C OLLOQUIUM MATHEMATICUM

A MULTIFRACTAL ANALYSIS
 of An INTERESTING CLASS OF MEASURES
 BY
 ANTONIS BISBAS (IRAKLION)

1. Introduction. Let $\mu_{n}=p_{n} \delta(0)+\left(1-p_{n}\right) \delta\left(1 / 2^{n}\right), n=1,2, \ldots$, where $p_{n} \in[0,1]$ and $\delta(x)$ denotes the probability atom at x. The infinite convolution product of the μ_{n} converges in the weak* sense to a probability measure μ on $[0,1]$ which is known as a coin tossing measure [9],

$$
\mu=\underset{n=1}{\underset{*}{\infty}} \mu_{n} .
$$

Let $x=\sum_{n=1}^{\infty} \varepsilon_{n}(x) / 2^{n}$, where $\varepsilon_{n}(x) \in\{0,1\}$, be the 2-adic expansion of $x \in[0,1]$. It is not difficult to see that if

$$
d \nu_{a, N}=\prod_{n=1}^{N}\left(1+a_{n} r_{n}(x)\right) d \lambda, \quad N=1,2, \ldots
$$

where $a=\left(a_{n}\right)_{n \geq 1}, \lambda$ denotes the Lebesgue measure, $r_{n}(x)=1-2 \varepsilon_{n}(x)$ is the nth Rademacher function and $p_{n}=\left(1+a_{n}\right) / 2$, then

$$
\lim _{N \rightarrow \infty} \nu_{a, N}=\mu_{a}
$$

in the weak* sense and $\mu=\mu_{a}$ (see also [12]). So we have two ways to describe the same measure. In this work we shall use the second way. The characterizations of the sequences $\left(a_{n}\right)_{n \geq 1}$ which give continuous or singular measures are given in [5], [6], [9], [11]. In a previous work [4] we have proved that

$$
\liminf _{n \rightarrow \infty} \frac{\log \mu_{a}\left(E_{n, k}(x)\right)}{-n \log 2}=\delta_{a} \quad \mu_{a^{-}} \text {a.e. }
$$

where

$$
\delta_{a}=1-\limsup _{N \rightarrow \infty} \frac{1}{N \log 4} \sum_{n=1}^{N} \log \left[\left(1+a_{n}\right)^{1+a_{n}}\left(1-a_{n}\right)^{1-a_{n}}\right]
$$

[^0]and $E_{n, k}(x)$ is the segment $\left[k / 2^{n},(k+1) / 2^{n}\right)$ containing x, for some $k=$ $0,1,2, \ldots, 2^{n}-1$. From this relation we deduce that μ_{a} is δ_{a}-dimensional [8] and $\operatorname{dim} \mu_{a}=\delta_{a}$, where $\operatorname{dim} \mu_{a}=\inf \left\{\operatorname{dim} E: \mu_{a}(E)=1\right\}$ and $\operatorname{dim} E$ denotes the Hausdorff dimension (HD) of the Borel set E (see [1]). If there are infinitely many $c \in \mathbb{R}$ such that $\operatorname{dim} E_{c}>0$, where
$$
E_{c}=\left\{x: \liminf _{n \rightarrow \infty} \frac{\log \mu_{a}\left(E_{n, k}(x)\right)}{-n \log 2}=c\right\},
$$
then we say that μ_{a} is multifractal [8], [10]. We have seen [2], [3] that some special cases of Markov measures are multifractal. In Section 2 we shall give a necessary and sufficient condition for μ_{a} to be multifractal under the condition $\sup _{n}\left|a_{n}\right|<1$. In Section 3 we give an application which permits us to give a lower bound for the HD of a set $M_{\beta}(b)$, where
\[

$$
\begin{equation*}
M_{\beta}(b)=\left\{x: \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \beta_{n} \varepsilon_{n}(x) \leq b\right\}, \tag{1}
\end{equation*}
$$

\]

$b, \beta_{n} \in \mathbb{R}, \beta=\left(\beta_{n}\right)_{n \geq 1},\left|\beta_{n}\right| \leq M, M>0$. In some special cases our method gives equality.
2. A multifractal analysis. We need the following lemma, which can be deduced from [4]:

Lemma 1. Let $\gamma=\left(\gamma_{n}\right)_{n \geq 1}$ and μ_{γ} be the corresponding coin tossing measure. If $\sup _{n}\left|a_{n}\right|<1$, then

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \frac{1}{N} & \sum_{n=1}^{N} \log \left(1+a_{n} r_{n}(x)\right) \\
& =\limsup _{N \rightarrow \infty} \frac{1}{2 N} \sum_{n=1}^{N} \log \left[\left(1+a_{n}\right)^{1+\gamma_{n}}\left(1-a_{n}\right)^{1-\gamma_{n}}\right] \quad \mu_{\gamma} \text {-a.e. }
\end{aligned}
$$

Theorem 1. If the sequence $a=\left(a_{n}\right)_{n \geq 1}$ is such that $\sup _{n}\left|a_{n}\right|<1$, then μ_{a} is multifractal if and only if

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|a_{n}\right|>0
$$

Proof. (i) Suppose that $\lim \sup _{N \rightarrow \infty}(1 / N) \sum_{n=1}^{N}\left|a_{n}\right|=0$. Then by the Cauchy-Schwarz inequality we have equivalently $\lim _{N \rightarrow \infty}(1 / N) \sum_{n=1}^{N}\left|a_{n}\right|^{2}$ $=0$. Since $\mu_{a}\left(E_{N, k}(x)\right)=\nu_{a, N}\left(E_{N, k}(x)\right)=2^{-N} \prod_{n=1}^{N}\left(1+a_{n} r_{n}(x)\right)$ and
$E_{c}=\left\{x: 1-\limsup _{N \rightarrow \infty} \frac{1}{N \log 4} \sum_{n=1}^{N}\left[\log \left(1-a_{n}^{2}\right)+r_{n}(x) \log \left(\frac{1+a_{n}}{1-a_{n}}\right)\right]=c\right\}$,
using the uniform convergence of the Taylor series for the function $\log (1+x)$, $|x| \leq \sup _{n}\left|a_{n}\right|$, we see that $E_{c}=\emptyset$ if $c \neq 1$ and $E_{c}=[0,1]$ if $c=1$ and so μ_{a} is not multifractal.
(ii) Suppose that

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|a_{n}\right|>0
$$

It is clear that c must be such that

$$
\begin{equation*}
1-\limsup _{N \rightarrow \infty} \lambda_{N} \leq c \leq 1-\limsup _{N \rightarrow \infty} \kappa_{N} \tag{2}
\end{equation*}
$$

where

$$
\lambda_{N}=\frac{1}{N \log 2} \sum_{n=1}^{N} \log \left(1+\left|a_{n}\right|\right) \quad \text { and } \quad \kappa_{N}=\frac{1}{N \log 2} \sum_{n=1}^{N} \log \left(1-\left|a_{n}\right|\right)
$$

otherwise the set E_{c} is empty. We define the function

$$
f(y)=\limsup _{N \rightarrow \infty}\left[\kappa_{N}+y\left(\lambda_{N}-\kappa_{N}\right)\right], \quad y \in[0,1] .
$$

If $0 \leq y_{0}<y \leq 1$, then using the properties of limsup we obtain

$$
0 \leq f(y)-f\left(y_{0}\right) \leq\left(y-y_{0}\right) \limsup _{N \rightarrow \infty}\left(\lambda_{N}-\kappa_{N}\right)
$$

This implies that $f(y)$ is continuous on $[0,1]$. Since $f(0)=\limsup _{N \rightarrow \infty} \kappa_{N}$ and $f(1)=\lim \sup _{N \rightarrow \infty} \lambda_{N}$, from the intermediate value theorem there is $\gamma_{0} \in(-1,1)$ such that $f\left(\left(1+\gamma_{0}\right) / 2\right)=1-c \in(f(0), f(1)), f(0) \leq 0<f(1)$. We consider the measure μ_{γ}, where $\gamma=\left(\gamma_{n}\right)_{n \geq 1}$ with

$$
\gamma_{n}=\gamma_{0} \operatorname{sgn} \log \left(\frac{1+a_{n}}{1-a_{n}}\right)
$$

(sgn is the sign function, $\operatorname{sgn} 0=0$). From Lemma 1 we have

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \frac{1}{N \log 4} & \sum_{n=1}^{N}\left[\log \left(1-a_{n}^{2}\right)+r_{n}(x) \log \left(\frac{1+a_{n}}{1-a_{n}}\right)\right] \\
& =\limsup _{N \rightarrow \infty} \frac{1}{N \log 4} \sum_{n=1}^{N}\left[\log \left(1-a_{n}^{2}\right)+\gamma_{0} \log \left(\frac{1+\left|a_{n}\right|}{1-\left|a_{n}\right|}\right)\right] \\
& =\limsup _{N \rightarrow \infty}\left[\kappa_{N}+\frac{1+\gamma_{0}}{2}\left(\lambda_{N}-\kappa_{N}\right)\right]=1-c \quad \mu_{\gamma} \text {-a.e. }
\end{aligned}
$$

From this we get $\mu_{\gamma}\left(E_{c}\right)=1$ and so $\operatorname{dim} E_{c} \geq \operatorname{dim} \mu_{\gamma}=\delta_{\gamma}>0$, for infinitely many $c \in \mathbb{R}(f(1)>0)$. This means that μ_{a} is multifractal.
3. Application. We consider the set of (1). It is clear that we can find a sequence $a=\left(a_{n}\right)_{n \geq 1}$ such that

$$
\beta_{n}=\log \left(\frac{1+a_{n}}{1-a_{n}}\right)
$$

with $\sup _{n}\left|a_{n}\right|<1$. We also have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|\beta_{n}\right|=0 \Leftrightarrow \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|a_{n}\right|=0
$$

If $\lim _{N \rightarrow \infty}(1 / N) \sum_{n=1}^{N}\left|\beta_{n}\right|=0$, then $\operatorname{dim} M_{\beta}(b)$ is 0 if $b<0$ and is 1 if $b \geq 0$.

Suppose that $\limsup _{N \rightarrow \infty}(1 / N) \sum_{n=1}^{N}\left|a_{n}\right|>0$. From (1) we see that b must be such that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{n=1 \\ \beta_{n}<0}}^{N} \beta_{n} \leq b \leq \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{n=1 \\ \beta_{n}>0}}^{N} \beta_{n},
$$

or equivalently,
(3) $\quad \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1+a_{n}}{1+\left|a_{n}\right|}\right) \leq b \leq \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1+a_{n}}{1-\left|a_{n}\right|}\right)$,

Otherwise $\operatorname{dim} M_{\beta}(b)=0$ or 1 .
Let $b>0$ and

$$
c=1+\frac{b}{\log 2}-\limsup _{N \rightarrow \infty} \frac{1}{N \log 2} \sum_{n=1}^{N} \log \left(1+a_{n}\right) .
$$

Using elementary properties of limsup, liminf and (3) we easily see that c satisfies (2). From the proof of Theorem 1 we have

$$
\operatorname{dim} E_{c} \geq \operatorname{dim} \mu_{\gamma},
$$

where

$$
E_{c}=\left\{x: 1-\limsup _{N \rightarrow \infty} \frac{1}{N \log 4} \sum_{n=1}^{N}\left[\log \left(1-a_{n}^{2}\right)+\left(1-2 \varepsilon_{n}(x)\right) \beta_{n}\right]=c\right\}
$$

and $\gamma=\left(\gamma_{n}\right)_{n \geq 1}, \gamma_{n}=\gamma_{0} \operatorname{sgn} \beta_{n}$ with

$$
\limsup _{N \rightarrow \infty}\left[\kappa_{N}+\frac{1+\gamma_{0}}{2}\left(\lambda_{N}-\kappa_{N}\right)\right]=1-c .
$$

If $x \in E_{c}$ then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \beta_{n} \varepsilon_{n}(x) \leq b
$$

and so $E_{c} \subset M_{\beta}(b)$, which means that $\operatorname{dim} M_{\beta}(b) \geq \operatorname{dim} \mu_{\gamma}$.

Remark. If $\beta_{n}>\beta_{0} \neq 0, n=1,2, \ldots, b>0$, using the above method we get

$$
\begin{aligned}
\beta_{0} & =\log \left(\frac{1+a_{0}}{1-a_{0}}\right) \\
c & =1+\frac{b}{\log 2}-\frac{1}{\log 2} \log \left(1+a_{0}\right) \\
\gamma_{n} & =\gamma_{0} \operatorname{sgn} \beta_{n}
\end{aligned}
$$

and

$$
1-c=\frac{\log \left(1-a_{0}\right)}{\log 2}+\frac{\beta_{0}}{\log 4}\left(1+\gamma_{0}\right) .
$$

This gives

$$
\frac{b}{\beta_{0}}=\frac{1-\gamma_{0}}{2} .
$$

Since

$$
M_{\beta}(b)=\left\{x: \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \varepsilon_{n}(x) \leq \frac{b}{\beta_{0}}\right\}
$$

and

$$
\operatorname{dim} \mu_{\gamma}=1-\frac{1}{\log 2}\left[\frac{b}{\beta_{0}} \log \left(\frac{2 b}{\beta_{0}}\right)+\left(1-\frac{b}{\beta_{0}}\right) \log \left[2\left(1-\frac{b}{\beta_{0}}\right)\right]\right]
$$

using Eggleston's Theorem [7] we get $\operatorname{dim} M_{\beta}(b)=\operatorname{dim} \mu_{\gamma}$ for $b \leq \beta_{0} / 2$.

REFERENCES

[1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
[2] A. Bisbas, A note on the distribution of digits in dyadic expansions, C. R. Acad. Sci. Paris 318 (1994), 105-109.
[3] -, On the distribution of digits in triadic expansions, preprint.
[4] A. Bisbas and C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math. 110 (1990), 15-21.
[5] -, 一, On the continuity of measures, Appl. Anal. 48 (1993), 23-35.
[6] J. R. Blum and B. Epstein, On the Fourier transforms of an interesting class of measures, Israel J. Math. 10 (1971), 302-305.
[7] H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. (2) 54 (1952), 42-93.
[8] A. H. Fan, Quelques propriétés des produits de Riesz, Bull. Sci. Math. 117 (1993), 421-439.
[9] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979.
[10] J.-P. Kahane, Fractals and random measures, Bull. Sci. Math. 117 (1993), 153-159.
[11] G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), 1922-1929.
[12] R. Salem, On singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CRETE
IRAKLION 71409, GREECE
E-mail: BISBAS@TALOS.CC.UCH.GR

[^0]: 1991 Mathematics Subject Classification: Primary 28A78.
 Key words and phrases: Hausdorff dimension, multifractal, Rademacher Riesz products.

