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COMMUTATIVITY THEOREMS FOR NORMED ∗-ALGEBRAS

BY

BERTRAM YOOD (UNIVERSITY PARK, PENNSYLVANIA)

1. Introduction. In ring theory much attention has been devoted
to showing that certain rings must be commutative as a consequence of
conditions which are seemingly too weak to imply commutativity. This
work was initiated largely by Jacobson, Kaplansky and especially Herstein
(see [1, Chapt. 3]) and has continued up to the present time.

In [7], [8] and [9] we pursued the same aim for Banach algebras. Here
an important tool was the Baire category theorem. In this note we consider
these questions for normed ∗-algebras which are not necessarily complete
so that the Baire theorem is not available. Suppose that A is a normed
∗-algebra with identity. It is shown that A is commutative if for each x ∈ A
there is a positive integer n(x) so that xn(x) is a normal element of A. An
example shows this result can fail if A does not have an identity. Among
our results we show that if A is a semi-prime algebra and there is a fixed
positive integer n where xn is normal modulo the center of A for each x ∈ A
then A is commutative.

Unrelated commutativity theorems for rings with involution are dis-
cussed in [4, Chapt. 3].

2. Notation. Throughout, let A be a normed ∗-algebra over the com-
plex field with involution x → x∗, with center Z and where H is its set
of self-adjoint elements. Basic definitions on ∗-algebras are given in [6,
Chapt. 4]. Throughout, E denotes a closed linear subspace of A. For us
E = (0) and E = Z are the subspaces of most concern. We say that x ∈ A
is normal modulo E if xx∗ − x∗x ∈ E.

We shall use several times the following readily established fact. Let
p(t) =

∑n
r=0 brt

r be a polynomial in the real variable t with coefficients in
A. If p(t) ∈ E for all t in an infinite subset of the reals then every br ∈ E.

We set [x, y] = xy−yx and x·y = xy+yx. We say that A is a semi-prime
algebra if it has no non-zero nilpotent ideals.
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3. On commutativity

Theorem 3.1. Suppose that A has an identity e and that , for each x ∈ A,
there is a positive integer n(x) such that xn(x) is normal modulo E. Then
[x, y] ∈ E for all x, y ∈ A.

P r o o f. It is known [7, Th. 3.4] that if A is complete it is sufficient to
have xn(x) normal modulo E on a non-void open subset of A.

Let x = h+ ik where h and k lie in H. For each real t there is a positive
integer n(t) so that

[(e + tx)n(t), (e + tx∗)n(t)] ∈ E.

For each positive integer m let Sm be the set of real t where n(t) = m. At
least one Sm must be infinite. Say Sr is infinite. Then

[(e + tx)r, (e + tx∗)r] ∈ E

for infinitely many values of t and hence for all real t. The coefficient of t2

in this polynomial lies in E so that xx∗ − x∗x = 2i[k, h] ∈ E. As [h, k] ∈ E
for every h, k ∈ H we also have [x, y] ∈ E for all x, y ∈ A.

Corollary 3.1. If , in Theorem 3.1, E = (0) then A is commutative.
If , in Theorem 3.1, E = Z and A is a semi-prime algebra then A is com-
mutative.

P r o o f. Suppose that E = Z and A is semi-prime. Then by Theorem 3.1
we see that for all x, y ∈ A we have [x, [x, y]] = 0. It follows from a sublemma
of Herstein [2, p. 5] that each x ∈ A lies in Z.

Theorem 3.1 and Corollary 3.1 can fail if A does not have an identity.
For we can have a normed ∗-algebra which is not commutative but where
x3 ≡ 0 as in the following example.

Let A be the three-dimensional complex algebra with basis {a, b, c} and
multiplication given by

(λ1a + µ1b + ν1c)(λ2a + µ2b + ν2c) = (λ1µ2 − λ2µ1)c

where the λk, µk and νk are complex scalars. The multiplication is associa-
tive as the product of any three elements is zero. As a norm for A we may
take

‖λa + µb + νc‖ = (|λ|2 + |µ|2 + |ν|2)1/2

and as the involution

(λa + µb + νc)∗ = λa + µb− νc.

However, in the positive direction we have the following result.

Corollary 3.2. Suppose that the intersection of the two-sided modular
closed ∗-ideals of A is (0). Suppose that for each x ∈ A there is a posi-
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tive integer n(x) where xn(x) is normal modulo E. If E = (0) then A is
commutative. If E = Z and A is semi-prime then A is commutative.

P r o o f. Let K be a two-sided modular closed ∗-ideal of A. Then A/K
is a normed ∗-algebra with identity. Suppose E = (0). Then [x, y] ∈ K by
Theorem 3.1 for every x, y ∈ A, so A is commutative. In the case E = Z we
see that [[x, y], z] ∈ K for all x, y, z ∈ A. Then an application of Herstein’s
sublemma [2, p. 5] shows that A is commutative if A is semi-prime.

In particular let A be a B∗-algebra which is strongly semi-simple [6,
p. 59], that is, the intersection of its maximal modular two-sided ideals is (0).
For each maximal modular two-sided ideal M , M is automatically closed and
M = M∗ by [6, Th. 4.9.2]. Also A is semi-simple so that if for each x ∈ A
there is n(x) with xn(x) normal modulo Z we have A commutative.

Lemma 3.1. Let h and k be in H and n be a positive integer. Suppose
that (h+ itk)n is normal modulo E for each real t where E = (0) or E = Z.
Then [

hn,

n−1∑
j=0

hjkhn−1−j
]
∈ E,(1)

[hn, [hn, k]] = 0.(2)

P r o o f. If n = 1 then clearly hk − kh ∈ E so that (1) and (2) are valid.
Suppose that n > 1. We write (h + k)n =

∑n
r=0 Vr where Vr is the sum of

the terms of the expansion of (h + k)n for which the sum of the exponents
of the kj factors is r. In particular V0 = hn and V1 =

∑n−1
j=0 hjkhn−1−j .

Let
∑′ (

∑′′) denote the summation from j = 0 to j = n for the odd
(even) values of j. For t real we have

(h + itk)n = A(t) + B(t), (h− itk)n = A(t)−B(t)

where

A(t) =
∑′′

ijVjt
j and B(t) =

∑′
ijVjt

j .

As (h + itk)n is normal modulo E we see that

[A(t) + B(t), A(t)−B(t)] ∈ E

so that [A(t), B(t)] ∈ E.
Notice that A(t) consists of hn plus a polynomial in t with t2 as a factor.

For t 6= 0, −it−1B(t) consists of V1 plus a polynomial in t with t2 as a factor.
Letting t → 0 we see that [hn, V1] ∈ E, which is (1).

One checks that hV1−V1h = [hn, k] so that our task for (2) is to see that
[hn, hV1 − V1h] = 0. For E = (0) this follows from [hn, V1] = (0). Suppose
E = Z so we have [hn, V1] = z ∈ Z. Then

[hn, hV1 − V1h] = h[hn, V1]− [hn, V1]h = 0.
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Lemma 3.2. (a) If [hn, y] ∈ E for every h ∈ H then [xn, y] ∈ E for every
x ∈ A.

(b) If for each h ∈ H there is an integer m(h) where [hm(h), y] ∈ E then
for each x ∈ A there is an integer n(x) so that [xn(x), y] ∈ E.

P r o o f. (a) Let x = h + ik, h, k ∈ H. As in the proof of Lemma 3.1 we
write (h + k)n =

∑
Vr. Now

[(h + tk)n, y] =
∑

[Vr, y]tr

lies in E for all real t so that each [Vr, y] ∈ E. Inasmuch as xn =
∑

irVr we
have [xn, y] ∈ E.

(b) Let x = h + ik as above. For each real t there is a positive integer
m(t) so that

[y, (h + tk)m(t)] ∈ E.

Arguing as in the proof of Theorem 3.1 we see that there is a positive integer
n so that

[(h + tk)n, y] ∈ E

for infinitely many t and hence for all real t. As in (a) we see that [xn, y] ∈ E.

It is convenient to make some preliminary calculations to expedite the
proof of Theorem 3.2. We are concerned with a sum S =

∑n−1
j=0 wjywn−1−j .

We note first that

wjywn−1−j + wn−1−jywj = wj(y · wn−1−2j)wj .

Suppose first that n is odd. Then n − 1 − j = j just when j = (n − 1)/2.
Thus if s = (n− 1)/2 we have

(3) S =
s−1∑
j=0

wj(y · wn−1−2j)wj + wsyws.

Now suppose n is even and r = [(n−1)/2] is the largest integer in (n−1)/2.
Here j is never equal to n− 1− j so that

(4) S =
r∑

j=0

wj(y · wn−1−2j)wj .

Theorem 3.2. Suppose that , for a positive integer n, xn is normal mod-
ulo E for all x ∈ A where E = (0) or E = Z. Then [x6n2

, y] ∈ E for all
x, y ∈ A.

P r o o f. Let h and k be in H. By Lemma 3.1, (1) and (2) hold. Also (2)
can be rewritten as

(5) k · h2n = 2hnkhn.
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In (1) we replace h by h2n to obtain

(6)
[
h2n2

,

n−1∑
j=0

h2njkh2n(n−1−j)
]
∈ E

for all h, k ∈ H. We examine the summation in (6), which we denote by S.
For typographical convenience we set p(j) = n− 1− 2j. Suppose first that
n is even. Then, by (4),

S =
r∑

j=0

h2nj{k · h2np(j)}h2nj .

By (5), k · h2np(j) = 2hnp(j)khnp(j). But also hnp(j)h2nj = hn(n−1). Thus

S = 2(r + 1)hn(n−1)khn(n−1).

In case n is odd we get an extra term so that, by (3),

S = 2shn(n−1)khn(n−1) + h2nskh2ns.

However, s = (n− 1)/2 so that, for n odd, we see that

S = (2s + 1)hn(n−1)khn(n−1).

Therefore, from (6), we see that

[h2n2
, hn(n−1)khn(n−1)] ∈ E

for all h, k ∈ H. Now v = hn(n+1)khn(n+1) lies in H. Consequently,

(7) [h2n2
, h2n2

kh2n2
] ∈ E

for all h, k ∈ H. From (7) and (5) we have

[h2n2
, k · h4n2

] ∈ E or [h6n2
, k]− [h2n2

, h2n2
kh2n2

] ∈ E

for all h, k ∈ H. Therefore, by (7), [h6n2
, k] ∈ E. As every y ∈ A can be

written in the form u + iv where u, v ∈ H we see that [h6n2
, y] ∈ E for all

h ∈ H, y ∈ A. An appeal to Lemma 3.2 completes the proof.

Corollary 3.3. Let A be semi-prime. Suppose that for some integer n,
xn is normal modulo Z for each x ∈ A. Then A is commutative.

P r o o f. By Theorem 3.2,

(8) [[xm, y], z] = 0

for all x, y, z ∈ A where m = 6n2. By the theorem in [5], A is commutative
if we can show that, for each prime p, the ring of two-by-two matrices over
the integers modulo p fails to satisfy (8). It is readily seen that (8) does not
hold with the choices

x =
(

1 1
0 0

)
, y = z =

(
1 0
0 0

)
.
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As in [3] by the hypercenter T (A) of A we mean the set of a ∈ A where
for each x ∈ A there is a positive integer n = n(x, a) such that axn = xna.
As noted in [3], T (A) is a subalgebra of A containing Z.

Theorem 3.3. For each x ∈ A let W (x) denote the smallest ∗-subalgebra
of A containing x. Suppose that for each x ∈ A there is a positive integer
m(x) so that ym(x) is normal for all y ∈ W (x). Then A coincides with its
hypercenter.

P r o o f. Let v be a fixed element of H. For u ∈ H let x = u + iv and
note that u and v lie in W (x). By Theorem 3.2 there is a positive integer
m = m(x) so that y6m2

lies in the center of W (x). Hence

[u6m2
, v] = 0.

By Lemma 3.2 we see that for each w ∈ A there is a positive integer n(w)
so that [wn(w), v] = 0. Hence v ∈ T (A). As T (A) is a subalgebra of A, we
have A = T (A).

Corollary 3.4. Under the hypotheses of Theorem 3.3, A is commutative
if A is a semi-prime algebra.

P r o o f. If A is a semi-prime algebra then T (A) = Z by [3, Th. 2].
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