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COMMUTATIVITY THEOREMS FOR NORMED *-ALGEBRAS

BY

BERTRAM YOOD (UNIVERSITY PARK, PENNSYLVANIA)

1. Introduction. In ring theory much attention has been devoted
to showing that certain rings must be commutative as a consequence of
conditions which are seemingly too weak to imply commutativity. This
work was initiated largely by Jacobson, Kaplansky and especially Herstein
(see [1, Chapt. 3]) and has continued up to the present time.

In [7], [8] and [9] we pursued the same aim for Banach algebras. Here
an important tool was the Baire category theorem. In this note we consider
these questions for normed *-algebras which are not necessarily complete
so that the Baire theorem is not available. Suppose that A is a normed
*-algebra with identity. It is shown that A is commutative if for each z € A
there is a positive integer n(z) so that ™*) is a normal element of A. An
example shows this result can fail if A does not have an identity. Among
our results we show that if A is a semi-prime algebra and there is a fixed
positive integer n where x™ is normal modulo the center of A for each x € A
then A is commutative.

Unrelated commutativity theorems for rings with involution are dis-
cussed in [4, Chapt. 3].

2. Notation. Throughout, let A be a normed *-algebra over the com-
plex field with involution x — z*, with center Z and where H is its set
of self-adjoint elements. Basic definitions on *-algebras are given in [6,
Chapt. 4]. Throughout, E denotes a closed linear subspace of A. For us
E = (0) and E = Z are the subspaces of most concern. We say that =z € A
is normal modulo E if xx* — x*x € F.

We shall use several times the following readily established fact. Let
p(t) = Y 1_,brt" be a polynomial in the real variable ¢ with coefficients in
A. If p(t) € E for all t in an infinite subset of the reals then every b, € E.

We set [z,y] = zy—yx and 2y = zy+yx. We say that A is a semi-prime
algebra if it has no non-zero nilpotent ideals.
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3. On commutativity

THEOREM 3.1. Suppose that A has an identity e and that, for each x € A,
there is a positive integer n(x) such that x™®) is normal modulo E. Then
[z,y] € E for all x,y € A.

Proof. It is known [7, Th. 3.4] that if A is complete it is sufficient to
have z™(*) normal modulo F on a non-void open subset of A.

Let x = h+ ik where h and k lie in H. For each real t there is a positive
integer n(t) so that

(e +tz)" D, (e +tz*)"®] € E.

For each positive integer m let S, be the set of real t where n(t) = m. At
least one .S, must be infinite. Say S, is infinite. Then

[(e+tx)", (e +tz")" | € E
for infinitely many values of ¢ and hence for all real t. The coefficient of t2
in this polynomial lies in E so that zz* — x*x = 2ilk,h| € E. As [h, k] € E
for every h,k € H we also have [z,y] € E for all z,y € A.
COROLLARY 3.1. If, in Theorem 3.1, E = (0) then A is commutative.

If , in Theorem 3.1, E = Z and A is a semi-prime algebra then A is com-
mutative.

Proof. Suppose that E = Z and A is semi-prime. Then by Theorem 3.1
we see that for all x,y € A we have [z, [z, y]] = 0. It follows from a sublemma
of Herstein [2, p. 5] that each = € A lies in Z.

Theorem 3.1 and Corollary 3.1 can fail if A does not have an identity.
For we can have a normed *-algebra which is not commutative but where
x2 = 0 as in the following example.

Let A be the three-dimensional complex algebra with basis {a, b, c} and
multiplication given by

(Ma+ p1b+ vie)(Aea + p2b 4+ voc) = (Mg — Aapr)e

where the g, pr and v are complex scalars. The multiplication is associa-
tive as the product of any three elements is zero. As a norm for A we may
take

IAa 4 b+ vell = (A + |ul? + |v*)/?
and as the involution
(Aa + pb + ve)* = Xa + b — ve.
However, in the positive direction we have the following result.

COROLLARY 3.2. Suppose that the intersection of the two-sided modular
closed *-ideals of A is (0). Suppose that for each x € A there is a posi-
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tive integer n(x) where 2™ is normal modulo E. If E = (0) then A is
commutative. If E = Z and A is semi-prime then A is commutative.

Proof. Let K be a two-sided modular closed *-ideal of A. Then A/K
is a normed *-algebra with identity. Suppose E = (0). Then [z,y] € K by
Theorem 3.1 for every z,y € A, so A is commutative. In the case £ = Z we
see that [[x,yl,2] € K for all z,y,z € A. Then an application of Herstein’s
sublemma [2, p. 5] shows that A is commutative if A is semi-prime.

In particular let A be a B*-algebra which is strongly semi-simple [6,
p. 59], that is, the intersection of its maximal modular two-sided ideals is (0).
For each maximal modular two-sided ideal M, M is automatically closed and
M = M* by [6, Th. 4.9.2]. Also A is semi-simple so that if for each z € A
there is n(z) with 2(*) normal modulo Z we have A commutative.

LEMMA 3.1. Let h and k be in H and n be a positive integer. Suppose
that (h+itk)™ is normal modulo E for each real t where E = (0) or E = Z.
Then

(1) @mgihMmm+ﬂ}eE,
2) (", [, &]] = 0.

Proof. If n =1 then clearly hk — kh € E so that (1) and (2) are valid.
Suppose that n > 1. We write (h + k)™ = >_"_, V, where V; is the sum of
the terms of the expansion of (h + k)™ for which the sum of the exponents
of the k7 factors is r. In particular Vy = h™ and V; = Z?:_ol hikhn—1-7,

Let 3 (32") denote the summation from j = 0 to j = n for the odd
(even) values of j. For ¢ real we have

(h+itk)" = A(t) + B(t), (h—1itk)" = A(t) — B(t)
where
Alt) = Z//ijvjﬂ and B(t) = Z/ifvjtj.
As (h +itk)™ is normal modulo E we see that
[A(t) + B(t), A(t) — B(t)] e £

so that [A(t), B(t)] € E.

Notice that A(t) consists of A" plus a polynomial in ¢ with t2 as a factor.
For t # 0, —it ' B(t) consists of V; plus a polynomial in ¢ with t? as a factor.
Letting t — 0 we see that [h", V1] € E, which is (1).

One checks that hV; —Vih = [h"™, k] so that our task for (2) is to see that
[h™,hV; — Vih] = 0. For E = (0) this follows from [h™, V1] = (0). Suppose
E = Z so we have [h", V1] =z € Z. Then

[h™, hVi — Vih] = h[h™, V4] — [h™, Vi]h = 0.
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LEMMA 3.2. (a) If [h™,y] € E for every h € H then [z",y] € E for every
x e A.

(b) If for each h € H there is an integer m(h) where W™ y] € E then
for each = € A there is an integer n(x) so that [z™®) y] € E.

Proof. (a) Let x = h+ik, h,k € H. As in the proof of Lemma 3.1 we
write (h+ k)" = > V,. Now

[(h + tk)nv y] = Z[Vra y]tr

lies in F for all real ¢ so that each [V,,y] € E. Inasmuch as 2" = ) i"V, we
have [2",y] € E.

(b) Let # = h + ik as above. For each real ¢ there is a positive integer
m(t) so that

[y, (h+tk)™®] € E.

Arguing as in the proof of Theorem 3.1 we see that there is a positive integer
n so that

[(h+tk)",y| € E

for infinitely many ¢ and hence for all real £. As in (a) we see that [z",y] € E.

It is convenient to make some preliminary calculations to expedite the
proof of Theorem 3.2. We are concerned with a sum S = Z;L:_Ol wiyw™ 177,
We note first that

wyw™ 1 4wyt = wl (y - w T,

Suppose first that n is odd. Then n — 1 — j = j just when j = (n — 1)/2.
Thus if s = (n — 1)/2 we have

s—1
(3) S = Z w? (y - w2 wd F wiyw®.
5=0

Now suppose n is even and r = [(n—1)/2] is the largest integer in (n—1)/2.
Here j is never equal to n — 1 — j so that

(4) S = ij(y Cw" T2 )
j=0

THEOREM 3.2. Suppose that, for a positive integer n, x"2 s normal mod-
ulo E for all z € A where E = (0) or E = Z. Then [2°" ,y] € E for all
x,y € A.

Proof. Let h and k be in H. By Lemma 3.1, (1) and (2) hold. Also (2)
can be rewritten as

(5) k- b = 2n"Ekh™.
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In (1) we replace h by h?" to obtain

n—1
(6) [hQnQ’ Z hank,hQn(n—l—j) cE

3=0
for all h,k € H. We examine the summation in (6), which we denote by S.
For typographical convenience we set p(j) = n — 1 — 2j. Suppose first that
n is even. Then, by (4),

S = ZT: h2nj{k . han(J')}h%j'
=0

By (5), k- h?"P0) = 2p™PW) pmP() | But also h™PU) a2 = p2("=1)  Thus

S = 2(r + 1)h" (=D pn =D,
In case n is odd we get an extra term so that, by (3),

S = 2sh" (DR 4 B2y,

However, s = (n — 1)/2 so that, for n odd, we see that

S = (25 + )R D pn (1),
Therefore, from (6), we see that

[p2" prn=Dppn(n=1] ¢
for all h,k € H. Now v = h*("tDEpn("+1) lies in H. Consequently,
(7) R, h2" k) € B
for all h,k € H. From (7) and (5) we have
12 k-h* e B or [h5 K] — [h2", h2 kR2Y) € E

for all h,k € H. Therefore, by (7), [hG"Q,k] € E. As every y € A can be
written in the form u + iv where u,v € H we see that [h6"2,y] € E for all
he H,ye A. An appeal to Lemma 3.2 completes the proof.

COROLLARY 3.3. Let A be semi-prime. Suppose that for some integer n,
™ s normal modulo Z for each x € A. Then A is commutative.

Proof. By Theorem 3.2,

(8) mevy]? Z] =0

for all z,7, 2 € A where m = 6n2. By the theorem in [5], A is commutative
if we can show that, for each prime p, the ring of two-by-two matrices over
the integers modulo p fails to satisfy (8). It is readily seen that (8) does not
hold with the choices

(11 (10
=10 o) Y77 \o o)
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As in [3] by the hypercenter T(A) of A we mean the set of a € A where
for each x € A there is a positive integer n = n(z,a) such that az” = z"a.
As noted in [3], T'(A) is a subalgebra of A containing Z.

THEOREM 3.3. For each x € A let W(z) denote the smallest *-subalgebra
of A containing x. Suppose that for each x € A there is a positive integer
m(z) so that y™*) is normal for all y € W(z). Then A coincides with its
hypercenter.

Proof. Let v be a fixed element of H. For u € H let x = u + v and
note that v and v lie in W(zx). By Theorem 3.2 there is a positive integer

m = m(z) so that ¥ lies in the center of W (). Hence
[u6m2,v] =0.

By Lemma 3.2 we see that for each w € A there is a positive integer n(w)
so that [w™(™) v] = 0. Hence v € T(A). As T(A) is a subalgebra of A, we
have A =T(A).

COROLLARY 3.4. Under the hypotheses of Theorem 3.3, A is commutative
if A is a semi-prime algebra.

Proof. If A is a semi-prime algebra then T'(A) = Z by [3, Th. 2].

REFERENCES

[1] I.N.Herstein, Noncommutative Rings, Carus Math. Monographs 15, Math. Assoc.
America, 1968.

| —, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.

| —, On the hypercenter of a ring, J. Algebra 36 (1975), 151-157.
[4] —, Rings with Involution, Univ. of Chicago Press, Chicago, 1976.

| T. Z. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon. 27
(1982), 267-268.
[6] C.E.Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
[7] B.Yood, Commutativity theorems for Banach algebras, Michigan Math. J. 37 (1990),

203-210.

[8] —, On commutativity of unital Banach algebras, Bull. London Math. Soc. 23 (1991),
278-280.

[9] —, Some commutativity theorems for Banach algebras, Publ. Math. Debrecen, to
appear.

DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802
U.S.A.

E-mail: SNAREQMATH.PSU.EDU

Recu par la Rédaction le 24.6.199)



