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Abstract. Quasihomography is a useful notion to represent a sense-preserving automor-
phism of the unit circle T which admits a quasiconformal extension to the unit disc. For K ≥ 1
let AT (K) denote the family of all K-quasihomographies of T . With any f ∈ AT (K) we asso-
ciate the Douady–Earle extension Ef and give an explicit and asymptotically sharp estimate of
the L∞ norm of the complex dilatation of Ef .

Introduction. Let AT denote the family of all sense-preserving automorphisms of
the unit circle T . With any f ∈ AT we associate the Douady–Earle extension Ef which
is a homeomorphic automorphism of the unit disc ∆ and has a continuous extension to
f on the boundary T = ∂∆ (see [DE] and [LP]). If z ∈ ∆ and f ∈ AT , then Ef (z) is the
unique w ∈ ∆ such that

(0.1)
∫
T

(
f(ζ)− w
1− wf(ζ)

)
(1− |z|2)
|z − ζ|2

|dζ| = 0.

Moreover, the correspondence f 7→ Ef is conformally natural in the sense that

(0.2) Eh1◦f◦h2 = h1 ◦ Ef ◦ h2

holds for any f ∈ AT and all Möbius transformations h1, h2, which map ∆ onto itself.
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The property that a given f ∈ AT admits a quasiconformal extension to ∆ is equiva-
lent to the assumption that f is a quasihomography (see [Z1]). For K ≥ 1, we denote by
AT (K) the family of all f ∈ AT that are K-quasihomographies (see Chap. 1).

Starting with an automorphism f of T , which is the boundary automorphism of a
given K-quasiconformal mapping of ∆ onto itself, Douady and Earle proved that, given
ε>0, there exists δ>0 such that K(Ef )≤43+ε for 1 ≤ K ≤ 1+ δ (see [DE, Corollary 2]).
Their explicit estimate starts from 4 · 108e35, for K near 1.

Making some refinements and using more subtle tools, Partyka obtained an asymptot-
ically sharp estimate for K(Ef ) (see [P1, Theorem 3.1]), improving the result of Douady
and Earle for 1 ≤ K < 50. Using the notion of quasisymmetry for unit circle, intro-
duced by Krzyż [K], he considered also, as the starting point, a given ρ-quasisymmetric
automorphism f of T .

It is very natural from different points of view if we may extend an automorphism f

of T that satisfies certain condition on T only, and next to study how particular properties
of such an f effects the extension.

Rotation, but not conformally invariant notion of quasisymmetry of T , mentioned
above, is meaningless in these considerations. This is mostly because neither there exists
ρ ≥ 1 such that boundary values of Möbius automorphisms of ∆ are ρ-quasisymmetric
(see [Z1, Example]), nor ρ-quasisymmetric automorphisms of T represent uniformly
boundary values of K-quasiconformal automorphisms of ∆, for any K ≥ 1.

We assume that a given automorphism f of T is a K-quasihomography (≡ 1-dimen-
sional K-quasiconformal mapping) of T , K ≥ 1. The family AT (K), K ≥ 1, representing
uniformly K-quasiconformal mappings, with the same K of necessity, is conformally
invariant under composition and thus very natural with respect to the Douady–Earle
extension.

Developing in Sect. 1 the argument of normal families in AT in a way related to
the Douady–Earle extension and introducing necessary functionals, defined on families
of K-quasihomographies of T , we estimate in Theorem 3 the L∞-norm of the complex
dilatation µEf

for the Douady–Earle extension of a given K-quasihomography f of T ,
with K close to 1. In Corollary 3 we describe an asymptotically sharp estimate of K(Ef ),
expressed explicitly by (2.20), for K close to 1.

In order to be in contact with results mentioned above we give, in Theorem 2, a
relation between some important families in AT (K) and functions ρ-quasisymmetric on
the unit circle.

1. Normal families in AT . Let ∆ be the unit disc in the complex plane C and T =
∂∆ be the unit circle. We consider the family AT of all sense-preserving automorphisms
of T as a subspace of the Banach space CT of all complex-valued continuous functions
on T , with the supremum norm. In this section, we first discuss normality of certain
subfamilies of AT . As an application, we shall then show that some subfamilies of K-
quasihomographies on T , which play an important role for our purpose, turn out to be
families of ρ-quasisymmetric functions of T where ρ depends on K only.

For f ∈ AT , we denote by Ef the Douady–Earle extension of f to ∆.



THE DOUADY–EARLE EXTENSION 37

Lemma 1. The functional Ef (0) is continuous on AT . ([DE, Prop. 2]).

For every r, 0 ≤ r < 1, we denote by FT (r) the family of all f ∈ AT satisfying
|Ef (0)| ≤ r. A family F in AT is said to be a normal family if F is relatively compact
in AT . Thus a family F in AT is a normal family if and only if for any infinite sequence
{fn} in F , there exists a subsequence {fnl

} which converges to some f in AT .

Lemma 2. Let F be a family in AT . Then F is normal family in AT if and only if F
is equicontinuous on T and there exists r, 0 ≤ r < 1, such that F ⊂ FT (r), where F is
the closure of F in the Banach space CT .

P r o o f. We note that by the Ascoli–Arzela’s theorem, a family G in CT is a normal
family in CT if and only if G is uniformly bounded and equicontinuous on T . Suppose that
F is a normal family in AT . By definition, it then follows that F is compact and F ⊂ AT .
Thus, by Lemma 1, there exists some f0 ∈ F such that |Ef0(0)| = supf∈F |Ef (0)|. Then
F is equicontinuous and F ⊂ FT (r), where r = |Ef0(0)|.

On the contrary, suppose that F is equicontinuous on T and that F ⊂ FT (r) for
some r, 0 ≤ r < 1. Then F is a normal family in CT , that is, F is compact in CT . Since
F ⊂ FT (r) ⊂ AT , then F is a normal family in AT . q.e.d.

For K ≥ 1, we denote by AT (K) the family of all f ∈ AT such that

(1.1) Φ1/K([z1, z2, z3, z4]) ≤ [f(z1), f(z2), f(z3), f(z4)] ≤ ΦK([z1, z2, z3, z4])

holds for every ordered quadruple of distinct points z1, z2, z3, z4 ∈ T , where

[z1, z2, z3, z4] =
{
z3 − z2
z3 − z1

:
z4 − z2
z4 − z1

}1/2

is the real-valued cross-ratio of {z1, z2, z3, z4} (see [Z1]). Moreover, ΦK in (1.1) is the
Hersch–Pfluger distortion function defined by

(1.2) ΦK(t) = µ−1

(
1
K
µ(t)

)
where π

2µ(t) stands for the conformal modulus of ∆ \ [0; t], 0≤ t < 1. The function µ can
be expressed in the form:

(1.3) µ(t) =
K(
√

1− t2)
K(t)

, 0 < t < 1,

where

K(t) =
∫ π/2

0

(1− t2 sin2 ϕ)−1/2 dϕ

is the elliptic integral of the first kind. Every f ∈ AT (K) is called a K-quasihomography
of T .

For every K ≥ 1 and r, 0 ≤ r < 1, we denote by AT (K, r) the family of all f ∈ AT (K)
satisfying |Ef (0)| ≤ r. Obviously, AT (K, r) = AT (K) ∩ FT (r). For a ∈ ∆, we put

(1.5) ha(z) =
z − a
1− az

.
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Lemma 3. Suppose an ∈ ∆ converges to eiθ ∈ T as n tends to infinity. Then the
function han

(z) converges to −eiθ uniformly on every compact set S in ∆ \ {eiθ}, as n
tends to infinity.

P r o o f. Let S be any compact set in ∆ \ {eiθ}, and let c0 = dist(eiθ, S). For any ε,
0 < ε < c0, there exists n0 such that |an − eiθ| < ε/2, for all n ≥ n0. Then, for every
z ∈ S, we have

(1.6) |1− anz| ≥ |1− e−iθz| − |(an − e−iθ)z| ≥ |eiθ − z| − |an − e−iθ| ≥ c0/2.

For every z ∈ S and n ≥ n0, it then follows from (1.6) that

|han(z) + eiθ| ≤ |e
iθ − an|+ |e−iθ − an|

|1− anz|
≤ 2ε/c0.q.e.d.

Now we have the following

Theorem 1. For every K ≥ 1 and r, 0 ≤ r < 1, the family AT (K, r) is compact
in AT (K).

P r o o f. Let A◦T (K) be the family of all f ∈ AT (K), K ≥ 1, normalized by f(z) = z

for every z such that z3 = 1. As it is known, A◦T (K) is compact in AT (K) (see [Z2]).
Let {fn} be an infinite sequence in AT (K, r). Then there exist an ∈ ∆ and ϕn ∈ R,
such that gn := eiϕnhan

◦ fn belongs to A◦T (K) for every n. Taking a subsequence,
if necessary, we may assume gn → g ∈ A◦T (K), an → a0 ∈ ∆ and eiϕn → eiϕ as
n → ∞. By Lemma 1, Egn

(0) converges to Eg(0). If |a0| = 1 and a0 = eiθ for some
θ ∈ R, then, since |Efn

(0)| ≤ r, Lemma 3 and conformal naturality of the Douady–
Earle extension imply that Egn

(0) = eiϕnhan
(Efn

(0)) converges to ei(ϕ−θ) as n → ∞.
This contradiction shows that a0 ∈ ∆ and that fn = h−an

◦ e−iϕngn(z) converges to
f0(z) := h−a0e

−iϕg(z) ∈ AT (K). Hence, by Lemma 1, f0 ∈ AT (K, r), and thus AT (K, r)
is compact in AT (K). q.e.d.

In view of Lemma 2, we can easily obtain the following:

Corollary 1. For every K ≥ 1 and r, 0 ≤ r < 1, the family AT (K, r) is equicontin-
uous on T .

Corollary 2. Let K≥1 and let F be a family in AT (K). Then F is a normal family
(resp. compact) in AT (K) if and only if there exists some r, 0 ≤ r < 1, such that F is a
subfamily (resp. a closed subfamily) of AT (K, r).

For every z ∈ T and f ∈ AT (K), K ≥ 1, we denote by θf (z) the angle of the arc
on T directed counterclockwise from f(z) to f(−z). In this sense θf (z) = arg f(−z)

f(z) and
we note that θf (−z) = 2π − θf (z). By continuity of f , there exists zf ∈ T such that

(1.7) θf (zf ) = min
z∈T

θf (z).

For every r, 0 ≤ r < 1, we define

(1.8) θ(K, r) := inf
f∈AT (K,r)

min
z∈T

θf (z).

Lemma 4. For every K ≥ 1 and r, 0 ≤ r < 1, there exist f0 ∈ AT (K, r) and z0 ∈ T
such that θf0(z0) = θ(K, r).
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P r o o f. By (1.7) and (1.8) there exist fn ∈ AT (K, r), and zn ∈ T satisfying

(1.9) θ(K, r) = lim
n→∞

θfn
(zn)

and

(1.10) θfn
(zn) = min

z∈T
θfn

(z).

By Theorem 1, we may assume that fn → f0 ∈ AT (K, r) in AT (K) and that zn → z0 ∈ T
as n→∞. Then

(1.11) lim
n→∞

θfn
(zn) = θf0(z0)

and

(1.12) lim
n→∞

θfn
(zf0) = θf0(zf0).

By (1.10) θfn
(zf0) ≥ θfn

(zn), then by (1.11) and (1.12) we obtain

(1.13) θf0(zf0) ≥ θf0(z0).

By (1.7), (1.13), (1.9) and (1.11) we then have θf0(zf0) = θf0(z0) = θ(K, r). q.e.d.

Lemma 5. For every r, 0 ≤ r < 1, the correspondence K 7→ θ(K, r) is lower semi-
continuous in 1 ≤ K < ∞. Moreover , the function θ(K, 0) is continuous at K = 1 and
limK→1 θ(K, r) = θ(1, 0) = π.

P r o o f. Let {Kn}, Kn ≥ 1, be a sequence converging to K0 as n → ∞. Then, by
Lemma 4, there exist fn ∈ AT (Kn, r) and zn ∈ T such that θfn

(zn) = θ(Kn, r). By
Theorem 1, we may assume that fn → f0 ∈ AT (K0, r) and that zn → z0 ∈ T as n→∞.
In a way similar to the proof of Lemma 4, we have

(1.14) lim
n→∞

θ(Kn, r) = θf0(z0) = θf0(zf0) ≥ θ(K0, r).

Therefore, limK→K0
θ(K, r) ≥ θ(K0, r). Next, suppose r = 0. Then AT (1, 0) = { fθ : 0 ≤

θ < 2π }, where fθ(z) = eiθz. In particular, θf (z) = π for every f ∈ AT (1, 0) and every
z ∈ T . Hence, θ(1, 0) = π and (1.14) implies that limKn→1 θ(Kn, 0) = θ(1, 0) = π. q.e.d.

Following Krzyż [K], we say that f ∈ AT is ρ-quasisymmetric, ρ ≥ 1, if the inequality

1ρ ≤ |f(I1)|/|f(I2)| ≤ ρ

holds for each pair of open, adjacent arcs I1, I2 ⊂ T such that 0 < |I1| = |I2| ≤ π, where
| · | denotes the Lebesgue measure on T .

Denote by QT (ρ) the family of all ρ-quasisymmetric functions in AT . It is worth while
to mention that QT (ρ) is not conformally invariant and that quasisymmetric functions
of T represent non-uniformly the boundary values of quasiconformal automorphisms of ∆
(see [Z2]). This and other properties makes ρ-quasisymmetry of T not closely related to
quasiconformality of ∆, and technically similar to ρ-quasisymmetry of R only.

For K ≥ 1, we recall the distortion function

λ(K) := Φ2
K(1/

√
2)/Φ2

1/K(1/
√

2),

where ΦK is given by (1.2). By Theorem 2.9 from [Z2, Chap. II], (1.7), (1.8) and Lemma 5,
we obtain the following:
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Theorem 2. For every K ≥ 1 and r, 0 ≤ r < 1, there exists a constant ρ =
ρ(K, r) such that AT (K, r) ⊂ QT (ρ) and ρ ≤ λ(K)cot2(θ(K, r)/4). In particular ,
limK→1 ρ(K, 0) = 1.

2. The maximal dilatation of the Douady–Earle extension of f ∈ AT (K).
Let K ≥ 1 and f ∈ AT (K). We note that by (0.1) f ∈ AT (K, 0) if and only if f satisfies∫

T

f(ζ)|dζ| = 0.

If f ∈ AT (K, 0) then there exist a = a(f) ∈ ∆ and ϕ = ϕ(f) ∈ R such that

(2.1) eiϕha ◦ f ∈ A0
T (K),

where ha is the function defined by (1.5), whereas a(f) and eiϕ(f) are uniquely determined
by (2.1).

Define

(2.2) C(K) = sup
f∈A0

T
(K)

sup
ζ∈T

|ζ − Ef (0)|
|f(ζ)− Ef (0)|

.

Lemma 6. For every K ≥ 1, there exist fK ∈ A0
T (K) and ζK ∈ T such that

C(K) =
|ζK − EfK

(0)|
|fK(ζK)− EfK

(0)|
.

Furthermore, C(K) is increasing and right continuous in 1 ≤ K < ∞. In particular ,
C(K) tends to 1 as K → 1.

P r o o f. For f ∈ A0
T (K) set

(2.3) l(f) = sup
ζ∈T

|ζ − Ef (0)|
|f(ζ)− Ef (0)|

.

By the continuity of the correspondence ζ 7→ |ζ−Ef (0)|
|f(ζ)−Ef (0)| , there exists ζ = ζ(f) ∈ T

such that the supremum in (2.3) is attained at this point. Hence, by (2.2) there exist
fn ∈ A0

T (K) and ζn = ζ(fn) satisfying

(2.4) lim
n→∞

l(fn) = C(K)

and

(2.5) l(fn) =
|ζn − Efn

(0)|
|fn(ζn)− Efn

(0)|
.

Taking a subsequence, if necessary, we may assume that ζn → ζ0, and that fn → f0 ∈
A0
T (K) with respect to the supremum norm as n→∞. Then, by Lemma 1, Efn

(0) tends
to Ef0(0) as n→∞. Hence, by (2.4) and (2.5), we have

(2.6) C(K) =
|ζ0 − Ef0(0)|
|f0(ζ0)− Efo

(0)|
.

By (2.2) the function C(K) is clearly increasing. Let K0 ≥ 1 be fixed and let Kn ↘ K0.
By (2.6), there exist ζKn

∈ T and fKn
∈ A0

T (Kn) such that

(2.7) C(Kn) =
|ζKn

− EfKn
(0)|

|fKn(ζKn)− EfKn
(0)|

.
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We may assume that fKn
tends to fI ∈ A0

T (K0), and ζKn
tends to ζI ∈ T as n → ∞.

From (2.7) it follows that

lim
n→∞

C(Kn) =
|ζI − EfI

(0)|
|fI(ζI)− EfI

(0)|
≤ C(K0).

This implies that limn→∞ C(Kn) = C(K0). Clearly, C(1) = 1 and thus limK→1 C(K) =
1. q.e.d.

For K ≥ 1, define m(K) = supf∈AT (K,0) |a(f)| and

(2.8) M(K) = max
0≤t≤1

[Φ2
K(
√
t)− t]

where a(f) is defined by (2.1) and ΦK is given by (1.2). Introduced by the second author
functional M(K) was investigated in relation with certain functionals defined on families
of K-quasihomographies of the real line and the unit circle T (see [Z1]). Surprisingly to
both the authors, the following equality

M(K) = 2Φ2√
K

(1/
√

2)− 1

was obtained by Partyka [P3]. This is a one of the truly few final results on special
functions in quasiconformal theory, which may have some further consequences.

By Lemma 2.1 from [Z2, Chap. II] we have

Lemma 7. For each K ≥ 1 and f ∈ A0
T (K) the following inequality

(2.9) |f(z)− z| ≤ 4√
3
M(K)

holds for every z ∈ T .

Now we prove

Lemma 8. For every K ≥ 1, we have m(K) < 1. Moreover ,

(2.10) m(K) ≤ 4√
3
M(K)C(K).

In particular , m(K)→ 0 as K → 1.

P r o o f. If f ∈ AT (K, 0), then g := eiϕ(f)ha(f) ◦ f ∈ A0
T (K). Furthermore, by (0.2),

we have Eg(0) = −a(f)eiϕ(f), and thus |Eg(0)| = |a(f)|. Conversely, if g ∈ A0
T (K) and

Eg(0) = b, then hb ◦ g ∈ AT (K, 0). Thus, the equality g = h−b ◦ hb ◦ g implies that
|Eg(0)| = |b| = | − b| = |a(hb ◦ g)|. The above observation shows that

(2.11) m(K) = sup
f∈A0

T
(K)

|Ef (0)|.

By Lemma 1, the correspondence f 7→ |Ef (0)| is continuous on AT . Since A0
T (K) is

compact in AT , then (2.11) implies that there exists some fK ∈ A0
T (K) such that m(K) =

|EfK
(0)|. Since µ−1(1) = 1/

√
2, by (2.8), (2.9), the last equality and Lemma 1, we then

see that m(K) < 1 and that m(K) tends to 0 as K → 1.
Let f ∈ A0

T (K) and put a = Ef (0). We then obtain

(2.12)
∫
T

ζ − a
1− aζ

|dζ|+
∫
T

(
f(ζ)− a
1− af(ζ)

− ζ − a
1− aζ

)
|dζ| = 0.
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Since ∫
T

ζ − a
1− aζ

|dζ| = 1
i

∫
T

ζ − a
ζ(1− aζ)

dζ = −2πa,

it follows from (2.12) that

(2.13) |a| ≤ 1
2π

∫
T

ω(ζ)
(1− |a|2)
|ζ − a|2

|dζ|,

where ω(ζ) = |f(ζ)−ζ||ζ−a|
|f(ζ)−a| . The right-hand side of (2.13) is equal to W (a), where W (z)

is a harmonic extension of w(ζ) into ∆. By (2.9) and (2.13), we thus have

|a| ≤ max
ζ∈T
|ω(ζ)| = max

ζ∈T
|f(ζ)− ζ| |ζ − a|

|f(ζ)− a|
≤ 4√

3
M(K)C(K).

This, in view of (2.11), gives (2.10). q.e.d.
For f ∈ AT (K, 0), we put

A = A(f) =
1

2π

∫
T

ζf(ζ) |dζ|,

B = B(f) =
1

2π

∫
T

ζf(ζ) |dζ|,

C = C(f) =
1

2π

∫
T

f(ζ)2 |dζ|

and

(2.14) S(K) =
4√
3
M(K)C(K).

Lemma 9. For each K ≥ 1 and f ∈ AT (K, 0) the following inequalities hold ;

(2.15) |B| ≤ S(K), |C| ≤ 2S(K) + S(K)2, |A| ≥ 1− S(K)2 − S(K).

Moreover , the third estimate is essential for K ≥ 1 satisfying S(K) < (
√

5− 1)/2.

P r o o f. Let f ∈ AT (K, 0) and let g = eiϕ(f)ha(f) ◦ f , b = −a(f)eiϕ(f). Then, g ∈
A◦T (K), Eg(0) = b, and we see that

eiϕ(f)f(ζ) = [g(ζ)− b]/[1− bg(ζ)].

As in the proof of Lemma 8, we have

|B| = 1
2π

∣∣∣∣∫
T

ζeiϕ(f)f(ζ) |dζ|
∣∣∣∣ =

1
2π

∣∣∣∣∫
T

ζ

(
g(ζ)− b
1− bg(ζ)

)
|dζ|

∣∣∣∣
=

1
2π

∣∣∣∣∫
T

ζ

(
g(ζ)− b
1− bg(ζ)

− ζ − b
1− bζ

)
|dζ|

∣∣∣∣ ≤ 1
2π

∫
T

|g(ζ)− ζ||1− bζ|
|1− bg(ζ)|

· (1− |b|2)
|ζ − b|2

|dζ|

≤ 4√
3
M(K)C(K) = S(K).

Similarly, by Lemma 8, we obtain

|C| = 1
2π

∣∣∣∣∫
T

ei2ϕ(f)f(ζ)2 |dζ|
∣∣∣∣ =

1
2π

∣∣∣∣∣
∫
T

{(
g(ζ)− b
1− bg(ζ)

)2

−
(
ζ − b
1− bζ

)2
}
|dζ|+ 2πb2

∣∣∣∣∣
≤ |b|2 +

2
2π

∫
T

∣∣∣∣ g(ζ)− b
1− bg(ζ)

− ζ − b
1− bζ

∣∣∣∣ |dζ| ≤ S(K)2 + 2S(K).
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Since
1

2π

∫
T

ζ

(
ζ − b
1− bζ

)
|dζ| = 1

2πi

∫
T

ζ − b
(1− bζ)ζ2

dζ = 1− |b|2,

we have

|A| = 1
2π

∣∣∣∣∫
T

ζeiϕ(f)f(ζ) |dζ|
∣∣∣∣ =

1
2π

∣∣∣∣∫
T

ζ

(
g(ζ)− b
1− bg(ζ)

)
|dζ|

∣∣∣∣
=

1
2π

∣∣∣∣∫
T

ζ

(
g(ζ)− b
1− bg(ζ)

− ζ − b
1− bζ

)
|dζ|+ 2π(1− |b|2)

∣∣∣∣
≥ 1− |b|2 − 1

2π

∫
T

∣∣∣∣ g(ζ)− b
1− bg(ζ)

− ζ − b
1− bζ

∣∣∣∣ |dζ| ≥ 1− S(K)2 − S(K).q.e.d.

R e m a r k 1. For K ≥ 1 satisfying S(K) < (
√

5− 1)/2, we have |A| > 0.

3. An estimation of the dilatation. For K ≥ 1 we define

k∗(K) = sup
f∈AT (K,0)

I(f),

where

I(f) =
{

2|B(f)|+ |C(f)|2(|A(f)| − |B(f)|)
|A(f)|+ |B(f)|

}1/2

.

Since f 7→ I(f) is continuous on AT and AT (K, 0) is a compact in AT (K) hence by
Theorem 1, we infer that there exists some fK ∈ AT (K, 0) such that k∗(K) = I(fK).
Moreover, |A(f)| > |B(f)| holds for every f ∈ AT ; because f is sense-preserving (see
[DE, Lemma 3]). We thus see that k∗(K) < 1.

Theorem 3. For each K ≥ 1 and f ∈ AT (K) the Douady–Earle extension Ef is
quasiconformal and its complex dilatation µEf

satisfies ‖µEf
‖∞ ≤ k∗(K). Moreover , if

K ≥ 1 is as close to 1, so that S(K) < (
√

5− 1)/2 holds, then the following estimate

(2.16) k∗(K) ≤
{

2S(K)
1− S(K)2

+ (2S(K) + S(K)2)2
}1/2

holds, where S(K) is the number defined by means of (2.2), (2.8) and (2.14). In partic-
ular , ‖µEf

‖∞ → 0 as K → 1.

P r o o f. Take any z0 ∈ ∆ and let w0 = Ef (z0). Put f̃ = hw0 ◦ f ◦ h−z0 , where
hη(ζ) = ζ−η

1−ηζ . By (0.2) we have Ef̃ = hw0 ◦Ef ◦h−z0 and therefore Ef̃ (0) = 0, by which
f̃ ∈ AT (K, 0). Moreover, we easily have

(2.17) |µEf
(z0)| = |µEf̃

(0)|.
Let k0 = sup |µEg

(0)|, where the supremum is taken over all g ∈ AT (K, 0). By (2.17) it
suffices to show that k0 ≤ k∗(K).

Take any g ∈ AT (K, 0). Then, as in [DE], we have

(2.18) |µEg
(0)| = |AC +B|/|A+ CB|,

where A = A(g), B = B(g) and C = C(g). By (2.18), we obtain

1− |µEg
(0)|2 =

(1− |C|2)(|A|2 − |B|2)
|A+ CB|2

≥ (1− |C|2)
|A| − |B|
|A|+ |B|
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= 1−
(

2|B|+ |C|2(|A| − |B|)
|A|+ |B|

)
.

Thus, |µEg (0)| ≤ I(g) ≤ k∗(K) and hence k0 ≤ k∗(K).
Next we show the latter part of the theorem. Let K ≥ 1 satisfy S(K) < (

√
5− 1)/2

which is equivalent to 1−S(K)2−S(K) > 0. If g ∈ AT (K, 0), then, by (2.15) in Lemma 9,
we see that

I(g)4 ≤
{ 2|B(g)|/|A(g)|

1 + |B(g)|/|A(g)|
+ |C(f)|2

}1/2

≤
{ 2S(K)/(1− S(K)2 − S(K))

1 + S(K)/(1− S(K)2 − S(K))
+

(2S(K) + S(K)2)2
}1/2

=
{ 2S(K)

1− S(K)2
+ (2S(K) + S(K)2)2

}1/2

.

q.e.d.

Corollary 3. Under the hypotheses of Theorem 3 , suppose that K ≥ 1, is so close
to 1 that the following inequality

(2.19) (2S(K) + S(K)2)2 ≤ 2S(K)
1− S(K)2

<
1
2

holds, i.e. if 0 ≤ S(K) <
√

5− 2. Then the maximal dilatation K(Ef ) of Ef satisfies

(2.20) K(Ef ) ≤ 1 + S(K)1/2g(S(K))
1− S(K)1/2g(S(K))

, where g(S) =
(

4
1− S2

)1/2

.
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