COLLOQUIUM MATHEMATICUM

VOL. LXIX

1995

FASC. 1

COMMUTATIVITY THEOREMS FOR NORMED *-ALGEBRAS

ΒY

BERTRAM YOOD (UNIVERSITY PARK, PENNSYLVANIA)

1. Introduction. In ring theory much attention has been devoted to showing that certain rings must be commutative as a consequence of conditions which are seemingly too weak to imply commutativity. This work was initiated largely by Jacobson, Kaplansky and especially Herstein (see [1, Chapt. 3]) and has continued up to the present time.

In [7], [8] and [9] we pursued the same aim for Banach algebras. Here an important tool was the Baire category theorem. In this note we consider these questions for normed *-algebras which are not necessarily complete so that the Baire theorem is not available. Suppose that A is a normed *-algebra with identity. It is shown that A is commutative if for each $x \in A$ there is a positive integer n(x) so that $x^{n(x)}$ is a normal element of A. An example shows this result can fail if A does not have an identity. Among our results we show that if A is a semi-prime algebra and there is a fixed positive integer n where x^n is normal modulo the center of A for each $x \in A$ then A is commutative.

Unrelated commutativity theorems for rings with involution are discussed in [4, Chapt. 3].

2. Notation. Throughout, let A be a normed *-algebra over the complex field with involution $x \to x^*$, with center Z and where H is its set of self-adjoint elements. Basic definitions on *-algebras are given in [6, Chapt. 4]. Throughout, E denotes a closed linear subspace of A. For us E = (0) and E = Z are the subspaces of most concern. We say that $x \in A$ is normal modulo E if $xx^* - x^*x \in E$.

We shall use several times the following readily established fact. Let $p(t) = \sum_{r=0}^{n} b_r t^r$ be a polynomial in the real variable t with coefficients in A. If $p(t) \in E$ for all t in an infinite subset of the reals then every $b_r \in E$.

We set [x, y] = xy - yx and $x \cdot y = xy + yx$. We say that A is a *semi-prime algebra* if it has no non-zero nilpotent ideals.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46K05.

3. On commutativity

THEOREM 3.1. Suppose that A has an identity e and that, for each $x \in A$, there is a positive integer n(x) such that $x^{n(x)}$ is normal modulo E. Then $[x, y] \in E$ for all $x, y \in A$.

Proof. It is known [7, Th. 3.4] that if A is complete it is sufficient to have $x^{n(x)}$ normal modulo E on a non-void open subset of A.

Let x = h + ik where h and k lie in H. For each real t there is a positive integer n(t) so that

 $[(e+tx)^{n(t)}, (e+tx^*)^{n(t)}] \in E.$

For each positive integer m let S_m be the set of real t where n(t) = m. At least one S_m must be infinite. Say S_r is infinite. Then

$$[(e+tx)^r, (e+tx^*)^r] \in E$$

for infinitely many values of t and hence for all real t. The coefficient of t^2 in this polynomial lies in E so that $xx^* - x^*x = 2i[k, h] \in E$. As $[h, k] \in E$ for every $h, k \in H$ we also have $[x, y] \in E$ for all $x, y \in A$.

COROLLARY 3.1. If, in Theorem 3.1, E = (0) then A is commutative. If, in Theorem 3.1, E = Z and A is a semi-prime algebra then A is commutative.

Proof. Suppose that E = Z and A is semi-prime. Then by Theorem 3.1 we see that for all $x, y \in A$ we have [x, [x, y]] = 0. It follows from a sublemma of Herstein [2, p. 5] that each $x \in A$ lies in Z.

Theorem 3.1 and Corollary 3.1 can fail if A does not have an identity. For we can have a normed *-algebra which is not commutative but where $x^3 \equiv 0$ as in the following example.

Let A be the three-dimensional complex algebra with basis $\{a, b, c\}$ and multiplication given by

$$(\lambda_1 a + \mu_1 b + \nu_1 c)(\lambda_2 a + \mu_2 b + \nu_2 c) = (\lambda_1 \mu_2 - \lambda_2 \mu_1)c$$

where the λ_k , μ_k and ν_k are complex scalars. The multiplication is associative as the product of any three elements is zero. As a norm for A we may take

$$\|\lambda a + \mu b + \nu c\| = (|\lambda|^2 + |\mu|^2 + |\nu|^2)^{1/2}$$

and as the involution

$$(\lambda a + \mu b + \nu c)^* = \lambda a + \overline{\mu} b - \overline{\nu} c.$$

However, in the positive direction we have the following result.

COROLLARY 3.2. Suppose that the intersection of the two-sided modular closed *-ideals of A is (0). Suppose that for each $x \in A$ there is a posi-

tive integer n(x) where $x^{n(x)}$ is normal modulo E. If E = (0) then A is commutative. If E = Z and A is semi-prime then A is commutative.

Proof. Let K be a two-sided modular closed *-ideal of A. Then A/K is a normed *-algebra with identity. Suppose E = (0). Then $[x, y] \in K$ by Theorem 3.1 for every $x, y \in A$, so A is commutative. In the case E = Z we see that $[[x, y], z] \in K$ for all $x, y, z \in A$. Then an application of Herstein's sublemma [2, p. 5] shows that A is commutative if A is semi-prime.

In particular let A be a B^* -algebra which is strongly semi-simple [6, p. 59], that is, the intersection of its maximal modular two-sided ideals is (0). For each maximal modular two-sided ideal M, M is automatically closed and $M = M^*$ by [6, Th. 4.9.2]. Also A is semi-simple so that if for each $x \in A$ there is n(x) with $x^{n(x)}$ normal modulo Z we have A commutative.

LEMMA 3.1. Let h and k be in H and n be a positive integer. Suppose that $(h+itk)^n$ is normal modulo E for each real t where E = (0) or E = Z. Then

(1)
$$\left[h^n, \sum_{j=0}^{n-1} h^j k h^{n-1-j}\right] \in E,$$

(2)
$$[h^n, [h^n, k]] = 0.$$

Proof. If n = 1 then clearly $hk - kh \in E$ so that (1) and (2) are valid. Suppose that n > 1. We write $(h + k)^n = \sum_{r=0}^n V_r$ where V_r is the sum of the terms of the expansion of $(h + k)^n$ for which the sum of the exponents of the k^j factors is r. In particular $V_0 = h^n$ and $V_1 = \sum_{j=0}^{n-1} h^j k h^{n-1-j}$.

Let $\sum' (\sum'')$ denote the summation from j = 0 to j = n for the odd (even) values of j. For t real we have

$$(h + itk)^n = A(t) + B(t), \quad (h - itk)^n = A(t) - B(t)$$

where

$$A(t) = \sum_{j=1}^{\prime\prime} i^{j} V_{j} t^{j} \text{ and } B(t) = \sum_{j=1}^{\prime\prime} i^{j} V_{j} t^{j}.$$

As $(h + itk)^n$ is normal modulo E we see that

$$[A(t) + B(t), A(t) - B(t)] \in E$$

so that $[A(t), B(t)] \in E$.

Notice that A(t) consists of h^n plus a polynomial in t with t^2 as a factor. For $t \neq 0, -it^{-1}B(t)$ consists of V_1 plus a polynomial in t with t^2 as a factor. Letting $t \to 0$ we see that $[h^n, V_1] \in E$, which is (1).

One checks that $hV_1 - V_1h = [h^n, k]$ so that our task for (2) is to see that $[h^n, hV_1 - V_1h] = 0$. For E = (0) this follows from $[h^n, V_1] = (0)$. Suppose E = Z so we have $[h^n, V_1] = z \in Z$. Then

$$[h^n, hV_1 - V_1h] = h[h^n, V_1] - [h^n, V_1]h = 0.$$

LEMMA 3.2. (a) If $[h^n, y] \in E$ for every $h \in H$ then $[x^n, y] \in E$ for every $x \in A$.

(b) If for each $h \in H$ there is an integer m(h) where $[h^{m(h)}, y] \in E$ then for each $x \in A$ there is an integer n(x) so that $[x^{n(x)}, y] \in E$.

Proof. (a) Let x = h + ik, $h, k \in H$. As in the proof of Lemma 3.1 we write $(h + k)^n = \sum V_r$. Now

$$[(h+tk)^n, y] = \sum [V_r, y]t^r$$

lies in E for all real t so that each $[V_r, y] \in E$. Inasmuch as $x^n = \sum i^r V_r$ we have $[x^n, y] \in E$.

(b) Let x = h + ik as above. For each real t there is a positive integer m(t) so that

$$[y, (h+tk)^{m(t)}] \in E.$$

Arguing as in the proof of Theorem 3.1 we see that there is a positive integer \boldsymbol{n} so that

$$[(h+tk)^n, y] \in E$$

for infinitely many t and hence for all real t. As in (a) we see that $[x^n, y] \in E$.

It is convenient to make some preliminary calculations to expedite the proof of Theorem 3.2. We are concerned with a sum $S = \sum_{j=0}^{n-1} w^j y w^{n-1-j}$. We note first that

$$w^{j}yw^{n-1-j} + w^{n-1-j}yw^{j} = w^{j}(y \cdot w^{n-1-2j})w^{j}$$

Suppose first that n is odd. Then n - 1 - j = j just when j = (n - 1)/2. Thus if s = (n - 1)/2 we have

(3)
$$S = \sum_{j=0}^{s-1} w^j (y \cdot w^{n-1-2j}) w^j + w^s y w^s$$

1

Now suppose n is even and r = [(n-1)/2] is the largest integer in (n-1)/2. Here j is never equal to n-1-j so that

(4)
$$S = \sum_{j=0}^{r} w^{j} (y \cdot w^{n-1-2j}) w^{j}$$

THEOREM 3.2. Suppose that, for a positive integer n, x^n is normal modulo E for all $x \in A$ where E = (0) or E = Z. Then $[x^{6n^2}, y] \in E$ for all $x, y \in A$.

Proof. Let h and k be in H. By Lemma 3.1, (1) and (2) hold. Also (2) can be rewritten as

(5)
$$k \cdot h^{2n} = 2h^n k h^n.$$

In (1) we replace h by h^{2n} to obtain

(6)
$$\left[h^{2n^2}, \sum_{j=0}^{n-1} h^{2nj} k h^{2n(n-1-j)}\right] \in E$$

for all $h, k \in H$. We examine the summation in (6), which we denote by S. For typographical convenience we set p(j) = n - 1 - 2j. Suppose first that n is even. Then, by (4),

$$S = \sum_{j=0}^{r} h^{2nj} \{k \cdot h^{2np(j)}\} h^{2nj}.$$

By (5),
$$k \cdot h^{2np(j)} = 2h^{np(j)}kh^{np(j)}$$
. But also $h^{np(j)}h^{2nj} = h^{n(n-1)}$. Thus

$$S = 2(r+1)h^{n(n-1)}kh^{n(n-1)}.$$

In case n is odd we get an extra term so that, by (3),

$$S = 2sh^{n(n-1)}kh^{n(n-1)} + h^{2ns}kh^{2ns}.$$

However, s = (n-1)/2 so that, for n odd, we see that

$$S = (2s+1)h^{n(n-1)}kh^{n(n-1)}.$$

Therefore, from (6), we see that

$$[h^{2n^2}, h^{n(n-1)}kh^{n(n-1)}] \in E$$

for all $h, k \in H$. Now $v = h^{n(n+1)}kh^{n(n+1)}$ lies in H. Consequently,

(7)
$$[h^{2n^2}, h^{2n^2}kh^{2n^2}] \in E$$

for all $h, k \in H$. From (7) and (5) we have

$$[h^{2n^2}, k \cdot h^{4n^2}] \in E$$
 or $[h^{6n^2}, k] - [h^{2n^2}, h^{2n^2}kh^{2n^2}] \in E$

for all $h, k \in H$. Therefore, by (7), $[h^{6n^2}, k] \in E$. As every $y \in A$ can be written in the form u + iv where $u, v \in H$ we see that $[h^{6n^2}, y] \in E$ for all $h \in H, y \in A$. An appeal to Lemma 3.2 completes the proof.

COROLLARY 3.3. Let A be semi-prime. Suppose that for some integer n, x^n is normal modulo Z for each $x \in A$. Then A is commutative.

Proof. By Theorem 3.2,

(8)
$$[[x^m, y], z] = 0$$

for all $x, y, z \in A$ where $m = 6n^2$. By the theorem in [5], A is commutative if we can show that, for each prime p, the ring of two-by-two matrices over the integers modulo p fails to satisfy (8). It is readily seen that (8) does not hold with the choices

$$x = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = z = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

As in [3] by the hypercenter T(A) of A we mean the set of $a \in A$ where for each $x \in A$ there is a positive integer n = n(x, a) such that $ax^n = x^n a$. As noted in [3], T(A) is a subalgebra of A containing Z.

THEOREM 3.3. For each $x \in A$ let W(x) denote the smallest *-subalgebra of A containing x. Suppose that for each $x \in A$ there is a positive integer m(x) so that $y^{m(x)}$ is normal for all $y \in W(x)$. Then A coincides with its hypercenter.

Proof. Let v be a fixed element of H. For $u \in H$ let x = u + iv and note that u and v lie in W(x). By Theorem 3.2 there is a positive integer m = m(x) so that y^{6m^2} lies in the center of W(x). Hence

$$[u^{6m^2}, v] = 0.$$

By Lemma 3.2 we see that for each $w \in A$ there is a positive integer n(w) so that $[w^{n(w)}, v] = 0$. Hence $v \in T(A)$. As T(A) is a subalgebra of A, we have A = T(A).

COROLLARY 3.4. Under the hypotheses of Theorem 3.3, A is commutative if A is a semi-prime algebra.

Proof. If A is a semi-prime algebra then T(A) = Z by [3, Th. 2].

REFERENCES

- I. N. Herstein, Noncommutative Rings, Carus Math. Monographs 15, Math. Assoc. America, 1968.
- [2] —, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
- [3] —, On the hypercenter of a ring, J. Algebra 36 (1975), 151–157.
- [4] —, Rings with Involution, Univ. of Chicago Press, Chicago, 1976.
- [5] T. Z. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267–268.
- [6] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
- B. Yood, Commutativity theorems for Banach algebras, Michigan Math. J. 37 (1990), 203-210.
- [8] —, On commutativity of unital Banach algebras, Bull. London Math. Soc. 23 (1991), 278–280.
- [9] —, Some commutativity theorems for Banach algebras, Publ. Math. Debrecen, to appear.

DEPARTMENT OF MATHEMATICS PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA 16802 U.S.A. E-mail: SNARE@MATH.PSU.EDU

Reçu par la Rédaction le 24.6.1994