# C OLLOQUIUM MATHEMATICUM 

## A NOTE ON JEŚMANOWICZ’ CONJECTURE

BY
MAOHUA LE (ZHANJIANG)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}$ be the sets of integers and positive integers respectively. Let $(a, b, c)$ be a primitive Pythagorean triple such that

$$
\begin{equation*}
a^{2}+b^{2}=c^{2}, \quad a, b, c \in \mathbb{N}, \operatorname{gcd}(a, b, c)=1,2 \mid b \tag{1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
a=r^{2}-s^{2}, \quad b=2 r s, \quad c=r^{2}+s^{2} \tag{2}
\end{equation*}
$$

where $r, s \in \mathbb{N}$ satisfy $\operatorname{gcd}(r, s)=1, r>s$ and $2 \mid r s$. In this respect, Jeśmanowicz [6] conjectured that the equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z}, \quad x, y, z \in \mathbb{N} \tag{3}
\end{equation*}
$$

has only the solution $(x, y, z)=(2,2,2)$. This problem was solved for some special cases by Sierpiński [16], $\mathrm{Ke}[8,9,10]$, Ke and Sun [11], Lu [12], Rao [15], Chen [2], Józefiak [7], Podsypanin [14], Dem'yanenko [3], Grytczuk and Grelak [4]. In general, the problem is not solved yet. In this note we prove the following result.

Theorem. If $2 \| r s$ and $c=p^{n}$, where $p$ is an odd prime and $n \in \mathbb{N}$, then (3) has only the solution $(x, y, z)=(2,2,2)$.
2. Preliminaries. For any $k \in \mathbb{N}$ with $k>1$ and $4 \nmid k$, let

$$
V(k)=\prod_{q \mid k}(1+\chi(q))
$$

where $q$ runs over distinct prime factors of $k$, and

$$
\chi(q)= \begin{cases}0 & \text { if } q=2 \\ (-1)^{(q-1) / 2} & \text { if } q \neq 2\end{cases}
$$

[^0]Lemma 1 ([5, Theorems $6 \cdot 7 \cdot 1$ and $6 \cdot 7 \cdot 4]$ ). The equation

$$
\begin{equation*}
X_{1}^{2}+Y_{1}^{2}=k, \quad X_{1}, Y_{1} \in \mathbb{Z}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{4}
\end{equation*}
$$

has exactly $4 V(k)$ solutions $\left(X_{1}, Y_{1}\right)$.
Lemma 2 ([13, Chapter 15]). If $2 \nmid k$, then all solutions $(X, Y, Z)$ of the equation

$$
X^{2}+Y^{2}=k^{Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0
$$

are given by
$Z \in \mathbb{N}, \quad X+Y \sqrt{-1}=\left(X_{1}+Y_{1} \sqrt{-1}\right)^{Z} \quad$ or $\quad Y+X \sqrt{-1}=\left(X_{1}+Y_{1} \sqrt{-1}\right)^{Z}$, where $\left(X_{1}, Y_{1}\right)$ runs over all solutions of (4).

Lemma 3 ([1]). Let $D \in \mathbb{N}$ with $D>1$, and let $p$ be an odd prime with $p \nmid D$. If the equation

$$
\begin{equation*}
X^{2}+D Y^{2}=p^{Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{5}
\end{equation*}
$$

has solutions $(X, Y, Z)$, then it has a unique solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ such that $X_{1}>0, Y_{1}>0$ and $Z_{1} \leq Z$, where $Z$ runs over all solutions of (5). The solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ is called the least solution of (5). Moreover, all solutions of (5) are given by
$Z=Z_{1} t, \quad X+Y \sqrt{-D}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-D}\right)^{t}, \quad t \in \mathbb{N}, \lambda_{1}, \lambda_{2} \in\{-1,1\}$.
Lemma 4. If $c=p^{n}$, then $\left(X_{1}, Y_{1}, Z_{1}\right)=(r-s, 1, n)$ is the least solution of the equation

$$
\begin{equation*}
X^{2}+b Y^{2}=p^{Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{6}
\end{equation*}
$$

Proof. Clearly, $(X, Y, Z)=(r-s, 1, n)$ is a solution of (6). By Lemma 3, if $\left(X_{1}, Y_{1}, Z_{1}\right) \neq(r-s, 1, n)$, then there exists $t \in \mathbb{N}$ such that $t>1$ and $n=Z_{1} t$. Since $X_{1}^{2}+b Y_{1}^{2}=p^{Z_{1}}$, we get $r^{2}+s^{2}=c=p^{n} \geq p^{2 Z_{1}} \geq(1+b)^{2}=$ $(1+2 r s)^{2}>4\left(r^{2}+s^{2}\right)$, a contradiction. The lemma is proved.
3. Proof of Theorem. Let $(x, y, z)$ be a solution of (3). If $2 \nmid x$ and $2 \mid y$, then we have $(-a / c)=1$, where $(\cdot / \cdot)$ denotes Jacobi's symbol. Since $2 \| r s$, we see from (2) that $c \equiv 5(\bmod 8)$. Hence, by $(2)$,

$$
1=\left(\frac{-a}{c}\right)=\left(\frac{s^{2}-r^{2}}{r^{2}+s^{2}}\right)=\left(\frac{2 s^{2}}{r^{2}+s^{2}}\right)=\left(\frac{2}{r^{2}+s^{2}}\right)=\left(\frac{2}{c}\right)=-1,
$$

a contradiction. Similarly, if $2 \nmid x y$, then we have

$$
1=\left(\frac{-a b}{c}\right)=\left(\frac{2 r s\left(s^{2}-r^{2}\right)}{r^{2}+s^{2}}\right)=\left(\frac{4 r s^{3}}{r^{2}+s^{2}}\right)
$$

$$
=\left(\frac{4 r s}{r^{2}+s^{2}}\right)=\left(\frac{2(r+s)^{2}}{r^{2}+s^{2}}\right)=\left(\frac{2}{r^{2}+s^{2}}\right)=\left(\frac{2}{c}\right)=-1,
$$

a contradiction.
If $2 \mid x$ and $2 \mid y$, then $a^{x}+b^{y} \equiv 1(\bmod 8)$. Since $c \equiv 5(\bmod 8)$, we see from (3) that $2 \mid z$. Then $(X, Y, Z)=\left(a^{x / 2}, b^{y / 2}, z / 2\right)$ is a solution of the equation

$$
X^{2}+Y^{2}=c^{2 Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0
$$

Notice that $c$ is an odd prime power. By Lemmas 1 and 2 , we get the following four cases $\left(\lambda_{1}, \lambda_{2} \in\{-1,1\}\right)$ :

$$
\begin{align*}
& a^{x / 2}+b^{y / 2} \sqrt{-1}=\lambda_{1}\left(a+\lambda_{2} b \sqrt{-1}\right)^{z / 2}, \\
& a^{x / 2}+b^{y / 2} \sqrt{-1}=\lambda_{1}\left(b+\lambda_{2} a \sqrt{-1}\right)^{z / 2}, \\
& b^{y / 2}+a^{x / 2} \sqrt{-1}=\lambda_{1}\left(a+\lambda_{2} b \sqrt{-1}\right)^{z / 2},  \tag{7}\\
& b^{y / 2}+a^{x / 2} \sqrt{-1}=\lambda_{1}\left(b+\lambda_{2} a \sqrt{-1}\right)^{z / 2} .
\end{align*}
$$

When $z=2$, we find from (7) that $x=y=2$.
When $z>2$ and $2 \mid z / 2$, (7) is impossible, since $a>1, b>1$ and $\operatorname{gcd}(a, b)=1$.

When $z>2$ and $2 \nmid z / 2$, we see from (7) that

$$
a^{x / 2}+b^{y / 2} \sqrt{-1}=\lambda_{1}\left(a+\lambda_{2} b \sqrt{-1}\right)^{z / 2}, \quad \lambda_{1}, \lambda_{2} \in\{-1,1\},
$$

whence we get

$$
\begin{equation*}
a^{x / 2}=\lambda_{1} a \sum_{i=0}^{(z-2) / 4}\binom{z / 2}{2 i+1} a^{2 i}\left(-b^{2}\right)^{(z-2) / 4-i} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{y / 2}=\lambda_{1} \lambda_{2} b \sum_{i=0}^{(z-2) / 4}\binom{z / 2}{2 i+1} a^{z / 2-2 i-1}\left(-b^{2}\right)^{i} \tag{9}
\end{equation*}
$$

Since $2 \nmid a, 2 \mid b$ and $2 \nmid z / 2$, we see from (9) that $y=2$. Further, since $z>2$, we get $x>2$ by $(1)$, and $z / 2 \equiv 0(\bmod a)$ by (8). Let $q$ be a prime factor of $a$, and let $q^{\alpha}\left\|a, q^{\beta}\right\| z / 2$ and $q^{\gamma_{i}} \| 2 i+1$ for any $i \in \mathbb{N}$. Notice that $q \geq 3$ and

$$
\gamma_{i} \leq \frac{\log (2 i+1)}{\log q}<2 i, \quad i \in \mathbb{N}
$$

We have

$$
\begin{align*}
\binom{z / 2}{2 i+1} a^{2 i} & =\frac{z}{2}\binom{z / 2-1}{2 i} \frac{a^{2 i}}{2 i+1}  \tag{10}\\
& \equiv 0\left(\bmod q^{\beta+1}\right), \quad i=1, \ldots,(z-2) / 4
\end{align*}
$$

On applying (10) together with (8), we obtain $\beta=\alpha(x / 2-1)$ for any prime factor $q$ of $a$. This implies that

$$
\begin{equation*}
z / 2 \equiv 0\left(\bmod a^{x / 2-1}\right) \tag{11}
\end{equation*}
$$

Since $y=2$, we see from (3) and (11) that

$$
c^{x+2}>a^{x}+b^{2}=a^{x}+b^{y}=c^{z} \geq c^{2 a^{x / 2-1}}
$$

whence we get

$$
\begin{equation*}
x+2>2 a^{x / 2-1} \tag{12}
\end{equation*}
$$

But since $a \geq 3$ and $x>2$, (12) is impossible.
If $2 \mid x$ and $2 \nmid y$, then $(X, Y, Z)=\left(a^{x / 2}, b^{(y-1) / 2}, n z\right)$ is a solution of (6).
By Lemmas 3 and 4, we have

$$
\begin{equation*}
a^{x / 2}+b^{(y-1) / 2} \sqrt{-b}=\lambda_{1}\left((r-s)+\lambda_{2} \sqrt{-b}\right)^{z}, \quad \lambda_{1}, \lambda_{2} \in\{-1,1\} \tag{13}
\end{equation*}
$$

When $2 \mid z$, we see from (13) that $b^{(y-1) / 2} \equiv 0(\bmod r-s)$. By (1) and (2), this implies that $r-s=1$. By [3], the theorem holds in this case.

When $2 \nmid z$, since $c \equiv 5(\bmod 8)$, we have $a^{x} \equiv 1(\bmod 8), c^{z} \equiv 5$ $(\bmod 8)$ and $y=1$ by (3). On the other hand, we deduce from (13) that

$$
\begin{align*}
\frac{a^{x / 2}}{r-s} & =(r-s)^{x / 2-1}(r+s)^{x / 2}  \tag{14}\\
& =\lambda_{1} \sum_{i=0}^{(z-1) / 2}\binom{z}{2 i+1}(r-s)^{2 i}(-b)^{(z-1) / 2-i}
\end{align*}
$$

If $x=2$, then we have $c=r^{2}+s^{2}<\left(r^{2}-s^{2}\right)^{2}+2 r s=a^{2}+b=c^{z}<c^{2}$, a contradiction. If $x>2$, then $z \equiv 0(\bmod r-s)$. Let $q$ be a prime factor of $r-s$, and let $q^{\alpha}\left\|r-s, q^{\beta}\right\| z$ and $q^{\gamma_{i}} \| 2 i+1$ for any $i \in \mathbb{N}$. Since $2 \nmid r-s$, $q \geq 3$ and $\gamma_{i} \leq(\log (2 i+1)) / \log q<2 i$ for any $i \in \mathbb{N}$, we find from (14) and

$$
\begin{aligned}
\binom{z}{2 i+1}(r-s)^{2 i} & =z\binom{z-1}{2 i} \frac{(r-s)^{2 i}}{2 i+1} \\
& \equiv 0\left(\bmod q^{\beta+1}\right), \quad i=1, \ldots,(z-1) / 2
\end{aligned}
$$

that $\beta=\alpha(x / 2-1)$. This implies that

$$
\begin{equation*}
z \equiv 0\left(\bmod (r-s)^{x / 2-1}\right) \tag{15}
\end{equation*}
$$

Recalling that $y=1$, we see from (3) and (15) that

$$
\begin{equation*}
c^{x}>a^{x}+b=c^{z}=c^{(r-s)^{x / 2-1} z_{1}}, \quad z_{1} \in \mathbb{N}, 2 \nmid z_{1} \tag{16}
\end{equation*}
$$

Since $r-s \geq 3$ and $x \geq 4$, we find from (16) that $r-s=3, x=4, z_{1}=1$ and $z=3$. In this case, (14) can be written as $(r+s)^{2}=b-3=2 r s-3$, a contradiction. Thus, the proof is complete.

Acknowledgments. The author would like to thank the referee for his valuable suggestions.

## REFERENCES

[1] R. A péry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. I Math. 251 (1960), 1451-1452.
[2] J.-R. Chen, On Jeśmanowicz' conjecture, J. Sichuan Univ. Nat. Sci. 1962 (2), 19-25 (in Chinese).
[3] V. A. Dem'yanenko, On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 1965 (5), 52-56 (in Russian).
[4] A. Grytczuk and A. Grelak, On the equation $a^{x}+b^{y}=c^{z}$, Comment. Math. Prace Mat. 24 (1984), 269-275.
[5] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
[6] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. (2) 1 (1955/1956), 196-202 (in Polish).
[7] T. Józefiak, On a conjecture of L. Jeśmanowicz concerning Pythagorean numbers, Comment. Math. Prace Mat. 5 (1961), 119-123 (in Polish).
[8] Z. Ke, On Pythagorean numbers, J. Sichuan Univ. Nat. Sci. 1958 (1), 73-80 (in Chinese).
[9] -, On Jeśmanowicz' conjecture, ibid. 1958 (2), 81-90 (in Chinese).
[10] -, On the diophantine equation $(2 n+1)^{x}+(2 n(n+1))^{y}=(2 n(n+1)+1)^{z}$, ibid. 1959 (3), 25-34 (in Chinese).
[11] Z. Ke and Q. Sun, On Pythagorean numbers $2 n+1,2 n(n+1)$ and $2 n(n+1)+1$, ibid. 1964 (2), 1-12 (in Chinese).
[12] W.-D. Lu, On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$, ibid. 1959 (2), 39-42 (in Chinese).
[13] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
[14] V. D. Podsypanin, On a property of Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 1962 (4), 130-133 (in Russian).
[15] D.-M. Rao, A note on the diophantine equation $(2 n+1)^{x}+(2 n(n+1))^{y}=(2 n(n+$ 1) +1$)^{z}$, J. Sichuan Univ. Nat. Sci. 1960 (1), 79-80 (in Chinese).
[16] W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat. (2) $1(1955 / 1956)$, 194-195 (in Polish).

DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHERS' COLLEGE
P.O. BOX 524048

ZHANJIANG, GUANGDONG
P.R. CHINA


[^0]:    1991 Mathematics Subject Classification: Primary 11D61.
    Supported by the National Natural Science Foundation of China.

