C OLLOQUIUM MATHEMATICUM

A NOTE ON A MULTI-VARIABLE POLYNOMIAL LINK INVARIANT

ADAM SIKORA (WARSZAWA)

In 1985 the Homfly polynomial was discovered independently by several groups of authors (see [PT], [FYHLMO]). Various possible generalizations were also discussed in [PT] and [HW]; see also [L]. In particular, one manyvariable polynomial link invariant was defined in [PT], Example 3.9. In this note we show that this invariant is in fact equivalent to the Homfly polynomial.

First of all we recall the definition of the invariant. This is a polynomial w in variables $y_{1}^{ \pm 1}, x_{2}^{\prime \pm 1}, z_{2}^{\prime}, z_{i}, x_{i}^{ \pm 1}, i \in \mathbb{N}$, satisfying the following three conditions.
(0) For the trivial link T_{n} of n components the following equality holds:

$$
w\left(T_{n}\right)=\prod_{i=1}^{n-1}\left(x_{i}+y_{i}\right)+z_{1} \prod_{i=2}^{n-1}\left(x_{i}+y_{i}\right)+\ldots+z_{n-2}\left(x_{n-1}+y_{n-1}\right)+z_{n-1}
$$

The next two conditions involve the notion of multiplicity pattern. We say that a triple D_{+}, D_{-}, D_{0} of oriented diagrams has multiplicity pattern (n, k) if D_{+}and D_{-}have n components each, and D_{0} has k components. If the specified crossing of D_{+}is a self-crossing of one component then $k=n+1$. Otherwise $k=n-1$. Thus, the only patterns that may appear are $(n, n+1)$ and $(n, n-1)$. Let $w_{+}=w\left(D_{+}\right), w_{-}=w\left(D_{-}\right), w_{0}=w\left(D_{0}\right)$. Then the next two conditions defining the polynomial w are:
(1) $x_{n} w_{+}+y_{n} w_{-}=w_{0}-z_{n}$ for multiplicity pattern $(n, n+1)$ and $x_{n}^{\prime} w_{+}+y_{n}^{\prime} w_{-}=w_{0}-z_{n}^{\prime} \quad$ for multiplicity pattern $(n, n-1)$.
Moreover, $x_{i}, y_{i}, z_{i}, x_{i}^{\prime}, y_{i}^{\prime}$, and z_{i}^{\prime} are supposed to satisfy

$$
\begin{align*}
& y_{i}=x_{i} \frac{y_{1}}{x_{1}}, \quad x_{i}^{\prime}=\frac{x_{2}^{\prime} x_{1}}{x_{i-1}}, \quad y_{i}^{\prime}=\frac{x_{i}^{\prime} y_{1}}{x_{1}} \\
& \frac{z_{i+1}^{\prime}-z_{i-1}}{x_{1} x_{2}^{\prime}}=\left(1+\frac{y_{1}}{x_{1}}\right)\left(\frac{z_{i}^{\prime}}{x_{i}^{\prime}}-\frac{z_{i}}{x_{i}}\right) \tag{3}
\end{align*}
$$

for $i=1,2, \ldots$

In Problem 4.4 of $[\mathrm{PT}]$ it is asked whether the polynomial w is a better invariant of links than the Homfly polynomial. We will show that the answer is negative, namely:

Theorem. The polynomial w is equivalent to the Homfly polynomial.
Here "equivalent" means that given the value of $h(K)$ we can calculate $w(K)$ and conversely.

Proof. We will use the Homfly polynomial, denoted by h, in variables x and y as defined by the equalities

$$
x h_{+}+y h_{-}=h_{0}, \quad h\left(T_{n}\right)=(x+y)^{n-1} .
$$

Let us observe that if the link K has n components, then $\operatorname{deg} h(K)=$ $n-1$. Obviously, the substitutions $x_{i}=x_{2}^{\prime}=x, y_{1}=y, z_{i}=z_{2}^{\prime}=0$ for $i \in \mathbb{N}$ yield $w(K)=h(K)$. Therefore, it is enough to show that given the value of the Homfly polynomial for a link K we can determine the polynomial $w(K)$.

Let us begin with a simplification of the definition of w. Let $x:=x_{1}$, $y:=y_{1}$. In this notation, after multiplication of both sides of formulas (1) and (2) by x / x_{n} and x_{n-1} / x_{2}^{\prime} respectively, we obtain the following identities:

$$
\begin{align*}
& w\left(T_{n}\right)=\left(1+\frac{y}{x}\right)^{n-1} x x_{2} \ldots x_{n-1} \\
& +\sum_{k=1}^{n-1} z_{k}\left(1+\frac{y}{x}\right)^{n-1-k} x_{k+1} \ldots x_{n-1} \\
& x w_{+}+y w_{-}=\frac{x}{x_{n}}\left(w_{0}-z_{n}\right) \quad \text { for }(n, n+1), \\
& x w_{+}+y w_{-}=\frac{x_{n-1}}{x_{2}^{\prime}}\left(w_{0}-z_{n}^{\prime}\right) \\
& \text { for }(n, n-1) .
\end{align*}
$$

From (3) we have

$$
z_{n+1}^{\prime}=z_{n-1}+x x_{2}^{\prime}\left(1+\frac{y}{x}\right)\left(\frac{z_{n}^{\prime} x_{n-1}}{x_{2}^{\prime} x}-\frac{z_{n}}{x_{n}}\right) \quad \text { for } n \geq 2
$$

Lemma 1. The following equality holds:

$$
z_{n}^{\prime}=\sum_{k=1}^{n-1} c_{n, k} z_{k}+c_{n, 2^{\prime}} z_{2}^{\prime}
$$

where the parameters $c_{n, k}, c_{n, 2^{\prime}}$ are defined in the following manner. Set

$$
c_{n, 1}= \begin{cases}(1+y / x)^{n-3} x_{2} \ldots x_{n-2} & \text { for } n>3 \\ 1 & \text { for } n=3 \\ 0 & \text { for } n \leq 2\end{cases}
$$

Let $\alpha=1-x x_{2}^{\prime}(1+y / x)^{2}$. For $k \geq 2$ define $c_{n, k}$ as

$$
c_{n, k}= \begin{cases}\alpha(1+y / x)^{n-k-2} x_{k+1} \ldots x_{n-2} & \text { for } n>k+2 \\ \alpha & \text { for } n=k+2, \\ -\left(x_{2}^{\prime} / x_{k}\right)(x+y) & \text { for } n=k+1, \\ 0 & \text { for } n \leq k\end{cases}
$$

and

$$
c_{n, 2^{\prime}}= \begin{cases}1 & \text { for } n=2 \\ (1+y / x)^{n-2} x_{1} \ldots x_{n-2} & \text { for } n \geq 3\end{cases}
$$

Proof. By induction on n.
We will prove the next two lemmas using the method described in $[\mathrm{K}]$ and [PT], namely: Let D be an oriented diagram of n components, and let $\operatorname{cr}(D)$ denote the number of crossings in D. Let $b=\left(b_{1}, \ldots, b_{n}\right)$ be base points of D, one point for each component of D, none of them a crossing point. Now, one travels along D (according to the orientation of D) starting from b_{1}, then (when the walk along the first component is completed) from b_{2} and so on. Any crossing that is passed by a tunnel when first encountered is called a bad crossing.

Let us consider all possible choices of $\left(b_{1}, \ldots, b_{n}\right)$. We denote the minimal number of bad crossings in D (over all possible choices of base points) by $\chi(D)$. For a given diagram D let $\left(b_{1}, \ldots, b_{n}\right)$ be base points of D such that the number of bad crossings in D is minimal possible. We may assume that the first bad crossing is positive. We denote D by D_{+}with respect to this crossing. Then $\chi\left(D_{-}\right)<\chi\left(D_{+}\right)$, and D_{0} has less crossings than D. Therefore, in order to prove some property of $w(D)$, it is convenient to use induction on $\operatorname{cr}(D)$ and $\chi(D)$.

Lemma 2. For every diagram D of n components we can group the terms of $w(D)$ as follows:

$$
w(D)=w_{0}(D)+w_{1}(D) z_{1}+\sum_{k=2}^{\infty} d_{n, k} z_{k}+w_{2^{\prime}}(D) z_{2}^{\prime}
$$

where

$$
d_{n, k}= \begin{cases}\left(x_{k+1}+y_{k+1}\right) \ldots\left(x_{n-1}+y_{n-1}\right) & \text { for } n \geq k+2 \\ 1 & \text { for } n=k+1 \\ 0 & \text { for } n \leq k\end{cases}
$$

and $w_{0}, w_{1}, w_{2^{\prime}}$ are polynomials in the variables $y^{ \pm 1}, x_{2}^{\prime \pm 1}$, and $x_{i}^{ \pm 1}, i \in \mathbb{N}$.
Proof (by induction on cr and χ). If $\operatorname{cr}(D)=0$ then from $\left(0^{\prime}\right)$ the lemma is true. Let us assume that it holds for all D such that $\operatorname{cr}(D) \leq c$. Let $\operatorname{cr}(D) \leq c+1$. Now we apply induction on $\chi(D)$. If $\chi(D)=0$ then D is a trivial link and the lemma is true. Let us assume that it holds for D such
that $\chi(D) \leq s$. If $\chi(D)=s+1$ then there is a crossing in D (we assume that it is positive) such that $D=D_{+}, \operatorname{cr}\left(D_{0}\right) \leq c$ and $\chi\left(D_{-}\right) \leq s$. Therefore D_{0} and D_{-}satisfy the inductive hypothesis. If D_{+}, D_{0} have respectively n and $n+1$ components then we have

$$
\begin{aligned}
& w\left(D_{0}\right)=w_{0}\left(D_{0}\right)+w_{1}\left(D_{0}\right) z_{1}+\sum_{k=2}^{\infty} d_{n+1, k} z_{k}+w_{2^{\prime}}\left(D_{0}\right) z_{2^{\prime}}, \\
& w\left(D_{-}\right)=w_{0}\left(D_{-}\right)+w_{1}\left(D_{-}\right) z_{1}+\sum_{k=2}^{\infty} d_{n, k} z_{k}+w_{2^{\prime}}\left(D_{-}\right) z_{2^{\prime}} .
\end{aligned}
$$

Then from (1^{\prime}) for $n>2$ we obtain

$$
\begin{aligned}
w\left(D_{+}\right)= & \frac{1}{x_{n}} w\left(D_{0}\right)-\frac{z_{n}}{x_{n}}-\frac{y}{x} w\left(D_{-}\right) \\
= & {\left[\frac{1}{x_{n}} w_{0}\left(D_{0}\right)-\frac{y}{x} w_{0}\left(D_{-}\right)\right]+\left[\frac{1}{x_{n}} w_{1}\left(D_{0}\right)-\frac{y}{x} w_{1}\left(D_{-}\right)\right] z_{1} } \\
& +\sum_{k=2}^{n-1}\left(\frac{1}{x_{n}} d_{n+1, k}-\frac{y}{x} d_{n, k}\right) z_{k}+\left[\frac{1}{x_{n}} d_{n+1, n}-\frac{y}{x} d_{n, n}-\frac{1}{x_{n}}\right] z_{n} \\
& +\left[\frac{1}{x_{n}} w_{2^{\prime}}\left(D_{0}\right)-\frac{y}{x} w_{2^{\prime}}\left(D_{-}\right)\right] z_{2}^{\prime} .
\end{aligned}
$$

One readily sees that

$$
\frac{1}{x_{n}} d_{n+1, n}-\frac{y}{x} d_{n, n}-\frac{1}{x_{n}}=0
$$

and

$$
\frac{1}{x_{n}} d_{n+1, k}-\frac{y}{x} d_{n, k}=d_{n, k} \quad \text { for } k=2, \ldots, n-1
$$

This completes the proof for this case.
For $n=1$ and $n=2$ the proof is similar and even simpler. What remains to prove is the case when D_{+}and D_{0} have respectively n and $n-1$ components. In this situation (2') implies

$$
\begin{aligned}
& w\left(D_{+}\right)=\frac{x_{n-1}}{x x_{2}^{\prime}} w\left(D_{0}\right)-\frac{x_{n-1} z_{n}^{\prime}}{x x_{2}^{\prime}}-\frac{y}{x} w\left(D_{-}\right) \\
&= {\left[\frac{x_{n-1}}{x x_{2}^{\prime}} w_{0}\left(D_{0}\right)-\frac{y}{x} w_{0}\left(D_{-}\right)\right]+\left[\frac{x_{n-1}}{x x_{2}^{\prime}} w_{1}\left(D_{0}\right)-\frac{y}{x} w_{1}\left(D_{-}\right)-\frac{x_{n-1}}{x x_{2}^{\prime}} c_{n, 1}\right] z_{1} } \\
&+\sum_{k=2}^{\infty}\left[\frac{x_{n-1}}{x x_{2}^{\prime}}\left(d_{n-1, k}-c_{n, k}\right)-\frac{y}{x} d_{n, k}\right] z_{k} \\
&+\left[\frac{x_{n-1}}{x x_{2}^{\prime}} w_{2^{\prime}}\left(D_{0}\right)-\frac{x_{n-1}}{x x_{2}^{\prime}} c_{n, 2^{\prime}}-\frac{y}{x} w_{2^{\prime}}\left(D_{-}\right)\right] z_{2^{\prime}} .
\end{aligned}
$$

It is easy to prove that the equalities

$$
\frac{x_{n-1}}{x x_{2}^{\prime}}\left(d_{n-1, k}-c_{n, k}\right)-\frac{y}{x} d_{n, k}=d_{n, k}
$$

hold for $k \geq 2$ by checking directly the cases $n \geq k+3, n=k+2, n=k+1$, and $n \leq k$. This completes the proof of Lemma 2 .

Lemma 3. Let D have n components. Then $w_{0}(D), w_{1}(D)$, and $w_{2^{\prime}}(D)$ are sums of monomials of the form

$$
\begin{cases}c x_{2} \ldots x_{n-1} x^{\alpha} y^{\beta} \frac{1}{x_{2}^{\prime \gamma}} & \text { for } n \geq 3 \\ c x^{\alpha} y^{\beta} \frac{1}{x_{2}^{\prime \gamma}} & \text { for } n \leq 2\end{cases}
$$

and the sum of the exponents of $x, y, 1 / x_{2}^{\prime}, x_{2}, \ldots, x_{n-1}$ in each of these monomials is equal to $n-2$ for w_{1}, and to $n-1$ for w_{0} and $w_{2^{\prime}}$.

Proof. Follows from (1^{\prime}) and (2^{\prime}) by induction on $\operatorname{cr}(D)$ and $\chi(D)$.
Let v_{0}, v_{1}, v_{2} be polynomials (in the variables $x^{ \pm 1}, y^{ \pm 1}, x_{2}^{\prime \pm 1}$) equal to $w_{0}, w_{1}, w_{2^{\prime}}$ after substitution $x_{i}:=x, i \in \mathbb{N}$, and let $\bar{v}_{0}, \bar{v}_{1}, \bar{v}_{2^{\prime}}$ be the polynomials obtained respectively from $v_{0}, v_{1}, v_{2^{\prime}}$ by putting x in place of x_{2}^{\prime}. Now from $\left(0^{\prime}\right),\left(1^{\prime}\right)$, and (2^{\prime}) we have

$$
x \bar{v}_{0_{+}}+y \bar{v}_{0_{-}}=\bar{v}_{0_{0}} \quad \text { and } \quad \bar{v}_{0}\left(T_{n}\right)=(x+y)^{n-1}
$$

Therefore $\bar{v}_{0}(D)=h(D)$ for each D.
For \bar{v}_{1} the identities $\left(0^{\prime}\right),\left(1^{\prime}\right)$, and ($\left.2^{\prime}\right)$ take the form

$$
\begin{cases}x \bar{v}_{1_{+}}+y \bar{v}_{1_{-}}=\bar{v}_{1_{0}}-1 & \text { for }(1,2) \text { pattern, } \\ x \bar{v}_{1_{+}}+y \bar{v}_{1_{-}}=\bar{v}_{1_{0}} & \text { for }(2,1) \text { and }(n, n+1) \text { patterns } \\ & n \neq 1, \\ x \bar{v}_{1_{+}}+y \bar{v}_{1_{-}}=\bar{v}_{1_{0}}-(x+y)^{(n-3)} & \text { for }(n, n-1) \text { pattern, } n \neq 2, \\ \bar{v}_{1}\left(T_{1}\right)=0, & \text { for } n \geq 2 \\ \bar{v}_{1}\left(T_{n}\right)=(x+y)^{n-2} & \end{cases}
$$

One readily sees that the polynomial

$$
\frac{x+y}{(x+y)^{2}-1}\left(h-(x+y)^{n-1}\right)+ \begin{cases}(x+y)^{n-2} & \text { for } n \geq 2, \\ 0 & \text { for } n=1\end{cases}
$$

satisfies all the above conditions. Since these conditions uniquely define \bar{v}_{1}, therefore

$$
\bar{v}_{1}=\frac{x+y}{(x+y)^{2}-1}\left(h-(x+y)^{n-1}\right)+ \begin{cases}(x+y)^{n-2} & \text { for } n \geq 2 \\ 0 & \text { for } n=1\end{cases}
$$

Finally, $\bar{v}_{2^{\prime}}$ is defined by

$$
\begin{cases}x \bar{v}_{2^{\prime}}+y \bar{v}_{2_{-}^{\prime}}=\bar{v}_{2_{0}^{\prime}} & \text { for }(n, n+1) \text { pattern } \\ x \bar{v}_{2_{+}}+y \bar{v}_{2_{-}^{\prime}}=\bar{v}_{2_{0}^{\prime}}-(x+y)^{n-2} & \text { for }(n, n-1) \text { pattern }, \\ \bar{v}_{2^{\prime}}\left(T_{n}\right)=0 & \end{cases}
$$

In the same way we prove that $\bar{v}_{2^{\prime}}=\left(h-(x+y)^{n-1}\right) /\left((x+y)^{2}-1\right)$. Since the number of components of D is equal to $\operatorname{deg} h(D)+1$ we have the following:

Corollary. From h we can calculate \bar{v}_{0}, \bar{v}_{1} and $\bar{v}_{2^{\prime}}$.
If we know the form of \bar{v}_{0} then we can reconstruct v_{0} : if a monomial $c x^{a} y^{b}$ appears in \bar{v}_{0} then a monomial $c x^{\alpha} y^{b} \frac{1}{x_{2}^{\prime} \gamma}$ appears in v_{0} with $\alpha, \gamma \in \mathbb{Z}$ satisfying

$$
\alpha-\gamma=a, \quad \alpha+\gamma+b=n-1 .
$$

In a similar way we can deal with \bar{v}_{1} and $\bar{v}_{2^{\prime}}$. If we know $v_{0}(D)$ we can calculate $w_{0}(D)$: if $n \leq 2$ then $w_{0}(D)=v_{0}(D)$, and for $n>2$ the monomials of the form $c x^{\alpha} y^{\beta} \frac{1}{x_{2}^{\prime \gamma}}$ in $v_{0}(D)$ correspond to monomials

$$
c x_{2} \ldots x_{n-2} x^{\alpha-(n-3)} y^{\beta} \frac{1}{x_{2}^{\prime \gamma}}
$$

in $w_{0}(D)$. The case of v_{1} and $v_{2^{\prime}}$ is similar. This completes the proof of the Theorem.

The author wishes to express his gratitude to Prof. P. Traczyk for his help and inspiration, which resulted in this work.

REFERENCES

[FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. B. Lickorish, K. C. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246.
[K] L. H. Kauffman, Knots, Lecture Notes, Zaragoza, Spring 1984.
[HW] J. Hass and B. Wajnryb, Invariants of oriented knots and links in S^{3}, preprint, University of Jerusalem, 1987.
[L] A. S. Lipson, A note on some link polynomials, Bull. London Math. Soc. 20 (1988), 532-534.
[PT] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139.

DEPARTMENT OF MATHEMATICS
WARSAW UNIVERSITY
BANACHA 2
02-097 WARSZAWA, POLAND

