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A NOTE ON JEŚMANOWICZ’ CONJECTURE

BY

MAOHUA LE (ZHANJIANG)

1. Introduction. Let Z, N be the sets of integers and positive integers
respectively. Let (a, b, c) be a primitive Pythagorean triple such that

(1) a2 + b2 = c2, a, b, c ∈ N, gcd(a, b, c) = 1, 2 | b.

Then we have

(2) a = r2 − s2, b = 2rs, c = r2 + s2,

where r, s ∈ N satisfy gcd(r, s) = 1, r > s and 2 | rs. In this respect,
Jeśmanowicz [6] conjectured that the equation

(3) ax + by = cz, x, y, z ∈ N,

has only the solution (x, y, z) = (2, 2, 2). This problem was solved for some
special cases by Sierpiński [16], Ke [8, 9, 10], Ke and Sun [11], Lu [12],
Rao [15], Chen [2], Józefiak [7], Podsypanin [14], Dem’yanenko [3], Grytczuk
and Grelak [4]. In general, the problem is not solved yet. In this note we
prove the following result.

Theorem. If 2 ‖ rs and c = pn, where p is an odd prime and n ∈ N,
then (3) has only the solution (x, y, z) = (2, 2, 2).

2. Preliminaries. For any k ∈ N with k > 1 and 4 - k, let

V (k) =
∏
q|k

(1 + χ(q)),

where q runs over distinct prime factors of k, and

χ(q) =
{

0 if q = 2,
(−1)(q−1)/2 if q 6= 2.
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Lemma 1 ([5, Theorems 6·7·1 and 6·7·4]). The equation

(4) X2
1 + Y 2

1 = k, X1, Y1 ∈ Z, gcd(X1, Y1) = 1,

has exactly 4V (k) solutions (X1, Y1).

Lemma 2 ([13, Chapter 15]). If 2 - k, then all solutions (X, Y, Z) of the
equation

X2 + Y 2 = kZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0,

are given by

Z ∈ N, X+Y
√
−1 = (X1+Y1

√
−1)Z or Y +X

√
−1 = (X1+Y1

√
−1)Z ,

where (X1, Y1) runs over all solutions of (4).

Lemma 3 ([1]). Let D ∈ N with D > 1, and let p be an odd prime with
p - D. If the equation

(5) X2 + DY 2 = pZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0,

has solutions (X, Y, Z), then it has a unique solution (X1, Y1, Z1) such that
X1 > 0, Y1 > 0 and Z1 ≤ Z, where Z runs over all solutions of (5).
The solution (X1, Y1, Z1) is called the least solution of (5). Moreover , all
solutions of (5) are given by

Z = Z1t, X + Y
√
−D = λ1(X1 + λ2Y1

√
−D)t, t ∈ N, λ1, λ2 ∈ {−1, 1}.

Lemma 4. If c = pn, then (X1, Y1, Z1) = (r− s, 1, n) is the least solution
of the equation

(6) X2 + bY 2 = pZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0.

P r o o f. Clearly, (X, Y, Z) = (r−s, 1, n) is a solution of (6). By Lemma 3,
if (X1, Y1, Z1) 6= (r − s, 1, n), then there exists t ∈ N such that t > 1 and
n = Z1t. Since X2

1 +bY 2
1 = pZ1 , we get r2 +s2 = c = pn ≥ p2Z1 ≥ (1+b)2 =

(1 + 2rs)2 > 4(r2 + s2), a contradiction. The lemma is proved.

3. Proof of Theorem. Let (x, y, z) be a solution of (3). If 2 - x and
2 | y, then we have (−a/c) = 1, where (·/·) denotes Jacobi’s symbol. Since
2 ‖ rs, we see from (2) that c ≡ 5 (mod 8). Hence, by (2),

1 =
(
−a

c

)
=

(
s2 − r2

r2 + s2

)
=

(
2s2

r2 + s2

)
=

(
2

r2 + s2

)
=

(
2
c

)
= −1,

a contradiction. Similarly, if 2 - xy, then we have

1 =
(
−ab

c

)
=

(
2rs(s2 − r2)

r2 + s2

)
=

(
4rs3

r2 + s2

)
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=
(

4rs

r2 + s2

)
=

(
2(r + s)2

r2 + s2

)
=

(
2

r2 + s2

)
=

(
2
c

)
= −1,

a contradiction.
If 2 |x and 2 | y, then ax + by ≡ 1 (mod 8). Since c ≡ 5 (mod 8), we

see from (3) that 2 | z. Then (X, Y, Z) = (ax/2, by/2, z/2) is a solution of the
equation

X2 + Y 2 = c2Z , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0.

Notice that c is an odd prime power. By Lemmas 1 and 2, we get the
following four cases (λ1, λ2 ∈ {−1, 1}):

(7)

ax/2 + by/2
√
−1 = λ1(a + λ2b

√
−1)z/2,

ax/2 + by/2
√
−1 = λ1(b + λ2a

√
−1)z/2,

by/2 + ax/2
√
−1 = λ1(a + λ2b

√
−1)z/2,

by/2 + ax/2
√
−1 = λ1(b + λ2a

√
−1)z/2.

When z = 2, we find from (7) that x = y = 2.
When z > 2 and 2 | z/2, (7) is impossible, since a > 1, b > 1 and

gcd(a, b) = 1.
When z > 2 and 2 - z/2, we see from (7) that

ax/2 + by/2
√
−1 = λ1(a + λ2b

√
−1)z/2, λ1, λ2 ∈ {−1, 1},

whence we get

(8) ax/2 = λ1a

(z−2)/4∑
i=0

(
z/2

2i + 1

)
a2i(−b2)(z−2)/4−i

and

(9) by/2 = λ1λ2b

(z−2)/4∑
i=0

(
z/2

2i + 1

)
az/2−2i−1(−b2)i.

Since 2 - a, 2 | b and 2 - z/2, we see from (9) that y = 2. Further, since z > 2,
we get x > 2 by (1), and z/2 ≡ 0 (mod a) by (8). Let q be a prime factor
of a, and let qα ‖ a, qβ ‖ z/2 and qγi ‖ 2i+1 for any i ∈ N. Notice that q ≥ 3
and

γi ≤
log(2i + 1)

log q
< 2i, i ∈ N.

We have (
z/2

2i + 1

)
a2i =

z

2

(
z/2− 1

2i

)
a2i

2i + 1
(10)

≡ 0 (mod qβ+1), i = 1, . . . , (z − 2)/4.
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On applying (10) together with (8), we obtain β = α(x/2−1) for any prime
factor q of a. This implies that

(11) z/2 ≡ 0 (mod ax/2−1).

Since y = 2, we see from (3) and (11) that

cx+2 > ax + b2 = ax + by = cz ≥ c2ax/2−1
,

whence we get

(12) x + 2 > 2ax/2−1.

But since a ≥ 3 and x > 2, (12) is impossible.
If 2 |x and 2 - y, then (X, Y, Z) = (ax/2, b(y−1)/2, nz) is a solution of (6).

By Lemmas 3 and 4, we have

(13) ax/2 + b(y−1)/2
√
−b = λ1((r − s) + λ2

√
−b)z, λ1, λ2 ∈ {−1, 1}.

When 2 | z, we see from (13) that b(y−1)/2 ≡ 0 (mod r − s). By (1)
and (2), this implies that r − s = 1. By [3], the theorem holds in this case.

When 2 - z, since c ≡ 5 (mod 8), we have ax ≡ 1 (mod 8), cz ≡ 5
(mod 8) and y = 1 by (3). On the other hand, we deduce from (13) that

ax/2

r − s
= (r − s)x/2−1(r + s)x/2(14)

= λ1

(z−1)/2∑
i=0

(
z

2i + 1

)
(r − s)2i(−b)(z−1)/2−i.

If x = 2, then we have c = r2 + s2 < (r2 − s2)2 + 2rs = a2 + b = cz < c2, a
contradiction. If x > 2, then z ≡ 0 (mod r − s). Let q be a prime factor of
r− s, and let qα ‖ r− s, qβ ‖ z and qγi ‖ 2i + 1 for any i ∈ N. Since 2 - r− s,
q ≥ 3 and γi ≤ (log(2i + 1))/ log q < 2i for any i ∈ N, we find from (14) and(

z

2i + 1

)
(r − s)2i = z

(
z − 1

2i

)
(r − s)2i

2i + 1

≡ 0 (mod qβ+1), i = 1, . . . , (z − 1)/2,

that β = α(x/2− 1). This implies that

(15) z ≡ 0 (mod (r − s)x/2−1).

Recalling that y = 1, we see from (3) and (15) that

(16) cx > ax + b = cz = c(r−s)x/2−1z1 , z1 ∈ N, 2 - z1.

Since r − s ≥ 3 and x ≥ 4, we find from (16) that r − s = 3, x = 4, z1 = 1
and z = 3. In this case, (14) can be written as (r + s)2 = b− 3 = 2rs− 3, a
contradiction. Thus, the proof is complete.
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