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1. Introduction. Let µn = pnδ(0) + (1 − pn)δ(1/2n), n = 1, 2, . . . ,
where pn ∈ [0, 1] and δ(x) denotes the probability atom at x. The infinite
convolution product of the µn converges in the weak* sense to a probability
measure µ on [0, 1] which is known as a coin tossing measure [9],

µ =
∞∗

n=1

µn.

Let x =
∑∞

n=1εn(x)/2n, where εn(x) ∈ {0, 1}, be the 2-adic expansion
of x ∈ [0, 1]. It is not difficult to see that if

dνa,N =
N∏

n=1

(1 + anrn(x))dλ, N = 1, 2, . . . ,

where a = (an)n≥1, λ denotes the Lebesgue measure, rn(x) = 1− 2εn(x) is
the nth Rademacher function and pn = (1 + an)/2, then

lim
N→∞

νa,N = µa

in the weak* sense and µ = µa (see also [12]). So we have two ways to
describe the same measure. In this work we shall use the second way. The
characterizations of the sequences (an)n≥1 which give continuous or singular
measures are given in [5], [6], [9], [11]. In a previous work [4] we have proved
that

lim inf
n→∞

log µa(En,k(x))
−n log 2

= δa µa-a.e.,

where

δa = 1− lim sup
N→∞

1
N log 4

N∑
n=1

log[(1 + an)1+an(1− an)1−an ]

1991 Mathematics Subject Classification: Primary 28A78.
Key words and phrases: Hausdorff dimension, multifractal, Rademacher Riesz pro-

ducts.

[37]



38 A. BISBAS

and En,k(x) is the segment [k/2n, (k + 1)/2n) containing x, for some k =
0, 1, 2, . . . , 2n − 1. From this relation we deduce that µa is δa-dimensional
[8] and dim µa = δa, where dim µa = inf{dim E : µa(E) = 1} and dim E
denotes the Hausdorff dimension (HD) of the Borel set E (see [1]). If there
are infinitely many c ∈ R such that dim Ec > 0, where

Ec =
{

x : lim inf
n→∞

log µa(En,k(x))
−n log 2

= c

}
,

then we say that µa is multifractal [8], [10]. We have seen [2], [3] that some
special cases of Markov measures are multifractal. In Section 2 we shall
give a necessary and sufficient condition for µa to be multifractal under the
condition supn |an| < 1. In Section 3 we give an application which permits
us to give a lower bound for the HD of a set Mβ(b), where

(1) Mβ(b) =
{

x : lim inf
N→∞

1
N

N∑
n=1

βnεn(x) ≤ b

}
,

b, βn ∈ R, β = (βn)n≥1, |βn| ≤ M , M > 0. In some special cases our method
gives equality.

2. A multifractal analysis. We need the following lemma, which can
be deduced from [4]:

Lemma 1. Let γ = (γn)n≥1 and µγ be the corresponding coin tossing
measure. If supn |an| < 1, then

lim sup
N→∞

1
N

N∑
n=1

log (1 + anrn(x))

= lim sup
N→∞

1
2N

N∑
n=1

log [(1 + an)1+γn(1− an)1−γn ] µγ-a.e.

Theorem 1. If the sequence a = (an)n≥1 is such that supn |an| < 1,
then µa is multifractal if and only if

lim sup
N→∞

1
N

N∑
n=1

|an| > 0.

P r o o f. (i) Suppose that lim supN→∞(1/N)
∑N

n=1 |an| = 0. Then by the
Cauchy–Schwarz inequality we have equivalently limN→∞(1/N)

∑N
n=1 |an|2

= 0. Since µa(EN,k(x)) = νa,N (EN,k(x)) = 2−N
∏N

n=1(1 + anrn(x)) and

Ec =
{

x : 1− lim sup
N→∞

1
N log 4

N∑
n=1

[
log(1−a2

n)+ rn(x) log
(

1 + an

1− an

)]
= c

}
,
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using the uniform convergence of the Taylor series for the function log(1+x),
|x| ≤ supn |an|, we see that Ec = ∅ if c 6= 1 and Ec = [0, 1] if c = 1 and so
µa is not multifractal.

(ii) Suppose that

lim sup
N→∞

1
N

N∑
n=1

|an| > 0.

It is clear that c must be such that

(2) 1− lim sup
N→∞

λN ≤ c ≤ 1− lim sup
N→∞

κN ,

where

λN =
1

N log 2

N∑
n=1

log(1 + |an|) and κN =
1

N log 2

N∑
n=1

log(1− |an|),

otherwise the set Ec is empty. We define the function

f(y) = lim sup
N→∞

[κN + y(λN − κN )], y ∈ [0, 1].

If 0 ≤ y0 < y ≤ 1, then using the properties of lim sup we obtain

0 ≤ f(y)− f(y0) ≤ (y − y0) lim sup
N→∞

(λN − κN ).

This implies that f(y) is continuous on [0, 1]. Since f(0) = lim supN→∞ κN

and f(1) = lim supN→∞ λN , from the intermediate value theorem there is
γ0 ∈ (−1, 1) such that f((1+γ0)/2) = 1− c ∈ (f(0), f(1)), f(0) ≤ 0 < f(1).
We consider the measure µγ , where γ = (γn)n≥1 with

γn = γ0 sgn log
(

1 + an

1− an

)
(sgn is the sign function, sgn 0 = 0). From Lemma 1 we have

lim sup
N→∞

1
N log 4

N∑
n=1

[
log(1− a2

n) + rn(x) log
(

1 + an

1− an

)]

= lim sup
N→∞

1
N log 4

N∑
n=1

[
log (1− a2

n) + γ0 log
(

1 + |an|
1− |an|

)]

= lim sup
N→∞

[
κN +

1 + γ0

2
(λN − κN )

]
= 1− c µγ-a.e.

From this we get µγ(Ec) = 1 and so dim Ec ≥ dim µγ = δγ > 0, for infinitely
many c ∈ R (f(1) > 0). This means that µa is multifractal.
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3. Application. We consider the set of (1). It is clear that we can find
a sequence a = (an)n≥1 such that

βn = log
(

1 + an

1− an

)
,

with supn |an| < 1. We also have

lim
N→∞

1
N

N∑
n=1

|βn| = 0 ⇔ lim
N→∞

1
N

N∑
n=1

|an| = 0.

If limN→∞(1/N)
∑N

n=1|βn| = 0, then dim Mβ(b) is 0 if b < 0 and is 1 if
b ≥ 0.

Suppose that lim supN→∞(1/N)
∑N

n=1 |an| > 0. From (1) we see that b
must be such that

lim inf
N→∞

1
N

N∑
n=1
βn<0

βn ≤ b ≤ lim inf
N→∞

1
N

N∑
n=1
βn>0

βn,

or equivalently,

(3) lim inf
N→∞

1
N

N∑
n=1

log
(

1 + an

1 + |an|

)
≤ b ≤ lim inf

N→∞

1
N

N∑
n=1

log
(

1 + an

1− |an|

)
,

Otherwise dim Mβ(b) = 0 or 1.
Let b > 0 and

c = 1 +
b

log 2
− lim sup

N→∞

1
N log 2

N∑
n=1

log(1 + an).

Using elementary properties of lim sup, lim inf and (3) we easily see that c
satisfies (2). From the proof of Theorem 1 we have

dim Ec ≥ dim µγ ,

where

Ec =
{

x : 1− lim sup
N→∞

1
N log 4

N∑
n=1

[log (1− a2
n) + (1− 2εn(x))βn] = c

}
and γ = (γn)n≥1, γn = γ0 sgn βn with

lim sup
N→∞

[
κN +

1 + γ0

2
(λN − κN )

]
= 1− c.

If x ∈ Ec then

lim inf
N→∞

1
N

N∑
n=1

βnεn(x) ≤ b

and so Ec ⊂ Mβ(b), which means that dim Mβ(b) ≥ dim µγ .
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R e m a r k. If βn > β0 6= 0, n = 1, 2, . . . , b > 0, using the above method
we get

β0 = log
(

1 + a0

1− a0

)
,

c = 1 +
b

log 2
− 1

log 2
log (1 + a0),

γn = γ0 sgn βn

and

1− c =
log (1− a0)

log 2
+

β0

log 4
(1 + γ0).

This gives
b

β0
=

1− γ0

2
.

Since

Mβ(b) =
{

x : lim inf
N→∞

1
N

N∑
n=1

εn(x) ≤ b

β0

}
and

dim µγ = 1− 1
log 2

[
b

β0
log

(
2b

β0

)
+

(
1− b

β0

)
log

[
2
(

1− b

β0

)]]
,

using Eggleston’s Theorem [7] we get dim Mβ(b) = dim µγ for b ≤ β0/2.
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