COLLOQUIUM MATHEMATICUM
 VOL. LXIX

ON PARTITIONING SIDON SETS WITH QUASI-INDEPENDENT SETS

BY
K. J. HARRISON (MURDOCH, WESTERN AUSTRALIA) AND L. THOMAS RAMSEY (HONOLULU, HAWAII)

Sidon subsets have been characterized by Pisier as having proportional quasi-independent subsets [8]. There remains the open problem of whether Sidon subsets of \mathbb{Z} must be finite unions of quasi-independent sets. Grow and Whicher produced an interesting example of a Sidon set whose Pisier proportionality was $1 / 2$ but the set was not the union of two quasi-independent sets [3]. On the other hand, the present paper provides probabilistic evidence in favor of an affirmative answer with a construction of random Sidon sets which borrows heavily from ideas of Professors Katznelson and Mallia$\operatorname{vin}[6,4,5]$. Katznelson provided a random construction of integer Sidon sets which, almost surely, were not dense in the Bohr compactifaction of the integers $[4,5]$. This paper presents a modification of that construction and emphasizes a stronger conclusion which is implicit in the earlier construction: almost surely, the random sets are finite unions of quasi-independent sets (also of N-independent sets, defined below). In this paper, random subsets of size $O\left(\log n_{j}\right)$ are chosen from disjoint arithmetic progressions of length n_{j} (the maximum density allowed for a Sidon set), with $n_{j} \rightarrow \infty$ fast enough and the progressions rapidly dilated as $j \rightarrow \infty$.

This paper concludes with several deterministic results. If every Sidon subset of $\mathbb{Z} \backslash\{0\}$ is a finite union of quasi-independent sets, then the required number of quasi-independent sets is bounded by a function of the Sidon constant. Analogs of this result are proved for all Abelian groups, and for other special Sidon sets (the N-independent sets). Throughout this paper, unspecified variables denote positive integers.

Definition. A subset $F \subset \mathbb{Z}$ is said to be N-independent if and only if, for all integers $\alpha_{x} \in[-N, N]$, with $\alpha_{x} \neq 0$ for at most finitely many x,

[^0]Key words and phrases: Sidon, quasi-independent, dissociate, N-independent.

$$
\sum_{x \in F} \alpha_{x} x=0 \rightarrow \sum_{x \in F}\left|\alpha_{x}\right|=0
$$

That is, among all linear relations with integer coefficients from $[-N, N]$, only the trivial relation holds. (This definition differs from that of J. Bourgain, for whom N-independence is a weaker form of quasi-independence.)

When $N=1$ such sets are called quasi-independent and are Sidon [8]; when $N=2$ they are called dissociate [7].

Theorem 1. Let $K \in \mathbb{R}^{+}$, let integers M_{j} and p_{j} satisfy

$$
\begin{equation*}
0 \leq p_{j} \leq K \log \left(j^{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j}>K \sum_{q<j} M_{q} q^{3} \log \left(q^{2}\right) \tag{2}
\end{equation*}
$$

and set Q_{j} equal to $M_{j} \cdot\left\{1, \ldots, j^{2}\right\}$. For each j, and each $i \in\left[1, p_{j}\right]$, choose $g_{j, i}$ from Q_{j} independently with uniform probability. Given N, let $\lambda \in(0,1 / 2]$ so that

$$
\begin{equation*}
W(N, K, \lambda)=K[\lambda \log (2 N / \lambda)+(\lambda-1) \log (1-\lambda)]<1 / 2 \tag{3}
\end{equation*}
$$

Then, for almost all choices of $\left\{g_{j, i}\right\}$, the index set for the random variables can be partitioned into $\lceil 1 / \lambda\rceil+1$ sets of which one is finite and the rest index N-independent subsets of \mathbb{Z}.

Remark 1 . Note that $\{x\}$ is N-independent when $x \neq 0$. Since $0 \notin Q_{j}$, the finite set in Theorem 1 is also a finite union of N-independent sets. Since N-independent sets are Sidon [8], as are the unions of finitely many Sidon sets [7], almost all choices produce a Sidon set.

Remark 2. $W(N, K, \lambda)$ is a non-decreasing function of $\lambda \in(0,1 / 2]$:

$$
\frac{\partial W(N, K, \lambda)}{\partial \lambda}=K \log (2 N)+K \log ((1-\lambda) / \lambda)>0
$$

Since $\lim _{\lambda \rightarrow 0^{+}} W(N, K, \lambda)=0$, there is a maximum $\lambda(N, K) \in(0,1 / 2]$ such that

$$
W(N, K, \lambda(N, K)) \leq 1 / 2
$$

The theorem applies to any λ in the non-empty interval $(0, \lambda(N, K))$.
Likewise, $W(N, K, \lambda)$ is linear in K with a positive slope for $\lambda \in(0,1 / 2]$. In that case, there is a unique $K(N, \lambda)>0$ such that $W(N, K(N, \lambda), \lambda)=$ $1 / 2$. For example, $K(N, 1 / 2)=\log (8 N)^{-1}$. The theorem applies to any K in the non-empty interval $(0, K(N, \lambda))$.

Condition (2) implies the next lemma.

Lemma 2. Let $K \in \mathbb{R}^{+}$, integers M_{j} satisfy condition (2), $Q_{j}=M_{j}$. $\left\{1, \ldots, j^{2}\right\}$, and S_{j} be a subset of Q_{j} with at most $K \log \left(j^{2}\right)$ points. A set $E \subset \bigcup_{j=N}^{\infty} S_{j}$ is N-independent if and only if, for all $j \geq N$, the sets $E \cap S_{j}$ are N-independent.

Proof. The "only if" follows from the fact that any subset of an N independent set is likewise N-independent. Consider the contrapositive of the converse. Assume that E is not N-independent and let α be the coefficient sequence for a non-trivial " N-relation" in E. Let J be the largest integer for which there is some $x \in S_{J}$ with $\alpha_{x} \neq 0$. If $J=N$, then α is supported in $E \cap S_{N}$; hence $E \cap S_{N}$ is not N-independent. Suppose that $J>N$. Then

$$
0=\sum_{N \leq q<J} \sum_{x \in E \cap S_{q}} \alpha_{x} x+\sum_{x \in E \cap S_{J}} \alpha_{x} x .
$$

For $x \in S_{q},|x| \leq q^{2} M_{q}$. Thus

$$
\begin{aligned}
\left|\sum_{N \leq q<J} \sum_{x \in E \cap S_{q}} \alpha_{x} x\right| & \leq \sum_{N \leq q<J} \sum_{x \in E \cap S_{q}}\left|\alpha_{x} x\right| \leq N \sum_{N \leq q<J} \sum_{x \in E \cap S_{q}}|x| \\
& \leq N \sum_{N \leq q<J} K \log \left(q^{2}\right) q^{2} M_{q} \leq K \sum_{N \leq q<J} \log \left(q^{2}\right) q^{3} M_{q} \\
& <M_{J}, \quad \text { by condition (2). }
\end{aligned}
$$

Thus

$$
\left|\sum_{x \in E \cap S_{J}} \alpha_{x} x\right|=\left|-\sum_{N \leq q<J} \sum_{x \in E \cap S_{q}} \alpha_{x} x\right|<M_{J}
$$

However, each $x \in S_{J}$ is a multiple of M_{J}; therefore

$$
\sum_{x \in E \cap S_{J}} \alpha_{x} x=0
$$

Since $\alpha_{x} \neq 0$ for at least one $x \in E \cap S_{J}$, it follows that $E \cap S_{J}$ is not N-independent. Thus, whether $J=N$ or $J>N, E \cap S_{J}$ is not N independent.

Lemma 3. Assume the hypotheses and notations of Theorem 1. Let $\left\{x_{i}\right\}_{i=1}^{p_{j}}$ range over random selections from Q_{j}. Let P_{j} denote this proposition: for all $\alpha=\left\{\alpha_{i}\right\}_{i=1}^{p_{j}}$, with α_{i} an integer in $[-N, N]$, the equality $\sum_{i=1}^{p_{j}} \alpha_{i} x_{i}=0$ implies that $\sum_{i=1}^{p_{j}}\left|\alpha_{i}\right|=0$ or that there are more than $\left\lceil\lambda p_{j}\right\rceil$ coefficients which are non-zero. Then the probability of P_{j} being false is at most $C \log (j) j^{2 W-2}$, where W is defined in expression (3) of Theorem 1 and $C=8 N K(1-\lambda)$.

Before describing the proof of Lemma 3, here is the proof of Theorem 1.

Proof of Theorem 1. By Lemma 3, the probability of P_{j} failing for infinitely many positive integers j is at most

$$
\lim _{t \rightarrow \infty} \sum_{q>t} C \log (q) q^{2 W-2}
$$

which is 0 since $W<1 / 2$ (by an integral comparison test). Thus, almost surely, P_{j} is true for all but finitely many j 's. P_{j} implies that any set of at most $\left\lceil\lambda p_{j}\right\rceil$ indices i must index distinct elements forming an N independent set. Therefore, for $p_{j}>0$, one can partition the p_{j} indices (j, i) into $\left\lceil p_{j} /\left\lceil\lambda p_{j}\right\rceil\right\rceil$ subsets each of which indexes an N-independent subset of Q_{j}. Consequently, for $p_{j}>0$,

$$
\left\lceil\frac{p_{j}}{\left\lceil\lambda p_{j}\right\rceil}\right\rceil \leq\left\lceil\frac{p_{j}}{\lambda p_{j}}\right\rceil=\lceil 1 / \lambda\rceil .
$$

[This partition bound holds trivially if $p_{j}=0$.] By Lemma 2, the union of N-independent subsets from distinct Q_{j} 's, $j \geq N$, remains N-independent. Thus, almost surely, the index set for the random variables $\left\{g_{i, j}\right\}$ is a union of at most $\lceil 1 / \lambda\rceil$ sets which index N-independent sets together with a finite set; the finite set comes from the finite number of j 's where $j<N$ or where P_{j} fails to be true.

Lemma 4. From a finite subset Q of real numbers of size n, choose p points at random, $\left\{g_{i}\right\}_{i=1}^{p}$, uniformly and independently. For any coefficient sequence $\alpha=\left\{\alpha_{i}\right\}_{i=1}^{p}$, let C_{α} denote the probability that

$$
0=\mathcal{R}(\alpha)=\sum_{i=1}^{p} \alpha_{i} g_{i}
$$

If $\sum_{i=1}^{p}\left|\alpha_{i}\right|>0$, then $C_{\alpha} \leq n^{-1}$.
Proof. Suppose first that exactly one coefficient, say α_{j}, is non-zero. Then $\mathcal{R}(\alpha)=0$ if and only if $g_{j}=0$. This has probability 0 if $0 \notin Q$ and $1 / n$ if $0 \in Q$. Next, suppose that at least two coefficients are non-zero. Let t be the last integer such that $\alpha_{t} \neq 0$. Then, $\mathcal{R}(\alpha)=0$ if and only if

$$
g_{t}=-\left(\alpha_{t}\right)^{-1} \sum_{i=1}^{t-1} \alpha_{i} g_{i}
$$

Set the right-hand side above equal to $\mathcal{R}^{*}(\alpha)$. By the joint independence of the random variables $g_{i}, 1 \leq i \leq p, g_{t}$ is independent of $\mathcal{R}^{*}(\alpha)$. Also, $P\left(g_{t}=y\right)$ is either $1 / n$ or 0 ; the latter if $y \in Q$ and the former if not. Hence

$$
\begin{aligned}
P(\mathcal{R}(\alpha)=0) & =\sum_{x \in \mathbb{R}} P\left(g_{t}=-x\right) P\left(\mathcal{R}^{*}(\alpha)=x\right) \\
& \leq(1 / n) \sum_{x \in \mathcal{R}} P\left(\mathcal{R}^{*}(\alpha)=x\right)=1 / n \cdot 1=1 / n
\end{aligned}
$$

Lemma 5. Let $\phi(s)=s \log (s)+(1-s) \log (1-s)$, for $s \in(0,1)$. For $\lambda \in(0,1), p \in \mathbb{Z}^{+}$, and $t \in(-\lambda, 1-\lambda) \cap[-1 / p, 1 / p]$,

$$
-p \phi(\lambda+t) \leq\left|\phi^{\prime}(\lambda)\right|-p \phi(\lambda)
$$

Proof. Since $\phi^{\prime \prime}$ is positive, this follows from Taylor's Remainder Theorem. For $\lambda \in(0,1)$ and $t \in(-\lambda, 1-\lambda)$,

$$
\phi(\lambda+t)=\phi(\lambda)+\phi^{\prime}(\lambda) t+\frac{\phi^{\prime \prime}(u)}{2} t^{2}
$$

for some u between λ and $\lambda+t$. One has $\phi^{\prime}(u)=\log (u)-\log (1-u)$ and $\phi^{\prime \prime}(u)=u^{-1}+(1-u)^{-1}>0$ for $u \in(0,1)$. Since both λ and $\lambda+t$ are in $(0,1)$ the remainder term is non-negative and thus

$$
\phi(\lambda+t) \geq \phi(\lambda)+\phi^{\prime}(\lambda) t .
$$

Therefore, to prove this lemma, it suffices to have

$$
-p \phi^{\prime}(\lambda) t \leq\left|\phi^{\prime}(\lambda)\right| .
$$

Suppose that $\lambda \leq 1 / 2$. Then $\phi^{\prime}(\lambda)=\log [\lambda /(1-\lambda)] \leq 0$. It follows from $t \leq 1 / p$ that

$$
\left[-p \phi^{\prime}(\lambda)\right] t \leq\left[-p \phi^{\prime}(\lambda)\right](1 / p)=-\phi^{\prime}(\lambda)
$$

If $\lambda>1 / 2$, then $\phi^{\prime}(\lambda)>0$. It follows from $t \geq-1 / p$ that

$$
\left[-p \phi^{\prime}(\lambda)\right] t \leq\left[-p \phi^{\prime}(\lambda)\right](-1 / p)=\phi^{\prime}(\lambda)
$$

Proof of Lemma 3 . Let p denote p_{j}. If $\lambda p \leq 1, P_{j}$ is always true because $0 \notin Q_{j}$ and hence any " N-relation" requires at least two points of Q_{j}. So assume $\lambda p>1$. The number of quasi-relations excluded by P_{j} is

$$
\begin{equation*}
D(p)=\sum_{w=1}^{\lceil\lambda p\rceil}\binom{p}{w}(2 N)^{w} \tag{4}
\end{equation*}
$$

To see equation (4), think of a quasi-relation α with exactly s non-zero coefficients. There are $\binom{p}{s}$ locations for the non-zero coefficients; for each placement, there are $2 N$ choices of a non-zero integer from $[-N, N]$.

Use Stirling's approximation to factorials [1] to estimate $\binom{p}{s p}$ with $s p=\lceil\lambda p\rceil:$
(5) $\quad\binom{p}{s p} \leq \frac{p^{p} \sqrt{2 \pi p}}{e^{p}} \cdot \frac{e^{s p}}{(s p)^{s p} \sqrt{2 \pi s p}} \cdot \frac{e^{p-s p}}{(p-s p)^{p-s p} \sqrt{2 \pi(p-s p)}} * T$
where

$$
T \leq e^{1 /(12 p)} * e^{1 /(12 p s)} * e^{1 /[12(p-p s)]} \leq e^{11 / 72} \leq 1.17
$$

After removing common factors of the form e^{x} and p^{x}, one has

$$
\begin{array}{rlr}
\binom{p}{s p} & \leq \sqrt{2 \pi p} * \frac{1}{s^{s p} \sqrt{2 \pi s p}} * \frac{1}{(1-s)^{p-s p} \sqrt{2 \pi(p-s p)}} * T \\
& \leq \frac{T}{\sqrt{2 \pi s p}} * \frac{\sqrt{p}}{\sqrt{p-s p}} * s^{-s p}(1-s)^{s p-p} \\
& \leq \frac{T}{\sqrt{2 \pi s p}} * \frac{\sqrt{2 p}}{\sqrt{p-1}} * e^{-p \cdot[s \log (s)+(1-s) \log (1-s)]}, \\
& \text { since } p-s p \geq(p-1) / 2, \\
& \leq \frac{T}{\sqrt{\pi}} * \frac{\sqrt{p}}{\sqrt{2(p-1)}} * e^{-p \cdot \phi(s)}, & \text { since } s p \geq 2, \\
& <e^{-p \phi(s)}, & \text { since } p>2 .
\end{array}
$$

View $\phi(s)$ with $s=\lambda+t$ as in Lemma 5:

$$
\binom{p}{s p} \leq \frac{1-\lambda}{\lambda} e^{-p \phi(\lambda)}
$$

Now return to $D(p)$. Since $\lambda \leq 1 / 2$, the binomial coefficients in equation (4) are dominated by the last one. Also, $\lambda p>1$ and hence $\lceil\lambda p\rceil<\lambda p+1<2 \lambda p$. Therefore

$$
\begin{aligned}
D(p) & \leq(\lceil\lambda p\rceil)\binom{p}{s p}(2 N)^{\lceil\lambda p\rceil} \\
& <(2 \lambda p) \cdot \frac{1-\lambda}{\lambda} e^{-p \phi(\lambda)} \cdot(2 N) e^{\lambda p \log (2 N)} \\
& =4 N p(1-\lambda) e^{p(W / K)}, \quad \text { by equation }(3) .
\end{aligned}
$$

By Lemma 4, the probability of P_{j} failing is at most $D(p)\left|Q_{j}\right|^{-1}$. With $\left|Q_{j}\right|=j^{2}, p=p_{j} \leq K \log \left(j^{2}\right)$, and $W \geq 0$, one has

$$
\begin{aligned}
P\left(P_{j} \text { failing }\right) & \leq 4 N(1-\lambda) K \log \left(j^{2}\right) e^{K \log \left(j^{2}\right)(W / K)} j^{-2} \\
& =C \log (j) j^{2 W-2},
\end{aligned}
$$

where $C=8 N(1-\lambda) K$.
The efficiency of the proof. The proof does not provide elegant estimates for λ in terms of a priori values of N and K. To evaluate the efficiency of the proof, assume that $p_{j}=\left\lfloor K \log \left(j^{2}\right)\right\rfloor$ (the maximum density allowed by condition (1) of Theorem 1).

One can view the choice of $K \log \left(j^{2}\right)$ points as approximately K / K_{0} choices of sets of size $K_{0} \log \left(j^{2}\right)$. Let $K_{0}=K(N, 1 / 2)$. (By using Lagrange multipliers to find the maximum of $K \lambda$ subject to $\lambda \in[0,1 / 2]$ and $W(N, K, \lambda)=1 / 2$, one can show that the maximum occurs at the boundary
of this manifold with $\lambda=1 / 2$. Thus, $K_{0}=K(N, 1 / 2)$ is optimal for this comparison argument.) The details require some explanation. Assume first that K is not an integer multiple of K_{0}. Then one may find $K_{0}^{\prime} \in\left(0, K_{0}\right)$ for which $W\left(N, K_{0}^{\prime}, 1 / 2\right)<1 / 2,\left\lceil K / K_{0}\right\rceil=\left\lceil K / K_{0}^{\prime}\right\rceil$, and K is not an integer multiple of K_{0}^{\prime}. Then the number of N-independent sets required for sets chosen from Q_{j} 's with large j is

$$
2 \limsup \left[\frac{\left\lfloor K \log \left(j^{2}\right)\right\rfloor}{\left\lfloor K_{0}^{\prime} \log \left(j^{2}\right)\right\rfloor}\right\rceil \leq 2 \limsup \left\lceil\frac{K \log \left(j^{2}\right)}{K_{0}^{\prime} \log \left(j^{2}\right)-1}\right\rceil=2\left\lceil K / K_{0}\right\rceil
$$

Thus at most $2\lceil\log (8 N) K\rceil N$-independent sets are required for all but finitely many j 's (almost surely). If K is an integer multiple of K_{0}, one can not choose $K_{0}^{\prime}<K_{0}$ without making $\left\lceil K / K_{0}^{\prime}\right\rceil$ greater than $\left\lceil K / K_{0}\right\rceil$. In this case, the limsup is $\left\lceil 1+K / K_{0}\right\rceil$. In summary, the number of N-independent sets required for all but finitely many j 's, almost surely, is bounded by

$$
2\lfloor 1+\log (8 N) K\rfloor .
$$

In the case of $N=2$ and $K=1.80>\log (2)^{-1}$ (the latter is the asymptotic density of a quasi-independent set, as proved below), random sets chosen with a density greater than that of a quasi-independent set are a union of no more than 10 dissociate sets (for all but finitely many j 's, almost surely). The authors venture no guesses as to whether this is universally true of quasi-independent sets; the quasi-independent set $\{1,6,10,12,14\}$ is an example where three dissociate sets are required and the worst case known to date.

Fix $K>0$, let $N \rightarrow \infty$, and consider $\left\lceil 1 / \lambda(N, K)^{-}\right\rceil$for some $\lambda(N, K)^{-} \in$ $(0, \lambda(N, K))$ to be described. If $\lambda \in(0,1 / 2]$ and

$$
W(N, K, \lambda)=K[\lambda \log (2 N / \lambda)+(\lambda-1) \log (1-\lambda)] \leq 1 / 2,
$$

then $K \lambda \log (2 N) \leq 1 / 2$ and thus $\lambda \leq 1 /(2 K \log (2 N))$. It follows that $\lambda(N, K) \rightarrow 0$ as $N \rightarrow \infty$. One has

$$
(\lambda-1) \log (1-\lambda)<\lambda \quad \text { for } \lambda \in(0,1)
$$

with

$$
\lim _{\lambda \rightarrow 0^{+}}(\lambda-1) \log (1-\lambda) / \lambda=1
$$

If $W^{*}(N, K, \lambda)$ is defined as $K \lambda[1+\log (2 N / \lambda)]$, one has $W(N, K, \lambda)<$ $W^{*}(N, K, \lambda)$ for $\lambda \in(0,1)$. Let $\lambda(N, K)^{-}$be the last $\lambda \in(0,1 / 2]$ such that $W^{*}(N, K, \lambda) \leq 1 / 2$. Since $W(N, K, \lambda)<W^{*}(N, K, \lambda)$ for $\lambda \in(0,1)$, one has $\lambda(N, K)^{-}<\lambda(N, K)$. As shown earlier,

$$
\lambda(N, K)^{-}<\lambda(N, K) \leq 1 /(2 K \log (2 N))
$$

Also, $\lim _{N \rightarrow \infty} W^{*}\left(N, K,(4 K \log (2 N))^{-1}\right)=1 / 4<1 / 2$. Consequently, for
N large enough,

$$
1 /(4 K \log (2 N))<\lambda(N, K)^{-}<1 /(2 K \log (2 N))
$$

and one may write

$$
\lambda(N, K)^{-}=\left(\left(2+\varepsilon_{N}\right) K \log (2 N)\right)^{-1} \quad \text { for some } \varepsilon_{N} \in(0,2)
$$

By solving $W^{*}\left(N, K, \lambda(N, K)^{-}\right)=1 / 2$ with $\lambda(N, K)^{-}$in this form, one finds that

$$
\begin{aligned}
\varepsilon_{N} & =2\left[1+\log \left(2+\varepsilon_{N}\right)+\log (K)+\log (\log (2 N))\right] / \log (2 N) \\
& \leq 2[1+\log (4)+\log (K)+\log (\log (2 N))] / \log (2 N)
\end{aligned}
$$

Therefore,

$$
\left\lceil 1 / \lambda(N, K)^{-}\right\rceil=\left\lceil\left(2+\varepsilon_{N}\right) K \log (2 N)\right\rceil,
$$

with $\lim _{N \rightarrow \infty} \varepsilon_{N}=0$. By the previous equation for ε_{N},

$$
\begin{aligned}
& \left\lceil 1 / \lambda(N, K)^{-}\right\rceil \\
& \quad=\left\lceil 2 K\left\{\log (2 N)+\log (\log (2 N))+\log (K)+1+\log \left(2+\varepsilon_{N}\right)\right\}\right\rceil
\end{aligned}
$$

A lower bound for $1 / \lambda$ will follow from the next proposition.
Proposition 6. Let m_{j} be the maximum cardinality of an N-independent subset of any arithmetic progression of the form $S_{j}=k \cdot\{1, \ldots, j\}$ with $k \neq 0$. Then

$$
\lim _{j \rightarrow \infty} \frac{m_{j}}{\log (j)}=\frac{1}{\log (N+1)}
$$

Proof. It is clear that m_{j} does not depend upon the dilation factor k, so we may set $k=1$ for simplicity. The set $\left\{1, N+1,(N+1)^{2}, \ldots,(N+1)^{t}\right\}$ is N-independent in S_{j}, where $t=\lfloor\log (j) / \log (N+1)\rfloor$. Thus,

$$
\liminf _{j \rightarrow \infty} \frac{m_{j}}{\log (j)} \geq \frac{1}{\log (N+1)}
$$

Second, any N-independent subset E has the property that, for distinct coefficient sequences α and α^{\prime} from $\{0,1, \ldots, N\}^{E}$,

$$
\sum_{x \in E} \alpha_{x} x \neq \sum_{x \in E} \alpha_{x}^{\prime} x
$$

If $E \subset S_{j}$ is N-independent of cardinality m_{j}, there are $(N+1)^{m_{j}}$ of these sums in $\left[0, N \sum_{x \in E} x\right]$. Thus, for $m_{j}>1$,

$$
(N+1)^{m_{j}} \leq 1+N \sum_{x \in E} x<1+N j m_{j}
$$

Thus $(N+1)^{m_{j}} \leq N j m_{j}\left(\right.$ for $\left.m_{j}>1\right)$ and

$$
m_{j} \log (N+1)-\log \left(m_{j}\right) \leq \log (j)+\log (N)
$$

It follows that

$$
\frac{m_{j}}{\log (j)}\left[\log (N+1)-\frac{\log \left(m_{j}\right)}{m_{j}}\right] \leq 1+\frac{\log (N)}{\log (j)} .
$$

Since $m_{j} \rightarrow \infty$ as $j \rightarrow \infty$,

$$
\lim _{j \rightarrow \infty} \frac{\log \left(m_{j}\right)}{m_{j}}=0
$$

and hence

$$
\begin{aligned}
\log (N+1) \limsup _{j \rightarrow \infty} \frac{m_{j}}{\log (j)} & =\limsup _{j \rightarrow \infty}\left\{\frac{m_{j}}{\log (j)}\left[\log (N+1)-\frac{\log \left(m_{j}\right)}{m_{j}}\right]\right\} \\
& \leq \limsup _{j \rightarrow \infty}\left[1+\frac{\log N}{\log (j)}\right]=1
\end{aligned}
$$

Consequently,

$$
\limsup _{j \rightarrow \infty} \frac{m_{j}}{\log (j)} \leq \frac{1}{\log (N+1)}
$$

Proposition 6 implies that, for any choice of $\lambda(N, K)^{-}$from $(0, \lambda(N, K))$,

$$
\left\lceil 1 / \lambda(N, K)^{-}\right\rceil \geq K \log (N+1)
$$

First, by Proposition 6 , if $K \log \left(j^{2}\right)$ distinct points are chosen from Q_{j} (of size j^{2}) and m_{j} is the maximum size of an N-independent subset of Q_{j}, the number of N-independent subsets required to cover those points is at least

$$
\lim _{j \rightarrow \infty} \frac{\left\lfloor K \log \left(j^{2}\right)\right\rfloor}{m_{j}}=\lim _{j \rightarrow \infty} \frac{\log \left(j^{2}\right)}{m_{j}} \cdot \frac{K \log \left(j^{2}\right)-1}{\log \left(j^{2}\right)}=K \log (N+1) .
$$

Second, note that Lemma 3 implies that almost all the random choices of Theorem 1 produce distinct elements of Q_{j} for all but finitely many j. Hence the above estimate applies to $\left\lceil 1 / \lambda(N, K)^{-}\right\rceil$.

Some deterministic observations. For Sidon sets and M-independent sets, the question of whether they are a finite union of N-independent sets is "finitely determined". To make this precise, the following definition is offered.

Definition. For subsets $E \subset \mathbb{Z}$, let $\mu(E, m)=\infty$ if E is not a finite union of m-independent sets; otherwise, let $\mu(E, m)$ be the minimum number of m-independent sets of which E is the union.

As in [7], let $\alpha(E)$ denote the Sidon constant of E for Sidon subsets of \mathbb{Z}, and ∞ otherwise.

Theorem 7. If the m-independent subsets of \mathbb{Z} are unions of finitely many n-independent subsets, then there is a uniform bound on the number of n-independent subsets which are required.

ThEOREM 8. If every Sidon subset of $\mathbb{Z} \backslash\{0\}$ is the union of finitely many m-independent subsets, then then there is an increasing function ϕ : $[1, \infty) \rightarrow \mathbb{Z}^{+}$such that, for Sidon subsets E of $\mathbb{Z} \backslash\{0\}$ with $\alpha(E) \leq r$,

$$
\begin{equation*}
\mu(E, m) \leq \phi(r) \tag{6}
\end{equation*}
$$

The restriction to $r \geq 1$ is due to the fact that $\alpha(E) \geq 1$ for all $E \subset \mathbb{Z}$ (cf. [7]). The proofs of Theorems 7 and 8 will be facilitated by the following lemmas. The proof of the first follows closely from the definitions.

Lemma 9. For subsets E and F of \mathbb{Z}, if $F \subset E$ then $\alpha(F) \leq \alpha(E)$ and $\mu(F, m) \leq \mu(E, m)$. Also, for $m \leq n, \mu(E, m) \leq \mu(E, n)$.

Lemma 10. For $k \neq 0$ and $E \subset \mathbb{Z}, \alpha(E)=\alpha(k E)$ and $\mu(E, m)=$ $\mu(k E, m)$.

Proof. That $\alpha(E)=\alpha(k E)$ is well known. For $k \neq 0, F \subset \mathbb{Z}$ is m independent if and only if $k F$ is m-independent. Thus, if E is partitioned into F_{i} 's which are m-independent, then $k E$ is partitioned by $k F_{i}$'s which remain m-independent and vice versa.

Lemma 11. For $E \subset \mathbb{Z}$,

$$
\begin{equation*}
\mu(E, m)=\sup \{\mu(F, m) \mid F \subset E \& F \text { is finite }\} \tag{7}
\end{equation*}
$$

Proof. Let t equal the right-hand side of equation (7). By Lemma 9, $\mu(E, m) \geq t$. Next, the reversed inequality will be proved. Let $E_{s}=$ $E \cap[-s, s]$. Then

$$
E=\bigcup_{s} E_{s}
$$

and there are m-independent subsets $I_{q, s}$ (possibly equal to \emptyset) such that

$$
E_{s}=\bigcup_{q \leq t} I_{q, s}
$$

Without loss of generality, it may be assumed that the $I_{q, s}$'s are disjoint for distinct q 's. Hence

$$
\begin{equation*}
\chi_{E_{s}}=\sum_{q=1}^{t} \chi_{I_{q, s}} \tag{8}
\end{equation*}
$$

By a weak-limit argument, or by using Alaoglu's Theorem in $\ell_{\infty}(\mathbb{Z})=$ $\ell_{1}(\mathbb{Z})^{*}$, there is a subsequence s_{j} such that

$$
\lim _{j \rightarrow \infty} \chi_{I_{q, s_{j}}}=f_{q} \quad \text { for } 1 \leq q \leq t
$$

pointwise on \mathbb{Z} (or weak-* in $\ell_{\infty}(\mathbb{Z})$).

Necessarily, $f_{q}=\chi_{I_{q}}$ for some set $I_{q} \subset \mathbb{Z}$. By equation (8),

$$
\sum_{q=1}^{t} \chi_{I_{q}}=\lim _{j \rightarrow \infty} \sum_{q=1}^{t} \chi_{I_{q, s_{j}}}=\lim _{j \rightarrow \infty} \chi_{E_{s_{j}}}=\chi_{E}
$$

Thus, E is the disjoint union of the I_{q} 's. To prove that the I_{q} 's are m independent, suppose that I_{q} is not m-independent for some q. Then there is an " m-relation", specifically a finite set $W \subset I_{q}$ and integer coefficients $\alpha_{x} \in[-m, m]$ with $\alpha_{x} \neq 0$ such that

$$
\sum_{x \in W} \alpha_{x} x=0
$$

Because $\chi_{I_{q, s_{j}}}$ converges pointwise to $\chi_{I_{q}}$ on \mathbb{Z} and W is finite, there is some j_{0} such that $W \subset I_{q, s_{j}}$ for all $j \geq j_{0}$. That would make $I_{q, s_{j}}$ fail to be m-independent, contrary to the hypotheses. So, I_{q} must be m-independent and hence $\mu(E, m) \leq t$.

Proof of Theorem 7. Assume that no uniform bound holds. That is, for each t, there is an m-independent subset $E_{t} \subset \mathbb{Z}$ such that $\mu\left(E_{t}, n\right)$ $\geq t$. By Lemma 11 there is a finite subset $F_{t} \subset E_{t}$ such that $\mu\left(F_{t}, n\right) \geq t$ (and of course remains m-independent). Let

$$
F=\bigcup_{t} k_{t} F_{t}
$$

where the k_{t} 's are positive integers which increase rapidly enough to make F be m-independent. This will contradict the hypotheses, because Lemmas 9 and 10 imply that for all t,

$$
\mu(F, n) \geq \mu\left(k_{t} F_{t}, n\right)=\mu\left(F_{t}, n\right) \geq t
$$

One may choose k_{t} as follows. Let $k_{1}=1$. Given k_{s} for $s \leq t$, let D_{t} denote the maximum absolute value of the elements

$$
\sum_{s \leq t} \sum_{x \in k_{s} F_{s}} \alpha_{x} x, \quad \text { where } \alpha_{x} \text { an integer in }[-m, m] \text { for all } x .
$$

Choose $k_{t+1}>D_{t}$. Here's an argument that F is then m-independent.
Suppose that F is not m-independent. Then there is a non-empty, finite set $W \subset F$ and integers $\alpha_{x} \in[-m, m]$ with $\alpha_{x} \neq 0$ such that

$$
\begin{equation*}
\sum_{x \in W} \alpha_{x} x=0 \tag{9}
\end{equation*}
$$

Because W is finite and non-empty, there is a maximum t such that $W \cap$ $k_{t} F_{t} \neq \emptyset$. If $t=1$, then W is a subset of $k_{1} F_{1}$ and $k_{1} F_{1}$ fails to be m independent (which contradicts the m-independence of F_{1}). So $t>1$, and
equation (9) can be rewritten as

$$
\begin{equation*}
\sum_{x \in W \cap k_{t} F_{t}} \alpha_{x} x=-\sum_{s<t} \sum_{x \in W \cap k_{s} F_{s}} \alpha_{x} x . \tag{10}
\end{equation*}
$$

If $\sum_{x \in W \cap k_{t} F_{t}} \alpha_{x} x \neq 0$, then it is a non-zero multiple of k_{t} and

$$
k_{t} \leq\left|\sum_{x \in W \cap k_{t} F_{t}} \alpha_{x} x\right|=\left|-\sum_{s<t} \sum_{x \in W \cap k_{s} F_{s}} \alpha_{x} x\right| \leq D_{t-1}
$$

This contradiction proves that

$$
\sum_{x \in W \cap k_{t} F_{t}} \alpha_{x} x=0
$$

Since $\alpha_{x} \neq 0$ for at least one $x \in k_{t} F_{t}, k_{t} F_{t}$ fails to be m-independent. However, since $k_{t}>0$, this contradicts the m-independence of F_{t}.

Proof of Theorem 8. Suppose that, for every $r \geq 1$,

$$
\begin{equation*}
\sup \{\mu(E, m) \mid E \subset(\mathbb{Z} \backslash\{0\}) \& \alpha(E) \leq r\}<\infty \tag{11}
\end{equation*}
$$

Then let $\phi(r)$ be that supremum; it is clearly increasing with r and meets the requirements of the theorem. Suppose, on the contrary, that there is some $r \geq 1$ for which inequality (11) is false. Then, for each t, there is some $E_{t} \subset \mathbb{Z} \backslash\{0\}$ for which $\alpha\left(E_{t}\right) \leq r$ and $\mu\left(E_{t}, m\right) \geq t$. By Lemma 11 , there is a finite subset $F_{t} \subset E_{t}$ for which $\mu\left(F_{t}, m\right) \geq t$ (and, of course, $\alpha\left(F_{t}\right) \leq r$). As in the proof of Theorem 7, let

$$
F=\bigcup_{t} k_{t} F_{t}
$$

for a rapidly increasing sequence of positive integers, $\left\{k_{t}\right\}_{t}$. For all t,

$$
\mu(F, m) \geq \mu\left(k_{t} F_{t}, m\right)=\mu\left(F_{t}, m\right) \geq t
$$

Thus, F will not be a finite union of m-independent sets. If F is Sidon, this will contradict the hypotheses of Theorem 8.

To make F be Sidon, let $k_{1}=1$; for $t>1$, let $k_{t}>\pi^{2} 2^{t} M_{t-1}$, where M_{t} is the maximum absolute value of an element of $\bigcup_{s<t} k_{s} F_{s}$. Then, as in the proof of Proposition 12.2.4, pages 371-372 of [2], $\left\{k_{t} F_{t}\right\}_{t}$ is a sup-norm partition for F : if p_{t} is a $k_{t} F_{t}$-polynomial (on T) and is non-zero for at most finitely many t, then

$$
\sum_{j=1}^{\infty}\left\|p_{j}\right\|_{\infty} \leq 2 \pi\left\|\sum_{j=1}^{\infty} p_{j}\right\|_{\infty}
$$

Recall that $B(F)$ (the restrictions to F of Fourier transforms of bounded Borel measures on T) is the Banach space dual of $\operatorname{Trig}_{F}(T)$ (the trigonometric polynomials with spectrum in $F)$. For $p \in \operatorname{Trig}_{F}(T)$, let p_{j} denote
its summand in $\operatorname{Trig}_{k_{j} F_{j}}(T)$ under the natural decomposition. Then for $f \in B(F)$,

$$
\begin{aligned}
|\langle f, p\rangle| & =\left|\sum_{j=1}^{\infty}\left\langle f, p_{j}\right\rangle\right| \leq \sum_{j=1}^{\infty}\left|\left\langle f, p_{j}\right\rangle\right| \\
& \leq \sum_{j=1}^{\infty}\left\|\left.f\right|_{k_{j} F_{j}}\right\|_{B\left(k_{j} F_{j}\right)}\left\|p_{j}\right\|_{\infty} \\
& \leq\left(\sup _{t}\left\|\left.f\right|_{k_{t} F_{t}}\right\|_{B\left(k_{t} F_{t}\right)}\right) \sum_{j=1}^{\infty}\left\|p_{j}\right\|_{\infty} \\
& \leq\left(r \sup _{t}\left\|\left.f\right|_{k_{t} F_{t}}\right\|_{\infty}\right)\left(2 \pi\|p\|_{\infty}\right), \quad \text { since } \alpha\left(k_{t} F_{t}\right) \leq r, \\
& \leq\left(2 \pi r\|f\|_{\infty}\right)\|p\|_{\infty} .
\end{aligned}
$$

Thus, $\|f\|_{B(F)} \leq 2 \pi r\|f\|_{\infty}$. By the definition of Sidon constant, $\alpha(F) \leq 2 \pi r$ and thus F is Sidon.

One can extend the idea of m-independence to arbitrary abelian groups, by additionally restricting α_{x} to $[-p, p)$ when $2 p$ is the order of x, and to $[-(p-1) / 2,(p+1) / 2)$ when the order of x is p and odd. Then Theorems 7 and 8 have more universal versions.

Theorem 12. Suppose that, for some integers m and n and all abelian groups G, m-independent sets are the finite unions of n-independent sets. Then, independent of the group G, there is a uniform bound on the number of n-independent sets required.

ThEOREM 13. Suppose there is an integer m such that, for all abelian groups G and all Sidon subsets E of $G \backslash\{0\}, E$ is a finite union of m independent sets. Then there is an increasing function $\phi:[0, \infty) \rightarrow \mathbb{Z}^{+}$ such that, if $E \subset(G \backslash\{0\})$ for any abelian group G and $\alpha(E) \leq r$, then $\mu(E, m) \leq \phi(r)$.

Proof of Theorem 12. Suppose that, for every t, there is an m independent subset E_{t} of some abelian group G_{t} such that $\mu\left(E_{t}, n\right) \geq t$. Let G be the infinite direct sum of the G_{t} 's: $g \in G$ if and only if

$$
g: \mathbb{Z}^{+} \rightarrow \bigcup_{t} G_{t}
$$

with $g(t) \in G_{t}$ for all t and $g(t) \neq 0$ for at most finitely many t [assume that the groups are presented additively]. Embed G_{t} into G canonically: $x \mapsto g_{x}$, where $g_{x}(t)=x$ and $g_{x}(s)=0$ for $s \neq t$. View G_{t} as identical with its isomorphic embedding; E_{t} remains m-independent under the embedding
and $\mu\left(E_{t}, n\right)$ is unchanged. It should be clear that

$$
E=\bigcup_{t} E_{t} \subset G
$$

is m-independent while

$$
\mu(E, n) \geq \mu\left(E_{t}, n\right) \geq t, \quad \text { for all } t
$$

So E is not the finite union of n-independent sets, contrary to the hypotheses.

Proof of Theorem 13. As in the proof of Theorem 8, suppose that there is some $r \in[1, \infty)$ such that, for all t, there is an abelian group G_{t} and $E_{t} \subset G_{t} \backslash\{0\}$ for which $\alpha\left(E_{t}\right) \leq r$ and $\mu\left(E_{t}, m\right) \geq t$. As in the proof of Theorem 12, let G be the direct sum of the G_{t} 's and view G_{t} as embedded in G. Under this embedding, neither $\alpha\left(E_{t}\right)$ nor $\mu\left(E_{t}, m\right)$ changes. Let

$$
E=\bigcup_{t} E_{t}
$$

Then E is not the union of finitely many m-independent sets.
To see that E is a Sidon set, note that $\left\{E_{t}\right\}_{t}$ is a sup-norm partition of E. Specifically, if Γ is the compact group dual to G (G is given the discrete topology), then for $p \in \operatorname{Trig}_{E}(\Gamma)$, with p_{j} its natural summand in $\operatorname{Trig}_{E_{j}}(\Gamma)$,

$$
\sum_{j=1}^{\infty}\left\|p_{j}\right\|_{\infty} \leq \pi\|p\|_{\infty}
$$

by Lemma 12.2.2, page 370 of [2]. To apply that lemma two things are required. First, no E_{j} may contain 0 , which is true here. Second, in the language of [2], the ranges of $\left\{p_{j}\right\}_{j=1}^{\infty}$ are 0 -additive: given $\left\{\gamma_{j}\right\}_{j=1}^{\infty}$ from Γ, there is some $\gamma \in \Gamma$ for which

$$
\begin{equation*}
\left|p(\gamma)-\sum_{j=1}^{\infty} p_{j}\left(\gamma_{j}\right)\right|=0 \tag{12}
\end{equation*}
$$

Here's a proof of equation (12). Γ is the infinite direct product of $\Gamma_{t}=\widehat{G}_{t}$: $\gamma \in \Gamma$ if and only if

$$
\gamma: \mathbb{Z}^{+} \rightarrow \bigcup_{t} \Gamma_{t}, \quad \text { with } \gamma(t) \in \Gamma_{t}
$$

Let $\gamma \in \Gamma$ satisfy $\gamma(j)=\gamma_{j}(j)$. Note that for a character g used in $p_{j},\langle g, \gamma\rangle$ is determined by $\gamma(j)$ because g is 0 in every other coordinate:

$$
\begin{aligned}
\langle g, \gamma\rangle & =\prod_{s}\langle g(s), \gamma(s)\rangle \\
& =\langle g(j), \gamma(j)\rangle=\left\langle g(j), \gamma_{j}(j)\right\rangle=\left\langle g, \gamma_{j}\right\rangle
\end{aligned}
$$

Thus

$$
p(\gamma)=\sum_{j=1}^{\infty} p_{j}(\gamma)=\sum_{j=1}^{\infty} p_{j}\left(\gamma_{j}\right)
$$

Once it is known that E is sup-norm partitioned by the E_{t} 's, then just as in the proof of Theorem 8 one has

$$
\alpha(E) \leq \pi \sup _{t} \alpha\left(E_{t}\right) \leq \pi r .
$$

This proves that E is Sidon.

REFERENCES

[1] W. H. Beyer (ed.), CRC Standard Mathematical Tables, 28th Edition, CRC Press, Boca Raton, Florida, 1981, 58-59.
[2] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979, 371-372.
[3] D. Grow and W. C. Whicher, Finite unions of quasi-independent sets, Canad. Math. Bull. 27 (4) (1984), 490-493.
[4] Y. Katznelson, Suites aléatoires d'entiers, Lecture Notes in Math. 336, Springer, 1973, 148-152.
[5] -, Sequences of integers dense in the Bohr group, Proc. Roy. Inst. Tech., June 1973, 73-86.
[6] Y. Katznelson et P. Malliavin, Vérification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction, C. R. Acad. Sci. Paris Sér. A 262 (1966), 490-492.
[7] J. M. López and K. M. Ross, Sidon Sets, Marcel Dekker, New York, 1975, 19-44.
[8] G. Pisier, Arithmetic characterization of Sidon sets, Bull. Amer. Math. Soc. 8 (1983), 87-89.

SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES
MATHEMATICS
MURDOCH UNIVERSITY
KELLER HALL
SOUTH STREET
2565 THE MALL
MURDOCH, WESTERN AUSTRALIA 6150 HONOLULU, HAWAII 96822
AUSTRALIA U.S.A.

E-mail: HARRISON@PRODIGAL.MURDOCH.EDU.AU E-mail: RAMSEY@MATH.HAWAII.EDU

[^0]: 1991 Mathematics Subject Classification: Primary 43A56.

