COLLOQUIUM MATHEMATICUM

VOL. LXIX

1995

FASC. 1

NEGATIVELY REDUCED IDEALS IN ORDERS OF REAL QUADRATIC FIELDS: EVEN DISCRIMINANTS

BҮ

FRANZ HALTER-KOCH (GRAZ) AND PHILIP A. LEONARD (TEMPE, ARIZONA)

1. Introduction. Let Δ be a positive discriminant, that is, a nonsquare positive integer congruent to 0 or 1 modulo 4. Let O_{Δ} be the order of discriminant Δ in the real quadratic field $\mathbb{Q}(\sqrt{\Delta})$. The primitive ideals of O_{Δ} are the \mathbb{Z} -modules

$$(*)_{\Delta} \quad I = [a, (b + \sqrt{\Delta})/2], \text{ where } a, b \in \mathbb{Z}, \\ a > 0, \ c = (b^2 - \Delta)/(4a) \in \mathbb{Z} \text{ and } (a, b, c) = 1.$$

Our main reference is [4]; however, we depart from notation there in requiring a > 0. In $(*)_{\Delta}$, $a = \mathcal{N}(I) = (O_{\Delta} : I)$ is the norm of I, and b is uniquely determined modulo 2a.

For a real number λ , we denote by $[\lambda]$ the greatest integer not exceeding λ . For $\varphi = x + y\sqrt{\Delta} \in \mathbb{Q}(\sqrt{\Delta})$ $(x, y \in \mathbb{Q})$, we denote by $\overline{\varphi} = x - y\sqrt{\Delta}$ its conjugate.

If I is given by $(*)_{\Delta}$, the number $\varphi = (b+\sqrt{\Delta})/2a$ is determined modulo 1 by I, while $I = a[1, \varphi]$ is uniquely determined by φ . The quantity $\varphi + [-\overline{\varphi}]$ depends only on I. Following P. Kaplan [2], we call the ideal I *k*-reduced if $\varphi + [-\overline{\varphi}] > k$, and strictly *k*-reduced if $k < \varphi + [-\overline{\varphi}] < k + 1$. With this terminology, 1-reduced ideals are just the reduced ideals in the classical sense, 0-reduced ideals are the negatively reduced ideals considered in [6] and [3] (see also [7]), and strictly 0-reduced ideals are negatively reduced ideals which are not reduced. For each $k \ge 0$, the number of *k*-reduced ideals of O_{Δ} is finite.

These notions have been used by P. Kaplan [2] in the case of odd discriminants D, to relate the 0-reduced and 1-reduced primitive ideals of O_{4D} to the primitive ideals of O_D in a precise way. When $D \equiv 5 \pmod{8}$ these results have application to Eisenstein's problem concerning the existence

Support from the Departments of Mathematics at Arizona State University and at Karl-Franzens-Universität (Graz) is gratefully acknowledged.

¹⁹⁹¹ Mathematics Subject Classification: 11R11, 11R29.

of odd solutions of the equation $x^2 - Dy^2 = 4$. This connection was first observed by Mimura [6] and investigated in a systematic way by P. Kaplan and P. A. Leonard [3].

In the present note we study the relationship between primitive 0-reduced ideals of O_{4D} and primitive ideals of O_D in the case when D is even, and we give an application to the Pell equation.

2. Notations and results. Let D = 4d be a discriminant. We start with a description of the primitive ideals of O_D and O_{4D} .

LEMMA 1. (i) Each primitive ideal J of O_D is of the form

$$(*)_D \quad J = [A, B + \sqrt{d}], \quad where \ A, B \in \mathbb{Z}, \ A > 0, \\ C = (B^2 - d)/A \in \mathbb{Z} \ and \ (A, 2B, C) = 1.$$

(ii) Each primitive ideal I of O_{4D} is of the form

$$(*)_{4D}$$
 $I = [a, 2b + 2\sqrt{d}],$ where $a, b \in \mathbb{Z}, a > 0,$
 $c = 4(b^2 - d)/a \in \mathbb{Z} and (a, 2b, c) = 1$

In particular, we have either $a \equiv 1 \pmod{2}$ or $a \equiv 0 \pmod{4}$.

Proof. (i) If J is a primitive ideal of O_D , then $J = [A, (b_1 + \sqrt{4d})/2]$, where $A, b_1 \in \mathbb{Z}, A > 0, C = (b_1^2 - 4d)/(4A) \in \mathbb{Z}$ and $(A, b_1, C) = 1$. This implies $b_1 \equiv 0 \pmod{2}$, and with $b_1 = 2B$ we obtain the asserted form.

(ii) If I is a primitive ideal of O_{4D} , then $I = [a, (b_1 + \sqrt{16d})/2]$, where $a, b_1 \in \mathbb{Z}, a > 0, c = (b_1^2 - 16d)/(4a) \in \mathbb{Z}$ and $(a, b_1, c) = 1$. This implies $b_1 \equiv 0 \pmod{2}$, and with $b_1 = 2b_2$ we obtain $I = [a, b_2 + 2\sqrt{d}] = [a, a + b_2 + 2\sqrt{d}]$, $c = (b_2^2 - 4d)/a \in \mathbb{Z}$ and $(a, 2b_2, c) = 1$. If b_2 is odd, then so is a, and we replace b_2 by the even number $a + b_2$. Therefore we may assume that b_2 is even, $b_2 = 2b, c = 4(b^2 - d)/a$ and (a, 2b, c) = 1.

For a primitive ideal I of O_{4D} in the form $(*)_{4D}$, we define a primitive ideal $\theta(I)$ of O_D by the formula

$$\theta(I) = \begin{cases} [a, b + \sqrt{d}] & \text{if } a \equiv 1 \pmod{2}, \\ [a/4, b + \sqrt{d}] & \text{if } a \equiv 0 \pmod{4}. \end{cases}$$

This map, already studied by Gauss, was investigated in detail in [4], §3, and in [3], §3. Let C_D^+ resp. C_{4D}^+ be the group of strict equivalence classes of primitive ideals of O_D resp. O_{4D} . Then θ induces a surjective group homomorphism (also denoted by θ)

$$\theta: \mathcal{C}^+_{4D} \to \mathcal{C}^+_D$$

such that, for any class $\mathfrak{c} \in \mathcal{C}_{4D}^+$ and each primitive ideal $I \in \mathfrak{c}$, we have $\theta(I) \in \theta(\mathfrak{c})$. Concerning the kernel of θ , we have the following result.

LEMMA 2. Consider Pell's equation

$$(P) x^2 - dy^2 = 1.$$

If (P) has a solution (x, y) with $y \equiv 1 \pmod{2}$, then θ is an isomorphism; otherwise the kernel of θ has order 2.

Proof. For a discriminant Δ , let h_{Δ} be the number of classes of properly equivalent primitive binary quadratic forms with discriminant Δ . Then we have $h_{\Delta} = \# \mathcal{C}_{\Delta}^+$ ([5], Theorem 1.20), and therefore

$$r = \# \ker(\theta) = \frac{\# \mathcal{C}_{4D}^+}{\# \mathcal{C}_D^+} = \frac{h_{4D}}{h_D}$$

and the latter quotient is calculated in [1], §151 as follows. Let (x_0, y_0) resp. (x_1, y_1) be the least positive solution of $x^2 - dy^2 = 1$ resp. $x^2 - 4dy^2 = 1$; then

$$r = \frac{2\log(x_0 + y_0\sqrt{d})}{\log(x_1 + 2y_1\sqrt{d})}.$$

From the theory of Pell's equation (cf. [1], §85) it follows that (P) has a solution (x, y) with $y \equiv 1 \pmod{2}$ if and only if $y_0 \equiv 1 \pmod{2}$, and in this case $x_1 + 2y_1\sqrt{d} = (x_0 + y_0\sqrt{d})^2$, whence r = 1. If $y_0 \equiv 0 \pmod{2}$, then $y_1 = y_0/2$ and r = 2.

In what follows let E (respectively E^*) denote the set of primitive 0reduced ideals of O_{4D} (respectively O_D). Our next lemma provides a useful normalization of ideals in E^* .

LEMMA 3. For each $J \in E^*$, there exists a unique $C = C_J \in \mathbb{Z}$ such that $J = [A, B + \sqrt{d}]$, where $A, B \in \mathbb{Z}$, A > 0, $C = (B^2 - d)/A$, (A, 2B, C) = 1, and $\omega = (B + \sqrt{d})/A$ satisfies

$$1<\overline{\omega}<2<\omega.$$

The number $\omega = \omega_J$ is also uniquely determined by J, and J is 1-reduced if and only if $\omega > 3$.

Proof. By Lemma 1, $J = [A, B + \sqrt{d}]$ where $A, B \in \mathbb{Z}, A > 0$, $C = (B^2 - d)/A \in \mathbb{Z}$ and (A, 2B, C) = 1. In this representation, $A = \mathcal{N}(J)$ is uniquely determined, B is uniquely determined modulo A, and each normalization of B also fixes C. There is a unique choice of B modulo A such that the number $\omega = (B + \sqrt{d})/A$ satisfies $1 < \overline{\omega} < 2$, and since $\omega + [-\overline{\omega}] > 0$, we infer $\omega > 2$. J is 1-reduced if and only if $\omega + [-\overline{\omega}] > 1$, i.e., $\omega > 3$.

DEFINITION. (a) Let $J \in E^*$ be an ideal, $A = \mathcal{N}(J)$ and $C = C_J \in \mathbb{Z}$ the number introduced in Lemma 3. The ideal J is called

- of type 1 if $C \equiv 0 \pmod{2}$ and J is strictly 0-reduced;
- of type 2 if either $C \equiv 0 \pmod{2}$ and J is 1-reduced or $A \equiv 0 \pmod{2}$ and J is strictly 0-reduced;
- of type 3 if $A \equiv C \equiv 1 \pmod{2}$ or $A \equiv 0 \pmod{2}$ and J is 1-reduced.

(b) For a class $\mathfrak{c} \in \mathcal{C}_{4D}^+$ and $j \in \{1, 2, 3\}$, denote by $N_j^*(\mathfrak{c})$ the number of ideals of type j in $\theta(\mathfrak{c}) \cap E^*$, and set $N(\mathfrak{c}) = \#(E \cap \mathfrak{c}), N = \#E$.

(c) For $j \in \{1, 2, 3\}$, let N_j^* denote the number of ideals of type j in E^* .

THEOREM. For any class $\mathfrak{c} \in \mathcal{C}_{4D}^+$, we have

$$\sum_{j=1}^{3} j N_j^*(\mathfrak{c}) = \sum_{\mathfrak{c}' \in \theta^{-1}(\theta(\mathfrak{c}))} N(\mathfrak{c}').$$

The proof of Theorem 1 will be given in §3. Here we draw two corollaries.

Corollary 1. $N = N_1^* + 2N_2^* + 3N_3^*$.

Proof. With $r = \# \ker(\theta)$, we obtain

$$r\sum_{j=1}^{3} jN_{j}^{*} = \sum_{\mathfrak{c}\in\mathcal{C}_{4D}^{+}} \sum_{j=1}^{3} jN_{j}^{*}(\mathfrak{c}) = \sum_{\mathfrak{c}\in\mathcal{C}_{4D}^{+}} \sum_{\mathfrak{c}'\in\theta^{-1}(\theta(\mathfrak{c}))} N(\mathfrak{c}') = r\sum_{\mathfrak{c}\in\mathcal{C}_{4D}^{+}} N(\mathfrak{c}) = rN_{0}$$

whence the assertion. \blacksquare

COROLLARY 2. The following assertions are equivalent:

- (a) Pell's equation $x^2 dy^2 = 1$ has a solution (x, y) with $y \equiv 1 \pmod{2}$.
- (b) For any class $\mathfrak{c} \in \mathcal{C}^+_{4D}$, we have $N(\mathfrak{c}) = N_1^*(\mathfrak{c}) + 2N_2^*(\mathfrak{c}) + 3N_3^*(\mathfrak{c})$.

Proof. Since $N(\mathfrak{c}) > 0$ for every $\mathfrak{c} \in \mathcal{C}_{4D}^+$, Theorem 1 implies that (b) holds if and only if θ is an isomorphism. Now the assertion follows from Lemma 2.

3. Proof of the theorem. Throughout, we fix an ideal class $\mathfrak{c} \in \mathcal{C}_{4D}^+$, and we set

$$\overline{\mathfrak{c}} = igcup_{\mathfrak{c}'\in heta^{-1}(heta(\mathfrak{c}))} \mathfrak{c}'.$$

Clearly, $\bar{\mathfrak{c}} = \mathfrak{c}$ if θ is injective; otherwise $\bar{\mathfrak{c}} = \mathfrak{c} \cup \mathfrak{c}_1$ where $\mathfrak{c} \neq \mathfrak{c}_1 \in \mathcal{C}_{4D}^+$ and $\theta(\mathfrak{c}_1) = \theta(\mathfrak{c})$. We will study the effect of θ on the ideals $I \in E \cap \bar{\mathfrak{c}}$, given by

 $(*)_{4D}$. To this end, we partition $E \cap \overline{\mathfrak{c}}$, defining E_i (i = 1, 2, 3) by

 $E_1 = \{I \in E \cap \overline{\mathfrak{c}} \mid a \equiv 1 \pmod{2} \text{ and } \theta(I) \text{ is 0-reduced}\},\$ $E_2 = \{I \in E \cap \overline{\mathfrak{c}} \mid a \equiv 1 \pmod{2} \text{ and } \theta(I) \text{ is not 0-reduced}\},\$ $E_3 = \{I \in E \cap \overline{\mathfrak{c}} \mid a \equiv 0 \pmod{4}\}.$

For an ideal $J \in E^*$ with associated number ω , we denote by J' the ideal associated with $\omega' = ([\omega + 1] - \omega)^{-1}$; see [3]. Moreover, we set $A_J = \mathcal{N}(J)$ and we denote by $C_J \in \mathbb{Z}$ the number introduced in Lemma 3.

For $I \in E \cap \overline{\mathfrak{c}}$, we define

$$\psi(I) = \begin{cases} \theta(I) & \text{if } I \in E_1 \cup E_3, \\ \theta(I)' & \text{if } I \in E_2. \end{cases}$$

The theorem follows from Propositions 1, 2 and 3 below, giving the effect of ψ on E_1, E_2 and E_3 , respectively.

PROPOSITION 1. ψ maps E_1 bijectively to $E_1^* = \{J \in E^* \cap \theta(\mathfrak{c}) \mid A_J \equiv 1 \pmod{2}\}.$

Proof. By definition, $\psi(E_1) \subset E_1^*$. We must prove that, given $J \in E_1^*$, there is exactly one $I \in E_1$ with $\psi(I) = J$. Let $J \in E_1^*$ be given, $J = [A, B + \sqrt{d}]$, A odd, $B^2 - AC = d$ and (A, 2B, C) = 1.

For $I = [a, 2b + 2\sqrt{d}] \in E_1$, $\theta(I) = J$ if and only if $[a, b + \sqrt{d}] = [A, B + \sqrt{d}]$, that is, if and only if a = A and b = B + kA for some $k \in \mathbb{Z}$. Since $[A, 2B + 2kA + 2\sqrt{d}] = [A, 2B + 2\sqrt{d}]$ for all k, there is at most one ideal $I \in E_1$ such that $\theta(I) = J$, namely, $I = [A, 2B + 2\sqrt{d}]$. Now $c = (4b^2 - 4d)/a = 4(B^2 - d)/A = 4C$, so that (a, 2b, c) = (A, 2B, 4C) = (A, 2B, C) = 1, and therefore $[A, 2B + 2\sqrt{d}]$ is primitive.

If $\omega = (B + \sqrt{d})/A$, then as $J = A[1, \omega]$ is 0-reduced, $\omega + [-\overline{\omega}] > 0$. Now $[A, 2B + 2\sqrt{d}] = A[1, 2\omega]$ and $2\omega + [-2\overline{\omega}] \ge 2\omega + 2[-\overline{\omega}] > 0$ so that I is 0-reduced. This completes the proof. \blacksquare

PROPOSITION 2. ψ maps E_2 bijectively to $E_2^* = \{J \in E^* \cap \theta(\mathfrak{c}) \mid C_J \equiv 1 \pmod{2}\}.$

Proof. We first prove that $I \in E_2$ implies $\psi(I) = \theta(I)' \in E_2^*$. Let $I \in E_2$ be given, $I = a[1, \varphi] = [a, 2b + 2\sqrt{d}]$, where $a, b \in \mathbb{Z}$, a > 0, $a \equiv 1 \pmod{2}$, $4b^2 - ac = 4d$, where $c \in \mathbb{Z}$ and (a, 2b, c) = 1. Since a is odd, we have $c_1 = c/4 \in \mathbb{Z}$. Furthermore,

(*)
$$\varphi + [-\overline{\varphi}] > 0 \text{ and } \frac{\varphi}{2} + \left[\frac{-\varphi}{2}\right] < 0,$$

since I is 0-reduced and $\theta(I)$ is not. Now $J = \psi(I) = [A, B + \sqrt{d}] = A[1, \omega]$, where $A = A_J$, $B \in \mathbb{Z}$, $C = (B^2 - d)/A \in \mathbb{Z}$ and $\omega = (B + \sqrt{d})/A = ([\varphi/2 + 1] - \varphi/2)^{-1}$. If $k = [-\overline{\varphi}/2]$, then (*) implies $[-\overline{\varphi}] > -\varphi > 2k$; consequently, $[-\overline{\varphi}] = 2k + 1, -2k - 1 < \varphi < -2k$ and $[\varphi/2 + 1] = -k$. Since $\omega = -2/(2k + \varphi)$, we obtain $\omega > 2$, and $\overline{\omega} = -2/(2k + \overline{\varphi})$ implies $1 < \overline{\omega} < 2$, since $-2 < 2k + \overline{\varphi} < -1$. In particular, we obtain $\omega + [-\overline{\omega}] > 0$, whence $J \in E^*$, and $C = C_J$.

Since $\varphi = (2b + 2\sqrt{d})/a$, we infer $\omega = -2/(2k + \varphi) = -a/(ka + b + \sqrt{d}) = (B + \sqrt{d})/A$, which implies

$$B = -(ka + b), \quad A = k^2a + 2bk + c_1$$

and therefore $C = (B^2 - d)/A = a \equiv 1 \pmod{2}$; thus $J \in E_2^*$.

Next, suppose $J \in E_2^*$, $J = [A, B + \sqrt{d}]$, where $A = A_J$, $B \in \mathbb{Z}$, $\omega = (B + \sqrt{d})/A$ satisfies $1 < \overline{\omega} < 2 < \omega$ and $C = C_J = (B^2 - d)/A$ is odd. If $I \in E_2$ and $\psi(I) = J$, we normalize I in the form $I = a[1, \varphi]$, where $-2 < \overline{\varphi} < -1 < \varphi$. Since $\varphi/2 + [-\overline{\varphi}/2] < 0$ and $[-\overline{\varphi}/2] = 0$, we have $\varphi < 0$ and $J = A[1, \omega']$, where $\omega' = 1/([\varphi/2 + 1] - \varphi/2) = -2/\varphi$. Since $1 < \overline{\omega}' < 2 < \omega'$ we have $\omega = \omega'$, and so $\varphi = -2/\omega = (-2B + 2\sqrt{d})/C$. Therefore, the only candidate for $I \in E_2$ satisfying $\psi(I) = J$ is

$$I_0 = [C, -2B + 2\sqrt{d}] = C \cdot [1, \varphi], \quad \text{where } \varphi = -2/\omega.$$

It remains to show that $I_0 \in E_2$. As a = C and b = -B, we have $c = (4b^2 - 4d)/a = 4(B^2 - d)/C = 4A$, and therefore (a, 2b, c) = (C, -2B, 4A) = 1 since C is odd. Thus I_0 is primitive. As $1 < \overline{\omega} < 2 < \omega$ we have $-2 < \overline{\varphi} < -1 < \varphi < 0$. This implies $\varphi + [-\overline{\varphi}] > \varphi + 1 > 0$ (so that I_0 is 0-reduced) and $\varphi/2 + [-\overline{\varphi}/2] = \varphi/2 < 0$ (so that $\theta(I_0)$ is not 0-reduced). Therefore, $I_0 \in E_2$ and the proof of Proposition 2 is complete.

PROPOSITION 3. Let $J = [A, B + \sqrt{d}] \in E^* \cap \theta(\mathfrak{c})$, where $A = A_J, B \in \mathbb{Z}$ and $C = C_J = (B^2 - d)/A \in \mathbb{Z}$, be given. Then

$$#\{I \in E_3 \mid \psi(I) = J\} = \begin{cases} 2 & \text{if } J \text{ is } 1\text{-reduced and } A \equiv 0 \pmod{2}, \\ 1 & \text{if } J \text{ is } 1\text{-reduced and } C \equiv 0 \pmod{2}, \\ or J \text{ is } 1\text{-reduced and } A \equiv C \equiv 1 \pmod{2}, \\ or J \text{ is not } 1\text{-reduced and } C \equiv 1 \pmod{2}, \\ 0 & otherwise. \end{cases}$$

Proof. For J given as above, $\omega = (B + \sqrt{d})/A$ satisfies $1 < \overline{\omega} < 2 < \omega$. If $I \in E_3$ is such that $\psi(I) = J$ then $I = [4a_1, 2b + 2\sqrt{d}]$, where $a_1, b, c \in \mathbb{Z}, a_1 > 0$, $(4a_1, 2b, c) = 1$, $b^2 - a_1c = d$ and $\theta(I) = [a_1, b + \sqrt{d}] = [A, B + \sqrt{d}]$. Thus $a_1 = A$ and b = B + kA for some $k \in \mathbb{Z}$, so that $I = I_k = [4A, 2B + 2kA + 2\sqrt{d}]$ for some $k \in \mathbb{Z}$. Since $I_k = I_{k+2}$ for each k, we have $I \in \{I_0, I_1\}$ and $\{I \in E_3 \mid \psi(I) = J\} = \{I_0, I_1\} \cap E$. It remains to determine the conditions under which each of the two candidates, I_0 and I_1 , is a member of E.

First, $I_0 = [4A, 2B + 2\sqrt{d}] = [a, 2b + 2\sqrt{d}]$ has $c = (4b^2 - 4d)/a = 4(B^2 - d)/(4a) = C$, and so (a, 2b, c) = (4A, 2B, C). Hence I_0 is primitive if and only if C is odd. Now $\varphi_0 = (2B + 2\sqrt{d})/(4A) = \omega/2$ satisfies $\varphi_0 + [-\overline{\varphi}_0] =$

 $\omega/2 + [-\overline{\omega}/2] = \omega/2 - 1 > 0$ so that I_0 is always 0-reduced. Thus, $I_0 \in E$ precisely when it is primitive, that is, when $C_J \equiv 1 \pmod{2}$.

Next, $I_1 = [4A, 2B + 2A + 2\sqrt{d}] = [a, 2b + 2\sqrt{d}]$ has $c = (4b^2 - 4d)/a = 4((A + B)^2 - d)/(4A) = A + 2B + C$ and so (a, 2b, c) = (4A, 2B + 2A, A + 2B + C). Hence I is primitive if and only if A + C is odd.

Now $\varphi_1 = (2B + 2A + 2\sqrt{d})/(4A) = (\omega + 1)/2$ satisfies $\varphi_1 + [-\overline{\varphi}_1] = (\omega + 1)/2 + [-(\omega + 1)/2] = (\omega + 1)/2 + (-2) > 0$ if and only if $\omega > 3$, that is, if and only if J is 1-reduced. Thus, $I_1 \in E$ precisely when A + C is odd and J is 1-reduced. Proposition 3 follows easily from the preceding two observations.

REFERENCES

- P. G. L. Dirichlet und R. Dedekind, Vorlesungen über Zahlentheorie, Chelsea, 1968.
- [2] P. Kaplan, Idéaux k-réduits des ordres des corps quadratiques réels, in preparation.
- [3] P. Kaplan et P. A. Leonard, *Idéaux négativement réduits d'un corps quadratique réel et un problème d'Eisenstein*, Enseign. Math. 39 (1993), 195–210.
- [4] P. Kaplan and K. S. Williams, *The distance between ideals in the orders of a real quadratic field*, ibid. 36 (1990), 321–358.
- [5] H. Koch, Algebraic number fields, in: Number Theory II, A. N. Parshin and I. R. Shafarevich (eds.), Springer, 1992.
- [6] Y. Mimura, On odd solutions of the equation $X^2 DY^2 = 4$, in: Proc. Sympos. on Analytic Number Theory and Related Topics, Gakushuin University, Tokyo, 1992, 110–118.
- [7] D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT HEINRICHSTR. 36/IV A-8010 GRAZ, AUSTRIA DEPARTMENT OF MATHEMATICS ARIZONA STATE UNIVERSITY UMA-1804 TEMPE, ARIZONA 85287-1804 U.S.A.

Reçu par la Rédaction le 15.11.1994