GENERALIZATIONS OF COMPLEX ANALYSIS BANACH CENTER PUBLICATIONS, VOLUME 37 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

TRANSFER OF ESTIMATES FROM CONVEX TO STRONGLY PSEUDOCONVEX DOMAINS IN \mathbb{C}^N

ADIB A. FADLALLA

Department of Mathematics Faculty of Science, Cairo University Giza, Egypt

Abstract. In this article, estimates of the hyperbolic and Carathéodory distances in domains $G \subset \mathbb{C}^n$, $n \geq 1$, are obtained. They are equally valid for the Kobayashi distance.

1. Introduction. In Section 2, general definitions and notions are given, upper and lower estimates of the hyperbolic distance $C_{E_r}(z, w)$, $z, w \in E_r$ in the disc $E_r \subset \mathbb{C}$ with radius r are obtained, which show that these estimates depend mainly on mutual ratios of the distances $d(z, \partial E_r)$, $d(w, \partial E_r)$ of z, w from the boundary ∂E_r of E_r and their distance apart |z - w|.

These results are used in Section 3 to obtain estimates in the Euclidean ball $B_r \subset \mathbb{C}^n$, n > 1, using the idea that: if $z, w \in B_r$ then the plane section D of B_r by the 1-dimensional analytic complex plane through z, w is a metric plane in the terminology of Carathéodory [2] or a geodesic in the terminology of Vesentini [7]. Sufficient and necessary conditions for the boundedness of $C_{B_r}(z, w)$ are obtained. An example shows that the necessary and sufficient condition for $E_r \subset \mathbb{C}$ is only sufficient but not necessary in $B_r \subset \mathbb{C}^n, n > 1$.

In Section 4, it is shown that it is possible to use chains of balls to get estimates of $C_G(z, w)$ in a domain $G \subset \mathbb{C}^n$, under certain conditions; which are easily applied if G is convex. The estimates is then transfered from convex domains to strongly pseudoconvex domains by means of local biholomorphic maps [1, page 132]. A sufficient condition (but not necessary) for the boundedness of $C_G(z, w)$, $z, w \in G$ is obtained. An example is given.

Finally, in section 5, the continuous extension of biholomorphic maps between strongly pseudoconvex domains with C^2 boundaries is proved [cf. 8].

¹⁹⁹¹ *Mathematics Subject Classification*: Primary 32F15; Secondary 32H15. The paper is in final form and no version of it will be published elsewhere.

^[85]

2. Basic notions

DEFINITIONS:

1- Let $G \subset \mathbb{C}^n$ be a domain G is called *smooth* if for every $z_o \in \partial G$ (the boundary of G) there exist a neighbourhood U of z_o and a real valued function $f \in C^2(U)$ such that

$$G \cap U = \{z \in U : f(z) < 0\}$$
 and $df \neq 0$ in $G \cap U$.

- 2- In definition (1), the 1-dimensional real inward normal to ∂G at z_o , will be denoted by N_{z_o} .
- 3- If $z = (z_1, \dots, z_n) \in \mathbb{C}^n$, then $|z| = \sqrt{|z_1|^2 + \dots + |z_n|^2}$.
- 4- If in definition (1), $z' \in G$, then $d(z', \partial G)$ denotes the distance of z' from ∂G . Obvious there is a point $z'_o \in \partial G$ such that $z' \in N_{z'_o}$, z'_o will be called the *projection of* z' on ∂G .
- 5- Let $G \subset \mathbb{C}^n$ be a domain, $U \subset \mathbb{C}^n$, then $\partial G \cap U$ will be denoted by β_U .
- 6- If z, $w \in \mathbb{C}^n$, then the 1-dimensional complex analytic plane through z, w will be denoted by P(z, w).
- 7- Let $B_r \subset \mathbb{C}^n$ be the ball $|z| < r, z \in \mathbb{C}^n$. Let $G \subset \mathbb{C}^n$ be a smooth domain and $z_o \in \partial G$, then B_r when placed tangential to ∂G at z_o , with N_{z_o} lying on a diameter will be denoted by $B_r^{(z_o)}$. If $B_r^{(z_o)} \subset G$ for all $z_o \in \partial G$, then B_r is called an *admissible ball to G*. If $G \subset \mathbb{C}^n$ is smooth, then there exist always admissible balls B_r .

If z_o has a neighbourhood U such that $B_r^{(w)} \subset G$ for all $w \in \beta_U$, then B_r is called an *admissible ball to* G at z_o .

8- Let $G \subset \mathbb{C}^n$, $z, w \in G$; the Carathéodory and Kobayashi Distances in G will be denoted by $C_G(z, w)$ and $K_G(z, w)$ respectively.

PROPOSITION 2.1. Let D, $D_1 \subset \mathbb{C}^n$ be domains, $D' \subset \subset D$, $D'_1 \subset \subset D_1$ and ϕ a biholomorphic map of D onto D_1 , $\phi(D') = D'_1$, $z^{(j)} \in D'$, j = 1, 2 and $\phi(z^{(j)}) = w^{(j)} \in D'_1$, $j = 1, 2, \ell_1 = |z^{(1)} - z^{(2)}|$, $\ell_2 = |w^{(1)} - w^{(2)}|$. If the line segments

$$L_1 = \overline{z^{(1)} \overline{z^{(2)}}}, \ L_2 = \overline{w^{(1)} \overline{w^{(2)}}}, \ L_1 \subset D', \ L_2 \subset D'_1$$

then, there exist $0 < \alpha < \beta < +\infty$ such that $\alpha < (\ell_1/\ell_2) < \beta$.

Proof. Let $v = z^{(2)} - z^{(1)} = (v_1, \dots, v_n), \ \gamma = \phi(L_1), \ \phi = (\phi_1, \dots, \phi_n), \ \ell'_2 = \text{length}$ of the curve γ , $(d\phi_j, v) = \sum_{\mu=1}^n \frac{\partial \phi_j}{\partial z_\mu} v_\mu$. Since ϕ is regular in D and $v \neq 0, \ |d\phi_j|_{D'} \neq 0, \ j = 1, \dots, n$ and $(d\phi_j, v), \ j = 1, \dots, n$, do not vanish simultaneously. Let $M = \max_{D'} \{|d\phi_j|, \ j = 1, \ 2, \dots, n\}$. Now, $|(d\phi_j, v)| \leq |d\phi_j| \ . |v| \leq M\ell_1$, thus

$$\ell_2 \le \ell'_2 = \int_0^1 \sqrt{\sum_{j=1}^n |(d\phi_j, v)|^2} dt \le \sqrt{n} M \ell_1 = k_1 \ell_2$$

Similarly, there exist $k_2 > 0$ such that $\ell_1 \leq k_2 \ell_2$, thus, $1/k_1 \leq \ell_1/\ell_2 \leq k_2$.

PROPOSITION 2.2. In Proposition 2.1, let $H \subset D'$, $H_1 \subset D'_1$ be smooth hypersurfaces such that $H_1 = \phi(H)$. Furthermore, let $z \in D'$, $w = \phi(z)$, $n_1 = d(z, H)$, $n_2 = d(w, H_1)$, then $1/k_1 \leq (n_1/n_2) \leq k_2$ provided that the projection of z on H is \in H and projection of w on H_1 is \in H_1 .

Proof. Let $z_o \in H$ and $w_o \in H_1$ be such that $n_1 = |z_o - z|, n_2 = |w_o - w|$. Let $\phi(z_o) = w'_o \in H_1, \ \phi^{-1}(w_o) = z'_o \in H, \ \ell_1 = |z - z'_o|, \ \ell_2 = |w - w_o|$. From Proposition 2.1, we have

$$\frac{1}{k_1} \leq \frac{n_1}{\ell_2} \leq \frac{n_1}{n_2} \text{ and } k_2 \geq \frac{\ell_1}{n_2} \geq \frac{n_1}{n_2}$$

PROPOSITION 2.3. Let $E_r \subset \mathbb{C}$ be the disc |z| < r, and $z, w \in E_r$, then

$$C_{E_r}(z, w) = \log\left[\sqrt{1 + \frac{r^2}{(2r - r_1)(2r - r_2)}} \cdot \frac{R^2}{r_1 r_2} + \frac{r}{\sqrt{(2r - r_1)(2r - r_2)}} \frac{R}{\sqrt{r_1 r_2}}\right]$$

where $R = |z - w|, r_1 = d(z, \partial E_r), r_2 = d(w, \partial E_r).$

COROLLARY 2.1. Obviously,

$$\frac{1}{4} < \frac{r^2}{(2r-r_1)(2r-r_2)} \le 1$$

Thus

$$\log\left[\sqrt{1+\frac{1}{4}\frac{R^2}{r_1r_2}} + \frac{1}{2}\frac{R}{\sqrt{r_1r_2}}\right] < C_{E_r}(z, w) \leq \log\left[\sqrt{1+\frac{R^2}{r_1r_2}} + \frac{R}{\sqrt{r_1r_2}}\right],$$

which are inequalities independent on r, they depend only on ratios (R/r_j) , j = 1, 2

COROLLARY 2.2. Let $\{z_{\nu}\}_{\nu=1}^{\infty}$, $\{w_{\nu}\}_{\nu=1}^{\infty} \subset E_r$. The necessary and sufficient conditions for $\{C_{E_r}(z_{\nu}, w_{\nu})\}$ to be bounded, is that there exists

$$0 \leq M < +\infty$$
 such that $\frac{R_{\nu}^2}{r_{\nu}r_{\nu}'} \leq M$ for all ν

where $R_{\nu} = |z_{\nu} - w_{\nu}|, \ r_{\nu} = d(z_{\nu}, \ \partial E_r), \ r'_{\nu} = d(w_{\nu}, \ \partial E_r).$

The condition $(R_{\nu}^2/r_{\nu}r_{\nu}') \leq M$ is equivalent to $(R_{\nu}/r_{\nu}) \leq M_1 < +\infty$ and $(R_{\nu}/r_{\nu}') \leq M_2 < +\infty$, for all ν .

3. The Euclidean ball

THEOREM 3.1. Let $B_r \subset \mathbb{C}^n$, n > 1, be the ball |z| < r, $z \in \mathbb{C}^n$. If $z, w \in B_r$, then $C_{B_r}(z, w) = C_D(z, w)$, where D is the disc $P(z, w) \cap B_r$ (see definition 6).

Proof. Let $z = (z_1, \dots, z_n) \in \mathbb{C}^n$. Obvious if $z' = (z'_1, 0, \dots, 0), z'' = (z''_1, 0, \dots, 0), |z'_1| < r, |z''_1| < r$ and D' be the disc $|z_1| < r, z_j = 0, j = 2, \dots, n$. Then

$$C_{B_r}(z', z'') = C_{D'}(z'_1, z''_1)$$

Now, there exists [3] an automorphism of B_r , which maps D conformally on D', which proves the theorem.

From Proposition 2.3, Corollaries 2.1 and 2.2 we get:

Corollary 3.1.

$$C_{B_r}(z, w) = \log\left(\sqrt{1 + \frac{\rho^2}{(2\rho - \rho_1)(2\rho - \rho_2)}} \cdot \frac{R^2}{\rho_1 \rho_2} + \frac{\rho}{\sqrt{(2\rho - \rho_1)(2\rho - \rho_2)}} \cdot \frac{R}{\sqrt{\rho_1 \rho_2}}\right)$$

where $\rho = radius \ of \ D, \ \rho_1 = d(z, \ \partial D), \ \rho_2 = d(w, \ \partial D) \ and \ \frac{1}{4} < \frac{\rho^2}{(2\rho - \rho_1)(2\rho - \rho_2)} \leq 1.$ Thus

$$\log\left(\sqrt{1 + \frac{1}{4}\frac{R^2}{\rho_1\rho_2}} + \frac{1}{2}\frac{R}{\sqrt{\rho_1\rho_2}}\right) < C_{B_r}(z, w) \le \log\left(\sqrt{1 + \frac{R^2}{\rho_1\rho_2}} + \frac{R}{\sqrt{\rho_1\rho_2}}\right)$$

COROLLARY 3.2. Let $\{z_{\nu}\}_{\nu=1}^{\infty}$, $\{w_{\nu}\}_{\nu=1}^{\infty} \subset B_r$; the necessary and sufficient condition for $\{C_{B_r}(z_{\nu}, w_{\nu})\}$ to be bounded is that there exists

$$0 \le M < +\infty$$
 such that $\frac{R_{\nu}^2}{\rho_{\nu}\rho_{\nu}'} \le M$

where $R_{\nu} = |z_{\nu} - w_{\nu}|, \ \rho_{\nu} = d(z_{\nu}, \ \partial D_{\nu}), \ \rho_{\nu}' = d(w_{\nu}, \ \partial D_{\nu}), \ or \ equivalently \ (R_{\nu}/\rho_{\nu}) \leq d(w_{\nu}, \ \partial D_{\nu})$ $M' < +\infty, \ \rho_{\nu} \leq \rho'_{\nu}, \ where \ D_{\nu} = P(z_{\nu}, \ w_{\nu}) \cap B_r.$

(Notice that $\rho_{\nu} + R_{\nu} \ge \rho'_{\nu}, \ \rho'_{\nu} + R_{\nu} \ge \rho_{\nu}$).

COROLLARY 3.3. From Corollary 3.1, it follows that

$$C_{B_r}(z, \ \nu) = \log\left(\sqrt{1 + \frac{\rho}{(2r - r_1)(2r - r_2)}} \cdot \frac{R^2}{r_1 r_2} + \frac{\rho}{\sqrt{(2r - r_1)(2r - r_2)}} \cdot \frac{R}{\sqrt{r_1 r_2}}\right)$$

here $r_1 = d(z, B_r), \ r_2 = d(w, \partial B_r), \ It is obvious that$

where $r_1 = d(z, B_r), r_2 = d(w, \partial B_r)$. It is obvious that

$$0 < \frac{\rho^2}{(2r-r_1)(2r-r_2)} \le 1$$

Thus,

$$C_{B_r}(z, w) \leq \log\left(\sqrt{1 + \frac{R^2}{r_1 r_2}} + \frac{R}{\sqrt{r_1 r_2}}\right).$$

COROLLARY 3.4. In Corollary 3.2, let $r_{\nu} = d(z_{\nu}, \partial B_r), r'_{\nu} = d(w_{\nu}, \partial B_r).$

From Corollary 3.3 we get:

For $\{C_{B_r}(z_{\nu}, w_{\nu})\}$ to be bounded it is sufficient that there exists $0 \leq M < +\infty$ such that $(R_{\nu}^2/r_{\nu}r_{\nu}') \leq M$ (or equivalently $(R_{\nu}/r_{\nu}) < M' < +\infty, r_{\nu} \leq r_{\nu}')$

COROLLARY 3.5. In Corollary 3.4, the condition $\frac{R^2\nu}{r_{\nu}r'_{\nu}} < M$ is sufficient but not necessary as is illustrated by the following example:

EXAMPLE. Let $B \subset \mathbb{C}^2$ be the unit ball $z_1\overline{z}_1 + z_2\overline{z}_2 < 1$ and $z^{(\nu)} = (\frac{1}{\nu}, b_{\nu}), w^{(\nu)} =$ $(\frac{1}{\nu}e^{\frac{\pi}{6}}, b_{\nu}), \ b_{\nu}^2 = 1 - \frac{4}{\nu^2}, \ \nu \ge 2.$ If $D_{\nu} = P(z^{(\nu)}, \ w^{(\nu)}) \cap B$, then the radius of $D_{\nu} = \frac{2}{\nu}$. Therefore

$$\rho_{\nu} = \frac{1}{\nu}, \quad \rho_{\nu}' = \frac{1}{\nu}, \quad R_{\nu} = \frac{1}{\nu}$$

Thus, $\frac{R_{\nu}^2}{\rho_{\nu}\rho_{\nu}'} = 1$ for all ν , hence $\{C_B(z^{(\nu)}, w^{(\nu)})\}$ is bounded. In fact, from Corollary 3.1:

$$C_B(z^{(\nu)}, w^{(\nu)}) \equiv \log(\frac{\sqrt{13}+2}{3}), \text{ for all } \nu.$$

While $r_{\nu} = r'_{\nu} < \frac{3}{\nu^2}$, thus,

$$\frac{R_{\nu}^2}{r_{\nu}r_{\nu}'} > \frac{\nu^2}{9} \rightarrow +\infty$$

as $\nu \to \infty$. Thus, the condition $\frac{R_{\nu}^2}{r_{\nu}r'_{\nu}} \leq M < +\infty$ is not necessary for $C_B(z^{(\nu)}, w^{(\nu)})$ to be bounded.

PROPOSITION 3.1. Let $z, w \in B_r, z, w \in N_{z_o}, z_o \in \partial B_r, |z - z_o| = r_1, |w - z_o| = r_2$ and $r_1 < r_2 < r$. Then

$$C_{B_r}(z, w) = -\frac{1}{2}\log r_1 + \frac{1}{2}\log r_2 + \Psi(z, w)$$

where $|\Psi(z, w)| \leq k < +\infty$

 $\Pr{\rm co\, f.}$ This is because N_{z_o} is a geodesic in B_r

THEOREM 3.2. Let $G \subset \mathbb{C}^n$ be a strongly pseudoconvex domain and $z_o \in \partial G$. If $z, w \in N_{z_o}, r_1 = |z - z_o|, r_2 = |w - z_o|, r_1 < r_2 < r$, where B_r is an admissible ball to G, then

$$C_G(z, w) = -\frac{1}{2}\log r_1 + \frac{1}{2}\log r_2 + \Psi(z, w)$$

where $|\Psi(z, w)| < k < +\infty$.

Proof. From Proposition 3.1:

$$C_G(z, w) \le C_{B_r}(z, w) = -\frac{1}{2}\log r_1 + \frac{1}{2}\log r_2 + \Psi(z, w)$$

$$|\Psi(z, w)| \le k_1 < +\infty.$$

In [4], it is proved that if $A \in G$ is fixed and $\xi \in G$, then

$$C_G(A, \xi) = -\frac{1}{2}\log r' + \phi(\xi)$$

where

$$|\phi(\xi)| \leq k' < +\infty \quad and \quad r' = d(\xi, \partial G)$$

Thus,

$$C_G(z, w) \geq C_G(A, z) - C_G(A, w)$$

 $= -\frac{1}{2}\log r_1 + \frac{1}{2}\log r_2 + (\phi(z) - \phi(w)).$

From (3.1) and (3.2), the result follows.

4. Domains in \mathbb{C}^n

THEOREM 4.1. Let $G \subset \mathbb{C}^n$ be a smooth domain and B_r , r > 0 be an admissible ball to G. Let $\{z_{\nu}\}, \{w_{\nu}\} \subset G$ such that:

(i) If L_{ν} is the line joining z_{ν} to w_{ν} , then $L_{\nu} \subset G$.

(ii) If
$$\xi \in L_{\nu}$$
, then $d(\xi, \partial G) \leq r$.

(iii) Let $\lambda_{\nu} = d(L_{\nu}, \partial G)$, and $\ell_{\nu} = length of L_{\nu}$. If $(\ell_{\nu}/\lambda_{\nu}) \leq k < +\infty$ for all ν . Then $\{C_G(z_{\nu}, w_{\nu})\}$ will be bounded $(\leq 2 (k+1) \log(\frac{\sqrt{6}+\sqrt{2}}{2}))$.

Proof. Let m = [k] + 1, [k] = integral part of k.

We divide L_{ν} into 2m equal parts, each of length $\leq \lambda_{\nu}/2$ by the points $z_{\nu} = x_o, x_1, \dots, x_{2m} = w_{\nu}$.

Thus,

$$R'_{j} = |x_{j+1} - x_{j}| \le \lambda_{\nu} / 2, \quad j = 0, \cdots, 2m - 1,$$

 $r'_{j} = d(x_{j}, \ \partial G) \ge \lambda_{\nu} , \quad r''_{j} = d(x_{j+1}, \ \partial B_{j}) \ge \frac{\lambda \nu}{2}$

(Since $(r''_j + R'_j \ge r'_j)$, where $B_j = B_r^{(x_j)}$. Thus

$$(R_j'^2/r_j'r_j'') \leq \frac{1}{2}$$

and thus from Corollary 3.3 we get

$$C_G(x_j, x_{j+1}) \leq C_{B_j}(x_j, x_{j+1}) \leq \log \frac{\sqrt{6} + \sqrt{2}}{2},$$

which proves the theorem.

THEOREM 4.2. Let $G \subset \mathbb{C}^n$ be a smooth convex domain $\{z_{\nu}\}_{\nu=1}^{\infty}$, $\{w_{\nu}\}_{\nu=1}^{\infty} \subset G$, $r_{\nu} = d(z_{\nu}, \ \partial G), \ r'_{\nu} = d(w_{\nu}, \ \partial G), \ \lim_{\nu \to \infty} \ z_{\nu} = z_o = \lim_{\nu \to \infty} \ w_{\nu}, \ R_{\nu} = |z_{\nu} - w_{\nu}|, \ if$ $r_{\nu} \leq r'_{\nu}, \ R_{\nu} \leq kr_{\nu}, \ 0 \leq k < +\infty \ (or \ equivalently \ \frac{R_{\nu}^2}{r_{\nu}r'_{\nu}} \leq M < +\infty) \ then,$

$$\{C_G(z_\nu, w_\nu)\}$$

is bounded by k'.

The condition $r_{\nu} \leq r'_{\nu}$ is not a restriction since $C_G(z_{\nu}, w_{\nu})$ is symmetric in z_{ν} and w_{ν} .

Proof. Let L_{ν} and r_{ν} be as in Theorem 4.1. Since G is convex, $r_{\nu} = d(L_{\nu}, \partial G)$. Obvious there exists ν_o such that $d(\xi, \partial G) < r$ for $\xi \in L_{\nu}, \nu \geq \nu_o$. Thus all the conditions of Theorem 4.1 are satisfied.

COROLLARY 4.1. Theorem 4.2 remains valid if B_r is an admissible ball to G at z_o and k' depends on k and r.

THEOREM 4.3. Let $G \subset \mathbb{C}^n$ be a smooth strongly pseudoconvex, $z_o \in \partial G$, $\{z_\nu\}_{\nu=1}^{\infty}$, $\{w_\nu\}_{\nu=1}^{\infty} \subset G$ be two sequences converging to z_o if $r_\nu = d(z_\nu, \partial G)$, $r'_\nu = d(w_\nu, \partial G)$, $R_\nu = |z_\nu - w_\nu|$. If $\frac{R_\nu^2}{r_\nu r'_\nu} \leq M < +\infty$ (or equivalently $r_\nu \leq r'_\nu$, $(R_\nu/r_\nu) \leq M_1 < +\infty$) then $\{C_G(z_\nu, w_\nu)\}$

$$\{C_G(z_\nu, w_\nu)\}$$

is bounded by $k_1 < +\infty$.

Proof. There exist [1. page 132] neighbourhoods U and U' of z_o , $U' \subset \subset U$ and a biholomorphic map $\phi: U \to W \subset \mathbb{C}^n$ such that $\phi(U' \cap G) = D$ and D is strictly convex.

Let $\phi(z_{\nu}) = z'_{\nu}$, $\phi(w_{\nu}) = w'_{\nu}$, $d(z'_{\nu}, \partial D) = \rho_{\nu}$, $d(w'_{\nu}, \partial D) = \rho'_{\nu}$, $R'_{\nu} = |z'_{\nu} - w'_{\nu}|$, then from Propositions 2.1, 2.2 there exists $0 < k < +\infty$ such that $\frac{R'^{2}_{\nu}}{\rho_{\nu}\rho'_{\nu}} \leq kM$. From Theorem 4.2, $\{C_{D}(z'_{\nu}, w'_{\nu})\}$ will be bounded. Since $C_{G}(z_{\nu}, w_{\nu}) \leq C_{D}(z'_{\nu}, w'_{\nu})$. The result follows.

We notice that k_1 depends only on M_1 and z_o .

As proved in Section 3, the condition $\frac{R_{\nu}^2}{r_{\nu}r_{\nu}'} \leq M < +\infty$, is not necessary.

THEOREM 4.4. If in Theorem 4.2, the condition $(R_{\nu}^2/r_{\nu}r_{\nu}') < M$ is replaced by $R_{\nu} \leq \lambda r_{\nu}$ and $(R_{\nu}/r_{\nu}') \rightarrow \infty$ as $\nu \rightarrow +\infty$, then

$$C_G(z_{\nu}, w_{\nu}) = -\frac{1}{2}\log r'_{\nu} + \frac{1}{2}\log r_{\nu} + \phi(z_{\nu}, w_{\mu}),$$

and

$$|\phi(z_{
u}, w_{
u})| \leq k < +\infty$$

 $\Pr{\text{oof.}}$ Let $A\in G$ be fixed. As in Theorem 3.2

$$C_G(z_{\nu}, w_{\nu}) \geq C_G(A, w_{\nu}) - C_G(A, z_{\nu})$$

(4.1)
$$= -\frac{1}{2}\log r'_{\nu} + \frac{1}{2}\log r_{\nu} + k_{\nu},$$

where $|k_{\nu}| \leq k$. Let w'_{ν} be the projection of w_{ν} on ∂G and $w''_{\nu} \in N_{w'_{\nu}}$ such that $r''_{\nu} = |w'_{\nu} - w''_{\nu}| = R_{\nu} + r_{\nu} > R_{\nu}$. Let $R'_{\nu} = |z_{\nu} - w''_{\nu}|$, then $R'_{\nu} \leq 2R_{\nu}$. Thus, $\frac{R'^{2}}{r_{\nu}r''_{\nu}} \leq 4\lambda$.

Thus, from Theorem 4.3, $\{C_G(w''_{\nu}, z_{\nu})\}$ is bounded < M. Therefore,

$$C_G(z_{\nu}, w_{\nu}) \leq C_G(z_{\nu}, w_{\nu}'') + C_G(w_{\nu}, w_{\nu}'')$$

$$\leq M - \frac{1}{2} \log r_{\nu}' + \frac{1}{2} \log(r_{\nu}' + R_{\nu}) + k_{\nu}' \quad \text{(from Theorem 3.2)}$$

(4.2)
$$\leq M - \frac{1}{2}\log r'_{\nu} + \frac{1}{2}\log 2R_{\nu} + k''_{\nu}, \leq M_{\nu} - \frac{1}{2}\log r'_{\nu} + \frac{1}{2}\log r_{\nu},$$

where $M_{\nu} < k_1$ for all ν .

From (4.1) and (4.2), we get the result.

THEOREM 4.5. In Theorem 4.4, if Condition $R_{\nu} \leq \lambda r_{\nu}$ is replaced by $(R_{\nu}/r_{\nu}) \rightarrow +\infty$ then, there exists a constant k such that

$$C_G(z_{\nu}, w_{\nu}) \leq -\frac{1}{2} \log r_{\nu} - \frac{1}{2} \log r'_{\nu} + \log(R_{\nu} + r_{\nu}) + k$$

for all ν .

Proof. Let z'_{ν} be the projection of z_{ν} on ∂G , $z''_{\nu} \in N_{z'_{\nu}}$ such that $|z'_{\nu} - z''_{\nu}| = r''_{\nu} = r_{\nu} + R_{\nu}$.

Then $z_{\nu}^{\prime\prime}$, w_{ν} satisfy conditions of Theorem 4.3

$$C_G(z_{\nu}'', w_{\nu}) = -\frac{1}{2}\log r_{\nu}' + \frac{1}{2}\log(r_{\nu} + R_{\nu}) + k_{\nu}$$

Also, from Theorem 3.2

$$C_G(z_{\nu}, z_{\nu}'') = -\frac{1}{2}\log r_{\nu} + \frac{1}{2}\log(r_{\nu} + R_{\nu}) + k_{\nu}'$$

where k_{ν} and k'_{ν} are bounded.

By the triangle axiom

$$C_G(z_{\nu}, w_{\nu}) \leq -\frac{1}{2}\log r_{\nu} - \frac{1}{2}\log r'_{\nu} + \log(r_{\nu} + R_{\nu}) + k.$$

COROLLARY 4.2. If $r_{\nu} \ge r'_{\nu}$ then $1 \le \frac{r_{\nu}+R_{\nu}}{r'_{\nu}+R_{\nu}} \le 2$, (since $r'_{\nu}+R_{\nu} \ge r_{\nu}$). Thus in Theorem 4.5, there exist $0 \le k' < +\infty$ such that

$$C_G(z_{\nu}, w_{\nu}) \leq -\frac{1}{2} \log r_{\nu} - \frac{1}{2} \log r'_{\nu} + \frac{1}{2} \log(r_{\nu} + R_{\nu})$$

(4.3) $+\frac{1}{2}\log(r_{\nu}'+R_{\nu})+k'$

which is the formula obtained before in [6].

COROLLARY 4.3. From Theorems 3.2, 4.3, 4.4, 4.5 and Corollary 4.2, we see that inequality (4.3) is valid for any two sequences $\{z_{\nu}\}, \{w_{\nu}\} \subset G$ converging to a point $z_{o} \in \partial G$ where G is a smooth strongly pseudoconvex domain, $(k' \text{ depends on } z_{o})$.

THEOREM 4.6 (a necessary condition). Let $G \subset \mathbb{C}^n$ be a smooth strongly pseudoconvex domain. Let $\{z_{\nu}\}_{\nu=1}^{\infty}$, $\{w_{\nu}\}_{\nu=1}^{\infty} \subset G$, for $\{C_G(z_{\nu}, w_{\nu})\}$ to be bounded, it is necessary that $0 < \ell_1 \leq \frac{r_{\nu}}{r_{\nu}'} \leq \ell_2 < +\infty$ where $r_{\nu} = d(z_{\nu}, \partial G), r_{\nu}' = d(w_{\nu}, \partial G)$.

Proof. Let $A \in G$ be a fixed point. Then [4]

$$C_G(A, z_{\nu}) = -\frac{1}{2}\log r_{\nu} + k(z_{\nu})$$

where $|k(z)| \le k_1 < +\infty$, for all $z \in G$.

Since,

$$C_G(z_{\nu}, w_{\nu}) \geq |C_G(A, z_{\nu}) - C_G(A, w_{\nu})|$$

we get the result.

EXAMPLE. We give an example to show that in any smooth strongly pseudoconvex domain $G \subset \mathbb{C}^n$, there exist sequences $\{z_\nu\}$, $\{w_\nu\} \subset G$ converging to a point $z_o \in \partial G$, $\lim_{\nu \to \infty} \frac{R_\nu}{r_\nu} = \lim_{\nu \to \infty} \frac{R_\nu}{r'_\nu} = +\infty$ and in spite of this $\{C_G(z_\nu, w_\nu)\}$ is bounded; i.e., the condition $\frac{R_\nu^2}{r_\nu r'_\nu} < k < +\infty$ is not necessary for the boundedness of $\{C_G(z_\nu, w_\nu)\}$.

We use the idea of the example given in Section 3. Let $B = B_r \subset \mathbb{C}^n$ be an admissible ball to $G, \zeta_o \in \partial G$ and $\{\zeta_\nu\}_{\nu=1}^{\infty} \subset \partial G$ converging to ζ_o .

Let $z_{\nu}, w_{\nu} \in B, z_{\nu} = \{\frac{r}{\nu}, b_{\nu}, 0, \dots, 0\}, w_{\nu} = \{\frac{r}{\nu}e^{i\frac{\pi}{6}}, b_{\nu}, 0, \dots, 0\}, \nu = 2, 3, \dots, b_{\nu}^2 = r^2 - \frac{4r^2}{\nu^2}.$

As in section 3, $C_B(z_\nu, w_\nu) = \log(\frac{\sqrt{13}+2}{3})$ for all ν .

Let z'_{ν} be the projection of z_{ν} onto ∂B . Let $B_{z'_{\nu}}$ be the ball B placed tangential to ∂G at ζ_{ν} with the point z'_{ν} coincident with ζ_{ν} such that the diameter of B through z'_{ν} , z_{ν} lie on $N_{\zeta_{\nu}}$. Let z_{ν} , w_{ν} coincide with z''_{ν} , $w'_{\nu} \in G$. Obvious $z''_{\nu} \to \zeta_o$ and $w'_{\nu} \to \zeta_o$. Now

$$|z_{\nu} - z_{\nu}'| = |\zeta_{\nu} - z_{\nu}''| = d(z_{\nu}, \ \partial B) = d(z_{\nu}'', \ \partial G) = r_{\nu},$$

and

$$R_{\nu} = |z_{\nu} - w_{\nu}| = |z_{\nu}'' - w_{\nu}|.$$

As proved in the example in section 3, $\frac{R_{\nu}}{r_{\nu}} \to +\infty$.

It is obvious that

$$C_G(z_{\nu}'', w_{\nu}') \leq C_B(z_{\nu}, w_{\nu}) = \log(\frac{\sqrt{13}+2}{3})$$

Let $r'_{\nu} = d(w'_{\nu}, \partial G)$. Since $C_G(z''_{\nu}, w'_{\nu})$ is bounded, then from Theorem 4.5, we get

$$0 < \ell_1 \leq \frac{r_{\nu}}{r'_{\nu}} \leq \ell_2 < +\infty$$

Since $(R_{\nu}/r_{\nu}) \to \infty$, then

$$(R_{\nu} / r'_{\nu}) \to +\infty$$

5. Continuous (topological) extensions of biholomorphic maps of strongly pseudoconvex domains

Definition 5.1.

Let $G\subset\subset \mathbb{C}^n$ be a smooth domain:

(i) Let z, $w \in G$, $r_1 = d(z, \partial G)$, $r_2 = d(w, \partial G)$. We define

$$\Psi_G(z, w) = -\frac{1}{2}\log r_1 - \frac{1}{2}\log r_2$$

and

$$T_G(z, w) = \Psi_G(z, w) - C_G(z, w)$$

(ii) Let $S = \{z_{\nu}\}_{\nu=1}^{\infty} \subset G$. S is called a *boundary sequence* if S has no limiting point in G. Furthermore, if $\lim_{\nu \to \infty} z_{\nu} = z_o \in \partial G$, S is called a *simple* boundary sequence.

Now, let G be strongly pseudoconvex, $\{z_{\nu}\}_{\nu=1}^{\infty}$, $\{w_{\nu}\}_{\nu=1}^{\infty} \subset G$ and $\lim_{\nu \to \infty} z_{\nu} = \lim_{\nu \to \infty} w_{\nu}$ = $z_o \in \partial G$, then from Corollary 4.3, we get

(5.1)
$$\lim_{\nu \to \infty} T_G (z_{\nu}, w_{\nu}) = +\infty$$

In [5], it is proved that if $z_{\nu} \to z_o \in \partial G$ and $w_{\nu} \to w_o \in \partial G$, $z_o \neq w_o$, there exists $\nu_o > 0$, such that

$$C_G(z_{\nu}, w_{\nu}) = -\frac{1}{2}\log r_{\nu} - \frac{1}{2}\log r'_{\nu} + \theta(z_{\nu}, w_{\nu}),$$

where $r_{\nu} = d(z_{\nu}, \partial G), r'_{\nu} = d(w_{\nu}, \partial G)$ and $|\theta(z_{\nu}, w_{\nu})| \le k < +\infty$ for all $\nu \ge \nu_o$. Thus,

(5.2).
$$|T_G(z_{\nu}, w_{\nu})| \leq k' \quad for \ all \ \nu$$

From (5.1) and (5.2), we see that if:

(i) $\{z_{\nu}\} \subset G$ is simple boundary sequence $\rightarrow z_o \in \partial G$,

(ii) $\{w_{\nu}\} \subset G$ is a boundary sequence then,

$$\lim_{\nu \to \infty} T_G(z_{\nu}, w_{\nu}) = +\infty,$$

if and only if $\{w_{\nu}\} \subset G$ is a simple boundary sequence $\rightarrow z_o$.

Now, let ϕ be a biholomorphic map of G onto another smooth strongly pseudoconvex domain G_1 , $\phi(z) = x \in G_1$, $r = d(z, \partial G)$, $\rho = d(x, \partial G_1)$, $A \in G$ be a fixed point and $\phi(A) = A'$. In [4], it is proved that

$$C_G(A, z) = -\frac{1}{2}\log r + k(z), \quad |k(z)| < k_1, \text{ for all } z \in G$$

$$C_{G_1}(A', x) = -\frac{1}{2}\log \rho + k'(x), \quad |k'(x)| < k'_1, \text{ for all } x \in G_1$$

Since

$$C_G(A, z) = C_{G_1}(A', x),$$

there exist $0 < \ell_1 < \ell_2 < +\infty$ such that $\ell_1 \le (r/\rho) \le \ell_2$ for all $z \in G$, $x \in G_1$.

Thus, if $w \in G$, $\phi(w) = y$

$$|\Psi_{G_1}(x, y) - \Psi_G(z, w)| < k_3 \quad for \ all \ z, \ w \in G,$$

Thus,

$$| [\Psi_{G_1}(x, y) - C_{G_1}(x, y)] - [\Psi_G(z, w) - C_G(z, w)] | < k_3$$

i.e., (5.3).

$$|T_{G_1}(x, y) - T_G(z, w)| < k_3$$

Now, let $\{z_{\nu}\} \subset G$ be any simple boundary sequence $\to z_o \in \partial G$, such that $\{x_{\nu} = \phi(z_{\nu})\}_{\nu=1}^{\infty} \subset G_1$ be also a simple boundary sequence $\to x_o \in \partial G_1$

Furthermore, let $\{w_{\nu}\}_{\nu=1}^{\infty} \subset G$ be any simple boundary sequence $\rightarrow z_o \in \partial G$. Thus, from (5.1)

$$\lim_{\nu \to \infty} T_G(z_{\nu}, w_{\nu}) = +\infty$$

From (5.3) if $y_{\nu} = \phi(w_{\nu})$, then

$$\lim T_{G_1}(x_\nu, y_\nu) = +\infty$$

Since $\{x_{\nu}\} \subset G_1$ is a simple boundary sequence $\to x_o$, then $\{y_{\nu}\}$ will be a simple boundary sequence $\to x_o$.

Doing the same thing with ϕ^{-1} , we see that if $\{y_{\nu}\}_{\nu=1}^{\infty} \subset G_1$ is any boundary sequence converging to x_o , then $\{w_{\nu} = \phi^{-1}(y_{\nu})\}_{\nu=1}^{\infty}$ will be also a simple boundary sequence converging to z_o . Thus if we define $\phi(z_o) = w_o$, we get the following theorem.

THEOREM 5.1. Any biholomorphic map of a strongly pseudoconvex domain $G \subset \mathbb{C}^n$ with a C^2 boundary onto a strongly pseudoconvex domain $G_1 \subset \mathbb{C}^n$ with a C^2 boundary, has a topological extension to be boundary.

References

- M. Abate, Iteration theory of holomorphic maps on taut manifolds, Italy: Mediterranean Press, 1989.
- [2] C. Carathéodory, Über eine spezielle Metrik, die in der Theorie der analytischen Funktionen auftritt, Atti Pontif. Accad. Sci. Nuovi Lincei 80 (1927), 135–141.
- [3] A. A. Fadlalla, On the group of automorphism of the Euclidean hypersphere, Mathematika 15 (1968), 193–198.
- [4] A. A. Fadlalla, On the boundary behaviour of the Carathéodory and Kobayashi distances in strongly pseudoconvex domains in \mathbb{C}^n , Proc. Int. Workshop in Wuppertal (1990), Aspects of Mathematics (1990), 111–114.
- [5] A. A. Fadlalla, The Carathéodory distance in strongly pseudoconvex domains, Math. Ann. 298 (1994), 141–144.
- [6] F. Forestneric, J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252.
- [7] E. Vesentini, Complex geodesic, Compositio Math. 44 (1981), 375–394.
- [8] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf den Rand bei beschränkten streng-pseudokonvexen Gebieten in \mathbb{C}^n , Math. Ann. **204** (1973), 239–261.