(K,0). Then, as in [DE], we have
(2.18) iz, (0)] = | AT + BI/| A + CB,
where A = A(g), B = B(g) and C' = C(g). By (2.18), we obtain

1 -1C») (A2 - |B*)

L= g, OF = == g 2 (= 10P)

Al - | B
Al + | B
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1 (2LEICEGA 1Y
Al + | B
Thus, |ug, (0)] < I(g) < k*(K) and hence ko < k*(K).

Next we show the latter part of the theorem. Let K > 1 satisfy S(K) < (v/5 —1)/2
which is equivalent to 1—S(K)?—S(K) > 0. If g € A7 (K,0), then, by (2.15) in Lemma 9,
we see that

2B () /1A(9) V2 _ g 28(K)/(1 - S(K)? — S(K))

101 < { T Bt HICOP < T s = swr—sw)

(28(K) + S(K)2)2}1/2 -{ 25UC) 1\ (os(k) + S(K 2)2}1/2.

1- S(K)

+

q.e.d.
COROLLARY 3. Under the hypotheses of Theorem 3, suppose that K > 1, is so close
to 1 that the following inequality
25(K) < 1
1-S(K)2 2
holds, i.e. if 0 < S(K) < +/5—2. Then the mazimal dilatation K(E;) of E; satisfies

1+ S(K)'Y2g(S(K)) (4"
(2.20) K(Ey) < 1= SR 2g(S(K))’ where g(S5) = (1_52> .

(2.19) (2S(K) + S(K)*)? <
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