NEGATIVELY REDUCED IDEALS IN ORDERS OF
 REAL QUADRATIC FIELDS: EVEN DISCRIMINANTS

BY
FRANZ HALTER-KOCH (GRAZ) and
PHILIP A. LEONARD (TEMPE, ARIZONA)

1. Introduction. Let Δ be a positive discriminant, that is, a nonsquare positive integer congruent to 0 or 1 modulo 4 . Let O_{Δ} be the order of discriminant Δ in the real quadratic field $\mathbb{Q}(\sqrt{\Delta})$. The primitive ideals of O_{Δ} are the \mathbb{Z}-modules

$$
\begin{aligned}
&(*)_{\Delta} \quad I=[a,(b+\sqrt{\Delta}) / 2], \text { where } a, b \in \mathbb{Z} \\
& a>0, c=\left(b^{2}-\Delta\right) /(4 a) \in \mathbb{Z} \text { and }(a, b, c)=1
\end{aligned}
$$

Our main reference is [4]; however, we depart from notation there in requiring $a>0$. $\operatorname{In}(*)_{\Delta}, a=\mathcal{N}(I)=\left(O_{\Delta}: I\right)$ is the norm of I, and b is uniquely determined modulo $2 a$.

For a real number λ, we denote by $[\lambda]$ the greatest integer not exceeding λ. For $\varphi=x+y \sqrt{\Delta} \in \mathbb{Q}(\sqrt{\Delta})(x, y \in \mathbb{Q})$, we denote by $\bar{\varphi}=x-y \sqrt{\Delta}$ its conjugate.

If I is given by $(*)_{\Delta}$, the number $\varphi=(b+\sqrt{\Delta}) / 2 a$ is determined modulo 1 by I, while $I=a[1, \varphi]$ is uniquely determined by φ. The quantity $\varphi+[-\bar{\varphi}]$ depends only on I. Following P. Kaplan [2], we call the ideal $I k$-reduced if $\varphi+[-\bar{\varphi}]>k$, and strictly k-reduced if $k<\varphi+[-\bar{\varphi}]<k+1$. With this terminology, 1-reduced ideals are just the reduced ideals in the classical sense, 0-reduced ideals are the negatively reduced ideals considered in [6] and [3] (see also [7]), and strictly 0-reduced ideals are negatively reduced ideals which are not reduced. For each $k \geq 0$, the number of k-reduced ideals of O_{Δ} is finite.

These notions have been used by P. Kaplan [2] in the case of odd discriminants D, to relate the 0-reduced and 1-reduced primitive ideals of $O_{4 D}$ to the primitive ideals of O_{D} in a precise way. When $D \equiv 5(\bmod 8)$ these results have application to Eisenstein's problem concerning the existence

[^0]of odd solutions of the equation $x^{2}-D y^{2}=4$. This connection was first observed by Mimura [6] and investigated in a systematic way by P. Kaplan and P. A. Leonard [3].

In the present note we study the relationship between primitive 0-reduced ideals of $O_{4 D}$ and primitive ideals of O_{D} in the case when D is even, and we give an application to the Pell equation.
2. Notations and results. Let $D=4 d$ be a discriminant. We start with a description of the primitive ideals of O_{D} and $O_{4 D}$.

Lemma 1. (i) Each primitive ideal J of O_{D} is of the form
$(*)_{D}$

$$
\begin{aligned}
& J=[A, B+\sqrt{d}], \quad \text { where } A, B \in \mathbb{Z}, A>0 \\
& \quad C=\left(B^{2}-d\right) / A \in \mathbb{Z} \text { and }(A, 2 B, C)=1
\end{aligned}
$$

(ii) Each primitive ideal I of $O_{4 D}$ is of the form
$(*)_{4 D} \quad I=[a, 2 b+2 \sqrt{d}], \quad$ where $a, b \in \mathbb{Z}, a>0$,

$$
c=4\left(b^{2}-d\right) / a \in \mathbb{Z} \text { and }(a, 2 b, c)=1
$$

In particular, we have either $a \equiv 1(\bmod 2)$ or $a \equiv 0(\bmod 4)$.
Proof. (i) If J is a primitive ideal of O_{D}, then $J=\left[A,\left(b_{1}+\sqrt{4 d}\right) / 2\right]$, where $A, b_{1} \in \mathbb{Z}, A>0, C=\left(b_{1}^{2}-4 d\right) /(4 A) \in \mathbb{Z}$ and $\left(A, b_{1}, C\right)=1$. This implies $b_{1} \equiv 0(\bmod 2)$, and with $b_{1}=2 B$ we obtain the asserted form.
(ii) If I is a primitive ideal of $O_{4 D}$, then $I=\left[a,\left(b_{1}+\sqrt{16 d}\right) / 2\right]$, where $a, b_{1} \in \mathbb{Z}, a>0, c=\left(b_{1}^{2}-16 d\right) /(4 a) \in \mathbb{Z}$ and $\left(a, b_{1}, c\right)=1$. This implies $b_{1} \equiv$ $0(\bmod 2)$, and with $b_{1}=2 b_{2}$ we obtain $I=\left[a, b_{2}+2 \sqrt{d}\right]=\left[a, a+b_{2}+2 \sqrt{d}\right]$, $c=\left(b_{2}^{2}-4 d\right) / a \in \mathbb{Z}$ and $\left(a, 2 b_{2}, c\right)=1$. If b_{2} is odd, then so is a, and we replace b_{2} by the even number $a+b_{2}$. Therefore we may assume that b_{2} is even, $b_{2}=2 b, c=4\left(b^{2}-d\right) / a$ and $(a, 2 b, c)=1$.

For a primitive ideal I of $O_{4 D}$ in the form $(*)_{4 D}$, we define a primitive ideal $\theta(I)$ of O_{D} by the formula

$$
\theta(I)= \begin{cases}{[a, b+\sqrt{d}]} & \text { if } a \equiv 1(\bmod 2), \\ {[a / 4, b+\sqrt{d}]} & \text { if } a \equiv 0(\bmod 4) .\end{cases}
$$

This map, already studied by Gauss, was investigated in detail in [4], §3, and in $[3], \S 3$. Let \mathcal{C}_{D}^{+}resp. $\mathcal{C}_{4 D}^{+}$be the group of strict equivalence classes of primitive ideals of O_{D} resp. $O_{4 D}$. Then θ induces a surjective group homomorphism (also denoted by θ)

$$
\theta: \mathcal{C}_{4 D}^{+} \rightarrow \mathcal{C}_{D}^{+}
$$

such that, for any class $\mathfrak{c} \in \mathcal{C}_{4 D}^{+}$and each primitive ideal $I \in \mathfrak{c}$, we have $\theta(I) \in \theta(\mathfrak{c})$. Concerning the kernel of θ, we have the following result.

Lemma 2. Consider Pell's equation
(P)

$$
x^{2}-d y^{2}=1
$$

If (P) has a solution (x, y) with $y \equiv 1(\bmod 2)$, then θ is an isomorphism; otherwise the kernel of θ has order 2 .

Proof. For a discriminant Δ, let h_{Δ} be the number of classes of properly equivalent primitive binary quadratic forms with discriminant Δ. Then we have $h_{\Delta}=\# \mathcal{C}_{\Delta}^{+}$([5], Theorem 1.20), and therefore

$$
r=\# \operatorname{ker}(\theta)=\frac{\# \mathcal{C}_{4 D}^{+}}{\# \mathcal{C}_{D}^{+}}=\frac{h_{4 D}}{h_{D}},
$$

and the latter quotient is calculated in [1], $\S 151$ as follows. Let (x_{0}, y_{0}) resp. $\left(x_{1}, y_{1}\right)$ be the least positive solution of $x^{2}-d y^{2}=1$ resp. $x^{2}-4 d y^{2}=1$; then

$$
r=\frac{2 \log \left(x_{0}+y_{0} \sqrt{d}\right)}{\log \left(x_{1}+2 y_{1} \sqrt{d}\right)}
$$

From the theory of Pell's equation (cf. [1], §85) it follows that (P) has a solution (x, y) with $y \equiv 1(\bmod 2)$ if and only if $y_{0} \equiv 1(\bmod 2)$, and in this case $x_{1}+2 y_{1} \sqrt{d}=\left(x_{0}+y_{0} \sqrt{d}\right)^{2}$, whence $r=1$. If $y_{0} \equiv 0(\bmod 2)$, then $y_{1}=y_{0} / 2$ and $r=2$.

In what follows let E (respectively E^{*}) denote the set of primitive 0reduced ideals of $O_{4 D}$ (respectively O_{D}). Our next lemma provides a useful normalization of ideals in E^{*}.

Lemma 3. For each $J \in E^{*}$, there exists a unique $C=C_{J} \in \mathbb{Z}$ such that $J=[A, B+\sqrt{d}]$, where $A, B \in \mathbb{Z}, A>0, C=\left(B^{2}-d\right) / A,(A, 2 B, C)=1$, and $\omega=(B+\sqrt{d}) / A$ satisfies

$$
1<\bar{\omega}<2<\omega .
$$

The number $\omega=\omega_{J}$ is also uniquely determined by J, and J is 1-reduced if and only if $\omega>3$.

Proof. By Lemma $1, J=[A, B+\sqrt{d}]$ where $A, B \in \mathbb{Z}, A>0$, $C=\left(B^{2}-d\right) / A \in \mathbb{Z}$ and $(A, 2 B, C)=1$. In this representation, $A=\mathcal{N}(J)$ is uniquely determined, B is uniquely determined modulo A, and each normalization of B also fixes C. There is a unique choice of B modulo A such that the number $\omega=(B+\sqrt{d}) / A$ satisfies $1<\bar{\omega}<2$, and since $\omega+[-\bar{\omega}]>0$, we infer $\omega>2$. J is 1 -reduced if and only if $\omega+[-\bar{\omega}]>1$, i.e., $\omega>3$.

Definition. (a) Let $J \in E^{*}$ be an ideal, $A=\mathcal{N}(J)$ and $C=C_{J} \in \mathbb{Z}$ the number introduced in Lemma 3. The ideal J is called

- of type 1 if $C \equiv 0(\bmod 2)$ and J is strictly 0 -reduced;
- of type 2 if either $C \equiv 0(\bmod 2)$ and J is 1 -reduced or $A \equiv 0(\bmod 2)$ and J is strictly 0 -reduced;
- of type 3 if $A \equiv C \equiv 1(\bmod 2)$ or $A \equiv 0(\bmod 2)$ and J is 1 -reduced.
(b) For a class $\mathfrak{c} \in \mathcal{C}_{4 D}^{+}$and $j \in\{1,2,3\}$, denote by $N_{j}^{*}(\mathfrak{c})$ the number of ideals of type j in $\theta(\mathfrak{c}) \cap E^{*}$, and set $N(\mathfrak{c})=\#(E \cap \mathfrak{c}), N=\# E$.
(c) For $j \in\{1,2,3\}$, let N_{j}^{*} denote the number of ideals of type j in E^{*}.

Theorem. For any class $\mathfrak{c} \in \mathcal{C}_{4 D}^{+}$, we have

$$
\sum_{j=1}^{3} j N_{j}^{*}(\mathfrak{c})=\sum_{\mathfrak{c}^{\prime} \in \theta^{-1}(\theta(\mathfrak{c}))} N\left(\mathfrak{c}^{\prime}\right) .
$$

The proof of Theorem 1 will be given in $\S 3$. Here we draw two corollaries.
Corollary 1. $N=N_{1}^{*}+2 N_{2}^{*}+3 N_{3}^{*}$.
Proof. With $r=\# \operatorname{ker}(\theta)$, we obtain
$r \sum_{j=1}^{3} j N_{j}^{*}=\sum_{\mathfrak{c} \in \mathcal{C}_{4 D}^{+}} \sum_{j=1}^{3} j N_{j}^{*}(\mathfrak{c})=\sum_{\mathfrak{c} \in \mathcal{C}_{4 D}^{+}} \sum_{\mathfrak{c}^{\prime} \in \theta^{-1}(\theta(\mathfrak{c}))} N\left(\mathfrak{c}^{\prime}\right)=r \sum_{\mathfrak{c} \in \mathcal{C}_{4 D}^{+}} N(\mathfrak{c})=r N$,
whence the assertion.
Corollary 2. The following assertions are equivalent:
(a) Pell's equation $x^{2}-d y^{2}=1$ has a solution (x, y) with $y \equiv 1(\bmod 2)$.
(b) For any class $\mathfrak{c} \in \mathcal{C}_{4 D}^{+}$, we have $N(\mathfrak{c})=N_{1}^{*}(\mathfrak{c})+2 N_{2}^{*}(\mathfrak{c})+3 N_{3}^{*}(\mathfrak{c})$.

Proof. Since $N(\mathfrak{c})>0$ for every $\mathfrak{c} \in \mathcal{C}_{4 D}^{+}$, Theorem 1 implies that (b) holds if and only if θ is an isomorphism. Now the assertion follows from Lemma 2.
3. Proof of the theorem. Throughout, we fix an ideal class $\mathfrak{c} \in \mathcal{C}_{4 D}^{+}$, and we set

$$
\overline{\mathfrak{c}}=\bigcup_{\mathfrak{c}^{\prime} \in \theta^{-1}(\theta(\mathfrak{c}))} \mathfrak{c}^{\prime} .
$$

Clearly, $\overline{\mathfrak{c}}=\mathfrak{c}$ if θ is injective; otherwise $\overline{\mathfrak{c}}=\mathfrak{c} \cup \mathfrak{c}_{1}$ where $\mathfrak{c} \neq \mathfrak{c}_{1} \in \mathcal{C}_{4 D}^{+}$and $\theta\left(\mathfrak{c}_{1}\right)=\theta(\mathfrak{c})$. We will study the effect of θ on the ideals $I \in E \cap \overline{\mathfrak{c}}$, given by
$(*)_{4 D}$. To this end, we partition $E \cap \overline{\mathfrak{c}}$, defining $E_{i}(i=1,2,3)$ by

$$
\begin{aligned}
& E_{1}=\{I \in E \cap \overline{\mathfrak{c}} \mid a \equiv 1(\bmod 2) \text { and } \theta(I) \text { is 0-reduced }\}, \\
& E_{2}=\{I \in E \cap \overline{\mathfrak{c}} \mid a \equiv 1(\bmod 2) \text { and } \theta(I) \text { is not 0-reduced }\}, \\
& E_{3}=\{I \in E \cap \overline{\mathfrak{c}} \mid a \equiv 0(\bmod 4)\} .
\end{aligned}
$$

For an ideal $J \in E^{*}$ with associated number ω, we denote by J^{\prime} the ideal associated with $\omega^{\prime}=([\omega+1]-\omega)^{-1}$; see [3]. Moreover, we set $A_{J}=\mathcal{N}(J)$ and we denote by $C_{J} \in \mathbb{Z}$ the number introduced in Lemma 3.

For $I \in E \cap \overline{\mathfrak{c}}$, we define

$$
\psi(I)= \begin{cases}\theta(I) & \text { if } I \in E_{1} \cup E_{3}, \\ \theta(I)^{\prime} & \text { if } I \in E_{2} .\end{cases}
$$

The theorem follows from Propositions 1, 2 and 3 below, giving the effect of ψ on E_{1}, E_{2} and E_{3}, respectively.

Proposition 1. ψ maps E_{1} bijectively to $E_{1}^{*}=\left\{J \in E^{*} \cap \theta(\mathfrak{c}) \mid A_{J} \equiv 1\right.$ $(\bmod 2)\}$.

Proof. By definition, $\psi\left(E_{1}\right) \subset E_{1}^{*}$. We must prove that, given $J \in E_{1}^{*}$, there is exactly one $I \in E_{1}$ with $\psi(I)=J$. Let $J \in E_{1}^{*}$ be given, $J=$ $[A, B+\sqrt{d}], A$ odd, $B^{2}-A C=d$ and $(A, 2 B, C)=1$.

For $I=[a, 2 b+2 \sqrt{d}] \in E_{1}, \quad \theta(I)=J$ if and only if $[a, b+\sqrt{d}]=$ $[A, B+\sqrt{d}]$, that is, if and only if $a=A$ and $b=B+k A$ for some $k \in \mathbb{Z}$. Since $[A, 2 B+2 k A+2 \sqrt{d}]=[A, 2 B+2 \sqrt{d}]$ for all k, there is at most one ideal $I \in E_{1}$ such that $\theta(I)=J$, namely, $I=[A, 2 B+2 \sqrt{d}]$. Now $c=\left(4 b^{2}-4 d\right) / a=4\left(B^{2}-d\right) / A=4 C$, so that $(a, 2 b, c)=(A, 2 B, 4 C)=$ $(A, 2 B, C)=1$, and therefore $[A, 2 B+2 \sqrt{d}]$ is primitive.

If $\omega=(B+\sqrt{d}) / A$, then as $J=A[1, \omega]$ is 0 -reduced, $\omega+[-\bar{\omega}]>0$. Now $[A, 2 B+2 \sqrt{d}]=A[1,2 \omega]$ and $2 \omega+[-2 \bar{\omega}] \geq 2 \omega+2[-\bar{\omega}]>0$ so that I is 0 -reduced. This completes the proof.

Proposition 2. ψ maps E_{2} bijectively to $E_{2}^{*}=\left\{J \in E^{*} \cap \theta(\mathfrak{c}) \mid C_{J} \equiv 1\right.$ $(\bmod 2)\}$.

Proof. We first prove that $I \in E_{2}$ implies $\psi(I)=\theta(I)^{\prime} \in E_{2}^{*}$. Let $I \in E_{2}$ be given, $I=a[1, \varphi]=[a, 2 b+2 \sqrt{d}]$, where $a, b \in \mathbb{Z}, a>0, a \equiv 1$ $(\bmod 2), 4 b^{2}-a c=4 d$, where $c \in \mathbb{Z}$ and $(a, 2 b, c)=1$. Since a is odd, we have $c_{1}=c / 4 \in \mathbb{Z}$. Furthermore,

$$
\begin{equation*}
\varphi+[-\bar{\varphi}]>0 \quad \text { and } \quad \frac{\varphi}{2}+\left[\frac{-\varphi}{2}\right]<0 \tag{*}
\end{equation*}
$$

since I is 0-reduced and $\theta(I)$ is not. Now $J=\psi(I)=[A, B+\sqrt{d}]=A[1, \omega]$, where $A=A_{J}, B \in \mathbb{Z}, C=\left(B^{2}-d\right) / A \in \mathbb{Z}$ and $\omega=(B+\sqrt{d}) / A=$ $([\varphi / 2+1]-\varphi / 2)^{-1}$. If $k=[-\bar{\varphi} / 2]$, then $(*)$ implies $[-\bar{\varphi}]>-\varphi>2 k$; consequently, $[-\bar{\varphi}]=2 k+1,-2 k-1<\varphi<-2 k$ and $[\varphi / 2+1]=-k$.

Since $\omega=-2 /(2 k+\varphi)$, we obtain $\omega>2$, and $\bar{\omega}=-2 /(2 k+\bar{\varphi})$ implies $1<\bar{\omega}<2$, since $-2<2 k+\bar{\varphi}<-1$. In particular, we obtain $\omega+[-\bar{\omega}]>0$, whence $J \in E^{*}$, and $C=C_{J}$.

Since $\varphi=(2 b+2 \sqrt{d}) / a$, we infer $\omega=-2 /(2 k+\varphi)=-a /(k a+b+\sqrt{d})=$ $(B+\sqrt{d}) / A$, which implies

$$
B=-(k a+b), \quad A=k^{2} a+2 b k+c_{1}
$$

and therefore $C=\left(B^{2}-d\right) / A=a \equiv 1(\bmod 2)$; thus $J \in E_{2}^{*}$.
Next, suppose $J \in E_{2}^{*}, J=[A, B+\sqrt{d}]$, where $A=A_{J}, B \in \mathbb{Z}$, $\omega=(B+\sqrt{d}) / A$ satisfies $1<\bar{\omega}<2<\omega$ and $C=C_{J}=\left(B^{2}-d\right) / A$ is odd. If $I \in E_{2}$ and $\psi(I)=J$, we normalize I in the form $I=a[1, \varphi]$, where $-2<\bar{\varphi}<-1<\varphi$. Since $\varphi / 2+[-\bar{\varphi} / 2]<0$ and $[-\bar{\varphi} / 2]=0$, we have $\varphi<0$ and $J=A\left[1, \omega^{\prime}\right]$, where $\omega^{\prime}=1 /([\varphi / 2+1]-\varphi / 2)=-2 / \varphi$. Since $1<\bar{\omega}^{\prime}<2<\omega^{\prime}$ we have $\omega=\omega^{\prime}$, and so $\varphi=-2 / \omega=(-2 B+2 \sqrt{d}) / C$. Therefore, the only candidate for $I \in E_{2}$ satisfying $\psi(I)=J$ is

$$
I_{0}=[C,-2 B+2 \sqrt{d}]=C \cdot[1, \varphi], \quad \text { where } \varphi=-2 / \omega
$$

It remains to show that $I_{0} \in E_{2}$. As $a=C$ and $b=-B$, we have $c=$ $\left(4 b^{2}-4 d\right) / a=4\left(B^{2}-d\right) / C=4 A$, and therefore $(a, 2 b, c)=(C,-2 B, 4 A)=$ 1 since C is odd. Thus I_{0} is primitive. As $1<\bar{\omega}<2<\omega$ we have $-2<\bar{\varphi}<-1<\varphi<0$. This implies $\varphi+[-\bar{\varphi}]>\varphi+1>0$ (so that I_{0} is 0 -reduced) and $\varphi / 2+[-\bar{\varphi} / 2]=\varphi / 2<0$ (so that $\theta\left(I_{0}\right)$ is not 0 -reduced). Therefore, $I_{0} \in E_{2}$ and the proof of Proposition 2 is complete.

Proposition 3. Let $J=[A, B+\sqrt{d}] \in E^{*} \cap \theta(\mathfrak{c})$, where $A=A_{J}, B \in \mathbb{Z}$ and $C=C_{J}=\left(B^{2}-d\right) / A \in \mathbb{Z}$, be given. Then

$$
\#\left\{I \in E_{3} \mid \psi(I)=J\right\}= \begin{cases}2 & \text { if } J \text { is } 1 \text {-reduced and } A \equiv 0(\bmod 2) \\ 1 & \text { if } J \text { is } 1 \text {-reduced and } C \equiv 0(\bmod 2) \\ \text { or } J \text { is } 1 \text {-reduced and } A \equiv C \equiv 1(\bmod 2) \\ \text { or } J \text { is not } 1 \text {-reduced and } C \equiv 1(\bmod 2) \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. For J given as above, $\omega=(B+\sqrt{d}) / A$ satisfies $1<\bar{\omega}<$ $2<\omega$. If $I \in E_{3}$ is such that $\psi(I)=J$ then $I=\left[4 a_{1}, 2 b+2 \sqrt{d}\right]$, where $a_{1}, b, c \in \mathbb{Z}, a_{1}>0,\left(4 a_{1}, 2 b, c\right)=1, b^{2}-a_{1} c=d$ and $\theta(I)=\left[a_{1}, b+\sqrt{d}\right]=$ $[A, B+\sqrt{d}]$. Thus $a_{1}=A$ and $b=B+k A$ for some $k \in \mathbb{Z}$, so that $I=I_{k}=[4 A, 2 B+2 k A+2 \sqrt{d}]$ for some $k \in \mathbb{Z}$. Since $I_{k}=I_{k+2}$ for each k, we have $I \in\left\{I_{0}, I_{1}\right\}$ and $\left\{I \in E_{3} \mid \psi(I)=J\right\}=\left\{I_{0}, I_{1}\right\} \cap E$. It remains to determine the conditions under which each of the two candidates, I_{0} and I_{1}, is a member of E.

First, $I_{0}=[4 A, 2 B+2 \sqrt{d}]=[a, 2 b+2 \sqrt{d}]$ has $c=\left(4 b^{2}-4 d\right) / a=4\left(B^{2}-\right.$ $d) /(4 a)=C$, and so $(a, 2 b, c)=(4 A, 2 B, C)$. Hence I_{0} is primitive if and only if C is odd. Now $\varphi_{0}=(2 B+2 \sqrt{d}) /(4 A)=\omega / 2$ satisfies $\varphi_{0}+\left[-\bar{\varphi}_{0}\right]=$
$\omega / 2+[-\bar{\omega} / 2]=\omega / 2-1>0$ so that I_{0} is always 0 -reduced. Thus, $I_{0} \in E$ precisely when it is primitive, that is, when $C_{J} \equiv 1(\bmod 2)$.

Next, $I_{1}=[4 A, 2 B+2 A+2 \sqrt{d}]=[a, 2 b+2 \sqrt{d}]$ has $c=\left(4 b^{2}-4 d\right) / a=$ $4\left((A+B)^{2}-d\right) /(4 A)=A+2 B+C$ and so $(a, 2 b, c)=(4 A, 2 B+2 A, A+$ $2 B+C)$. Hence I is primitive if and only if $A+C$ is odd.

Now $\varphi_{1}=(2 B+2 A+2 \sqrt{d}) /(4 A)=(\omega+1) / 2$ satisfies $\varphi_{1}+\left[-\bar{\varphi}_{1}\right]=$ $(\omega+1) / 2+[-(\omega+1) / 2]=(\omega+1) / 2+(-2)>0$ if and only if $\omega>3$, that is, if and only if J is 1-reduced. Thus, $I_{1} \in E$ precisely when $A+C$ is odd and J is 1 -reduced. Proposition 3 follows easily from the preceding two observations.

REFERENCES

[1] P. G. L. Dirichlet und R. Dedekind, Vorlesungen über Zahlentheorie, Chelsea, 1968.
[2] P. Kaplan, Idéaux k-réduits des ordres des corps quadratiques réels, in preparation.
[3] P. Kaplan et P. A. Leonard, Idéaux négativement réduits d'un corps quadratique réel et un problème d'Eisenstein, Enseign. Math. 39 (1993), 195-210.
[4] P. Kaplan and K. S. Williams, The distance between ideals in the orders of a real quadratic field, ibid. 36 (1990), 321-358.
[5] H. Koch, Algebraic number fields, in: Number Theory II, A. N. Parshin and I. R. Shafarevich (eds.), Springer, 1992.
[6] Y. Mimura, On odd solutions of the equation $X^{2}-D Y^{2}=4$, in: Proc. Sympos. on Analytic Number Theory and Related Topics, Gakushuin University, Tokyo, 1992, 110-118.
[7] D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT
HEINRICHSTR. 36/IV
A-8010 GRAZ, AUSTRIA

DEPARTMENT OF MATHEMATICS
ARIZONA STATE UNIVERSITY
UMA-1804
TEMPE, ARIZONA 85287-1804

[^0]: 1991 Mathematics Subject Classification: 11R11, 11R29.
 Support from the Departments of Mathematics at Arizona State University and at Karl-Franzens-Universität (Graz) is gratefully acknowledged.

