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1. Introduction. Let p, = p,0(0) + (1 —p,)d6(1/2"), n = 1,2,...,
where p,, € [0,1] and d(z) denotes the probability atom at z. The infinite
convolution product of the u,, converges in the weak™ sense to a probability
measure £ on [0, 1] which is known as a coin tossing measure [9],

(o]
= >|< K-
n=1
Let z = Y 2 1en(x)/2", where €,(z) € {0,1}, be the 2-adic expansion
of z € [0,1]. It is not difficult to see that if
N
dvan = [[(1+ anra(z))dr, N=1,2,...,
n=1
where a = (ay)n>1, A denotes the Lebesgue measure, r,(z) = 1 — 2e, () is
the nth Rademacher function and p,, = (1 + ay,)/2, then

lim vo N = e
— 00

in the weak® sense and 1 = p, (see also [12]). So we have two ways to
describe the same measure. In this work we shall use the second way. The
characterizations of the sequences (a,),>1 which give continuous or singular
measures are given in [5], [6], [9], [11]. In a previous work [4] we have proved
that

1 E
lim inf o8 ,U'a( n,k(x» = 50, Hg-a.€.,
n—00 —nlog?2
where
N

da =1 —limsup 4nzllog[<1 +an) (1 = an)' T
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and E, ;(x) is the segment [k/2", (k + 1)/2") containing z, for some k =
0,1,2,...,2™ — 1. From this relation we deduce that p, is d,-dimensional
[8] and dim p, = d,, where dim p, = inf{dim F : p,(F) = 1} and dim F
denotes the Hausdorff dimension (HD) of the Borel set E (see [1]). If there
are infinitely many ¢ € R such that dim £, > 0, where

E. = {a: : lim inf 10g fta (B, (x)) = c},
n—00 —nlog 2

then we say that p, is multifractal [8], [10]. We have seen [2], [3] that some
special cases of Markov measures are multifractal. In Section 2 we shall
give a necessary and sufficient condition for u, to be multifractal under the
condition sup,, |a,| < 1. In Section 3 we give an application which permits
us to give a lower bound for the HD of a set M3(b), where

N
(1) Mp(b) = {x : lim inf % Z::lﬁnan(x) < b},

b, Bn € R, B = (Bn)n>1, |Bn| < M, M > 0. In some special cases our method
gives equality.

2. A multifractal analysis. We need the following lemma, which can
be deduced from [4]:

LEMMA 1. Let v = (Yn)n>1 and pi, be the corresponding coin tossing
measure. If sup,, |a,| <1, then

N
1

lim sup — log (1 4+ a,,rn(x

msup 3 log (1+ 00 (2)

N
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THEOREM 1. If the sequence a = (an)n>1 15 such that sup,, |a,| < 1,
then pg ts multifractal if and only if

| X
lim sup NZ|an| > 0.

N—oo n—1

Proof. (i) Suppose that limsupy_, .. (1/N) 27]:]:1 |an| = 0. Then by the
Cauchy—Schwarz inequality we have equivalently limy_,~ (1/N) 25:1 la,|?

= 0. Since po(En k(7)) =van(Eng(z)) =27V Hi:’:l(l + apr,(x)) and

N
1 1+a
E. = (11 log(1— a? W (2) 1 n =
{m grvnjgoleogélE [Og( a,)+r ($)0g<1_an>] C},

n=1
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using the uniform convergence of the Taylor series for the function log(1+x),
|z| < sup,, |a,|, we see that E. =0 if ¢ # 1 and E. = [0,1] if ¢ = 1 and so
Lo is not multifractal.

(ii) Suppose that

hmsup—Z]an\ > 0.

N—o0 n—1

It is clear that ¢ must be such that

(2) 1 —limsup Ay <c¢<1-—limsupky,

N—o0 N—o00

where

and Ky = — lanl),

otherwise the set E. is empty. We define the function
Fy) =limsuplrn +y(Av —rn)], -y €[0.1]

If 0 <yp <y <1, then using the properties of limsup we obtain
0<f(y)— fyo) < (y— yo)liZ{[]flSUP()\N —KN).

— 00

This implies that f(y) is continuous on [0, 1]. Since f(0) = limsupy_, ., KN
and f(1) = limsupy_ ., AN, from the intermediate value theorem there is

Y0 € (—1,1) such that f((1+70)/2) =1—c€ (f(0), f(1)), f(0) <0 < f(1).
We consider the measure p,, where v = (7,,)n>1 with

1+a,
Tn = Yo sgnlog 1

_an

(sgn is the sign function, sgn0 = 0). From Lemma 1 we have

1 al 1+a
limsupmz [log(l—a )+ T (z )log<1_an>]
n=1 n

N —oo
N
. 1 1+ |ay|
=1 1 1-— I
e g Ol (1) 4ol (152
1T+

= lim sup |:I<6N + (Av — IiN):| =1—-c pyae.

N—o0
From this we get p1(E.) = 1 and so dim E, > dim p, = §, > 0, for infinitely
many ¢ € R (f(1) > 0). This means that p, is multifractal.
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3. Application. We consider the set of (1). It is clear that we can find
a sequence a = (ap)n>1 such that

1+ ay
ﬁnzlog< ra >

1—a,

with sup,, |a,| < 1. We also have

N N
i 33 =0 g 3 3ol

If impy oo (1/N)S2N_18,] = 0, then dim Mg(b) is 0 if b < 0 and is 1 if
b>0.

Suppose that limsupy_, . (1/N) 25:1 lan| > 0. From (1) we see that b
must be such that

1 & 1 &
oo b < b < Tminf L
ity 2 rSb<lipinfy D G
n=1 n=1
Bn<0 Bn>0
or equivalently,

N N
| 1+ay, o1 1+a,
1 f—>» 1 <b<l f— 1
) Upinfg), oo (17y) <0 <t N 2 ox (770)

Otherwise dim Mg(b) =0 or 1.
Let b > 0 and

) 1
— lim sup

=1
¢ * log 2 N—ooo IVlog2

N
Zlog(l +ap).
n=1

Using elementary properties of lim sup, liminf and (3) we easily see that ¢
satisfies (2). From the proof of Theorem 1 we have

dim E, > dim p.,
where

N
1
Fe= {x i li]irn—?gop Nlog4 nz:l[log (1—a2)+ (1 —2e,(2))Bn] = c}

and v = (Yn)n>1, Tn = Yo sgn B, with
14+

lim sup |:I~€N+ ()\N—HN):| =1—-c

N —o0

If x € E. then

N
1

—_— <

l}\rfrllglof I n§:1 Bnen(x) <b

and so E. C Mg(b), which means that dim Mg(b) > dim .
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Remark. If 3, > By #0,n=1,2,..., b > 0, using the above method

we get
1
o =tog (120,
—a
c=1+ b log (1 + aop)
N log2 log2 & 0/
Yn = Y0580 P
and
lOg (1 — a()) ,60
1 — =
¢ log 2 log4< +%0)
This gives
b o 1-— Yo
Bo 2
Since
1 & b
Mp(b) = {x : 1mgofN;en(x) < ﬁo}
and

e =1 b (2 _b _b
dimp, =1 10g2[5010g<50>+<1 ﬁo>log[2<1 50>”’

using Eggleston’s Theorem [7] we get dim Mg(b) = dim 1, for b < f§y/2.
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