COLLOQUIUM MATHEMATICUM

VOL. LXIX

COMMUTATIVITY THEOREMS FOR NORMED *-ALGEBRAS
BY
BERTRAM Y O OD (UNIVERSITY PARK, PENNSYLVANIA)

1. Introduction. In ring theory much attention has been devoted to showing that certain rings must be commutative as a consequence of conditions which are seemingly too weak to imply commutativity. This work was initiated largely by Jacobson, Kaplansky and especially Herstein (see [1, Chapt. 3]) and has continued up to the present time.

In [7], [8] and [9] we pursued the same aim for Banach algebras. Here an important tool was the Baire category theorem. In this note we consider these questions for normed *-algebras which are not necessarily complete so that the Baire theorem is not available. Suppose that A is a normed ${ }^{*}$-algebra with identity. It is shown that A is commutative if for each $x \in A$ there is a positive integer $n(x)$ so that $x^{n(x)}$ is a normal element of A. An example shows this result can fail if A does not have an identity. Among our results we show that if A is a semi-prime algebra and there is a fixed positive integer n where x^{n} is normal modulo the center of A for each $x \in A$ then A is commutative.

Unrelated commutativity theorems for rings with involution are discussed in [4, Chapt. 3].
2. Notation. Throughout, let A be a normed ${ }^{*}$-algebra over the complex field with involution $x \rightarrow x^{*}$, with center Z and where H is its set of self-adjoint elements. Basic definitions on ${ }^{*}$-algebras are given in [6, Chapt. 4]. Throughout, E denotes a closed linear subspace of A. For us $E=(0)$ and $E=Z$ are the subspaces of most concern. We say that $x \in A$ is normal modulo E if $x x^{*}-x^{*} x \in E$.

We shall use several times the following readily established fact. Let $p(t)=\sum_{r=0}^{n} b_{r} t^{r}$ be a polynomial in the real variable t with coefficients in A. If $p(t) \in E$ for all t in an infinite subset of the reals then every $b_{r} \in E$.

We set $[x, y]=x y-y x$ and $x \cdot y=x y+y x$. We say that A is a semi-prime algebra if it has no non-zero nilpotent ideals.

3. On commutativity

Theorem 3.1. Suppose that A has an identity e and that, for each $x \in A$, there is a positive integer $n(x)$ such that $x^{n(x)}$ is normal modulo E. Then $[x, y] \in E$ for all $x, y \in A$.

Proof. It is known [7, Th. 3.4] that if A is complete it is sufficient to have $x^{n(x)}$ normal modulo E on a non-void open subset of A.

Let $x=h+i k$ where h and k lie in H. For each real t there is a positive integer $n(t)$ so that

$$
\left[(e+t x)^{n(t)},\left(e+t x^{*}\right)^{n(t)}\right] \in E .
$$

For each positive integer m let S_{m} be the set of real t where $n(t)=m$. At least one S_{m} must be infinite. Say S_{r} is infinite. Then

$$
\left[(e+t x)^{r},\left(e+t x^{*}\right)^{r}\right] \in E
$$

for infinitely many values of t and hence for all real t. The coefficient of t^{2} in this polynomial lies in E so that $x x^{*}-x^{*} x=2 i[k, h] \in E$. As $[h, k] \in E$ for every $h, k \in H$ we also have $[x, y] \in E$ for all $x, y \in A$.

Corollary 3.1. If, in Theorem 3.1, $E=(0)$ then A is commutative. If, in Theorem 3.1, $E=Z$ and A is a semi-prime algebra then A is commutative.

Proof. Suppose that $E=Z$ and A is semi-prime. Then by Theorem 3.1 we see that for all $x, y \in A$ we have $[x,[x, y]]=0$. It follows from a sublemma of Herstein [2, p. 5] that each $x \in A$ lies in Z.

Theorem 3.1 and Corollary 3.1 can fail if A does not have an identity. For we can have a normed ${ }^{*}$-algebra which is not commutative but where $x^{3} \equiv 0$ as in the following example.

Let A be the three-dimensional complex algebra with basis $\{a, b, c\}$ and multiplication given by

$$
\left(\lambda_{1} a+\mu_{1} b+\nu_{1} c\right)\left(\lambda_{2} a+\mu_{2} b+\nu_{2} c\right)=\left(\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}\right) c
$$

where the λ_{k}, μ_{k} and ν_{k} are complex scalars. The multiplication is associative as the product of any three elements is zero. As a norm for A we may take

$$
\|\lambda a+\mu b+\nu c\|=\left(|\lambda|^{2}+|\mu|^{2}+|\nu|^{2}\right)^{1 / 2}
$$

and as the involution

$$
(\lambda a+\mu b+\nu c)^{*}=\bar{\lambda} a+\bar{\mu} b-\bar{\nu} c .
$$

However, in the positive direction we have the following result.
Corollary 3.2. Suppose that the intersection of the two-sided modular closed *-ideals of A is (0). Suppose that for each $x \in A$ there is a posi-
tive integer $n(x)$ where $x^{n(x)}$ is normal modulo E. If $E=(0)$ then A is commutative. If $E=Z$ and A is semi-prime then A is commutative.

Proof. Let K be a two-sided modular closed *-ideal of A. Then A / K is a normed ${ }^{*}$-algebra with identity. Suppose $E=(0)$. Then $[x, y] \in K$ by Theorem 3.1 for every $x, y \in A$, so A is commutative. In the case $E=Z$ we see that $[[x, y], z] \in K$ for all $x, y, z \in A$. Then an application of Herstein's sublemma $[2, \mathrm{p} .5]$ shows that A is commutative if A is semi-prime.

In particular let A be a B^{*}-algebra which is strongly semi-simple [6, p. 59], that is, the intersection of its maximal modular two-sided ideals is (0). For each maximal modular two-sided ideal M, M is automatically closed and $M=M^{*}$ by [6, Th. 4.9.2]. Also A is semi-simple so that if for each $x \in A$ there is $n(x)$ with $x^{n(x)}$ normal modulo Z we have A commutative.

Lemma 3.1. Let h and k be in H and n be a positive integer. Suppose that $(h+i t k)^{n}$ is normal modulo E for each real t where $E=(0)$ or $E=Z$. Then

$$
\begin{gather*}
{\left[h^{n}, \sum_{j=0}^{n-1} h^{j} k h^{n-1-j}\right] \in E,} \tag{1}\\
{\left[h^{n},\left[h^{n}, k\right]\right]=0}
\end{gather*}
$$

Proof. If $n=1$ then clearly $h k-k h \in E$ so that (1) and (2) are valid. Suppose that $n>1$. We write $(h+k)^{n}=\sum_{r=0}^{n} V_{r}$ where V_{r} is the sum of the terms of the expansion of $(h+k)^{n}$ for which the sum of the exponents of the k^{j} factors is r. In particular $V_{0}=h^{n}$ and $V_{1}=\sum_{j=0}^{n-1} h^{j} k h^{n-1-j}$.

Let $\sum^{\prime}\left(\sum^{\prime \prime}\right)$ denote the summation from $j=0$ to $j=n$ for the odd (even) values of j. For t real we have

$$
(h+i t k)^{n}=A(t)+B(t), \quad(h-i t k)^{n}=A(t)-B(t)
$$

where

$$
A(t)=\sum^{\prime \prime} i^{j} V_{j} t^{j} \quad \text { and } \quad B(t)=\sum^{\prime} i^{j} V_{j} t^{j}
$$

As $(h+i t k)^{n}$ is normal modulo E we see that

$$
[A(t)+B(t), A(t)-B(t)] \in E
$$

so that $[A(t), B(t)] \in E$.
Notice that $A(t)$ consists of h^{n} plus a polynomial in t with t^{2} as a factor. For $t \neq 0,-i t^{-1} B(t)$ consists of V_{1} plus a polynomial in t with t^{2} as a factor. Letting $t \rightarrow 0$ we see that $\left[h^{n}, V_{1}\right] \in E$, which is (1).

One checks that $h V_{1}-V_{1} h=\left[h^{n}, k\right]$ so that our task for (2) is to see that $\left[h^{n}, h V_{1}-V_{1} h\right]=0$. For $E=(0)$ this follows from $\left[h^{n}, V_{1}\right]=(0)$. Suppose $E=Z$ so we have $\left[h^{n}, V_{1}\right]=z \in Z$. Then

$$
\left[h^{n}, h V_{1}-V_{1} h\right]=h\left[h^{n}, V_{1}\right]-\left[h^{n}, V_{1}\right] h=0 .
$$

Lemma 3.2. (a) If $\left[h^{n}, y\right] \in E$ for every $h \in H$ then $\left[x^{n}, y\right] \in E$ for every $x \in A$.
(b) If for each $h \in H$ there is an integer $m(h)$ where $\left[h^{m(h)}, y\right] \in E$ then for each $x \in A$ there is an integer $n(x)$ so that $\left[x^{n(x)}, y\right] \in E$.

Proof. (a) Let $x=h+i k, h, k \in H$. As in the proof of Lemma 3.1 we write $(h+k)^{n}=\sum V_{r}$. Now

$$
\left[(h+t k)^{n}, y\right]=\sum\left[V_{r}, y\right] t^{r}
$$

lies in E for all real t so that each $\left[V_{r}, y\right] \in E$. Inasmuch as $x^{n}=\sum i^{r} V_{r}$ we have $\left[x^{n}, y\right] \in E$.
(b) Let $x=h+i k$ as above. For each real t there is a positive integer $m(t)$ so that

$$
\left[y,(h+t k)^{m(t)}\right] \in E .
$$

Arguing as in the proof of Theorem 3.1 we see that there is a positive integer n so that

$$
\left[(h+t k)^{n}, y\right] \in E
$$

for infinitely many t and hence for all real t. As in (a) we see that $\left[x^{n}, y\right] \in E$.
It is convenient to make some preliminary calculations to expedite the proof of Theorem 3.2. We are concerned with a sum $S=\sum_{j=0}^{n-1} w^{j} y w^{n-1-j}$. We note first that

$$
w^{j} y w^{n-1-j}+w^{n-1-j} y w^{j}=w^{j}\left(y \cdot w^{n-1-2 j}\right) w^{j}
$$

Suppose first that n is odd. Then $n-1-j=j$ just when $j=(n-1) / 2$. Thus if $s=(n-1) / 2$ we have

$$
\begin{equation*}
S=\sum_{j=0}^{s-1} w^{j}\left(y \cdot w^{n-1-2 j}\right) w^{j}+w^{s} y w^{s} \tag{3}
\end{equation*}
$$

Now suppose n is even and $r=[(n-1) / 2]$ is the largest integer in $(n-1) / 2$.
Here j is never equal to $n-1-j$ so that

$$
\begin{equation*}
S=\sum_{j=0}^{r} w^{j}\left(y \cdot w^{n-1-2 j}\right) w^{j} \tag{4}
\end{equation*}
$$

Theorem 3.2. Suppose that, for a positive integer n, x^{n} is normal modulo E for all $x \in A$ where $E=(0)$ or $E=Z$. Then $\left[x^{6 n^{2}}, y\right] \in E$ for all $x, y \in A$.

Proof. Let h and k be in H. By Lemma 3.1, (1) and (2) hold. Also (2) can be rewritten as

$$
\begin{equation*}
k \cdot h^{2 n}=2 h^{n} k h^{n} . \tag{5}
\end{equation*}
$$

In (1) we replace h by $h^{2 n}$ to obtain

$$
\begin{equation*}
\left[h^{2 n^{2}}, \sum_{j=0}^{n-1} h^{2 n j} k h^{2 n(n-1-j)}\right] \in E \tag{6}
\end{equation*}
$$

for all $h, k \in H$. We examine the summation in (6), which we denote by S. For typographical convenience we set $p(j)=n-1-2 j$. Suppose first that n is even. Then, by (4),

$$
S=\sum_{j=0}^{r} h^{2 n j}\left\{k \cdot h^{2 n p(j)}\right\} h^{2 n j}
$$

By (5), $k \cdot h^{2 n p(j)}=2 h^{n p(j)} k h^{n p(j)}$. But also $h^{n p(j)} h^{2 n j}=h^{n(n-1)}$. Thus

$$
S=2(r+1) h^{n(n-1)} k h^{n(n-1)}
$$

In case n is odd we get an extra term so that, by (3),

$$
S=2 s h^{n(n-1)} k h^{n(n-1)}+h^{2 n s} k h^{2 n s} .
$$

However, $s=(n-1) / 2$ so that, for n odd, we see that

$$
S=(2 s+1) h^{n(n-1)} k h^{n(n-1)} .
$$

Therefore, from (6), we see that

$$
\left[h^{2 n^{2}}, h^{n(n-1)} k h^{n(n-1)}\right] \in E
$$

for all $h, k \in H$. Now $v=h^{n(n+1)} k h^{n(n+1)}$ lies in H. Consequently,

$$
\begin{equation*}
\left[h^{2 n^{2}}, h^{2 n^{2}} k h^{2 n^{2}}\right] \in E \tag{7}
\end{equation*}
$$

for all $h, k \in H$. From (7) and (5) we have

$$
\left[h^{2 n^{2}}, k \cdot h^{4 n^{2}}\right] \in E \quad \text { or } \quad\left[h^{6 n^{2}}, k\right]-\left[h^{2 n^{2}}, h^{2 n^{2}} k h^{2 n^{2}}\right] \in E
$$

for all $h, k \in H$. Therefore, by (7), $\left[h^{6 n^{2}}, k\right] \in E$. As every $y \in A$ can be written in the form $u+i v$ where $u, v \in H$ we see that $\left[h^{6 n^{2}}, y\right] \in E$ for all $h \in H, y \in A$. An appeal to Lemma 3.2 completes the proof.

Corollary 3.3. Let A be semi-prime. Suppose that for some integer n, x^{n} is normal modulo Z for each $x \in A$. Then A is commutative.

Proof. By Theorem 3.2,

$$
\begin{equation*}
\left[\left[x^{m}, y\right], z\right]=0 \tag{8}
\end{equation*}
$$

for all $x, y, z \in A$ where $m=6 n^{2}$. By the theorem in [5], A is commutative if we can show that, for each prime p, the ring of two-by-two matrices over the integers modulo p fails to satisfy (8). It is readily seen that (8) does not hold with the choices

$$
x=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad y=z=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

As in [3] by the hypercenter $T(A)$ of A we mean the set of $a \in A$ where for each $x \in A$ there is a positive integer $n=n(x, a)$ such that $a x^{n}=x^{n} a$. As noted in [3], $T(A)$ is a subalgebra of A containing Z.

Theorem 3.3. For each $x \in A$ let $W(x)$ denote the smallest*-subalgebra of A containing x. Suppose that for each $x \in A$ there is a positive integer $m(x)$ so that $y^{m(x)}$ is normal for all $y \in W(x)$. Then A coincides with its hypercenter.

Proof. Let v be a fixed element of H. For $u \in H$ let $x=u+i v$ and note that u and v lie in $W(x)$. By Theorem 3.2 there is a positive integer $m=m(x)$ so that $y^{6 m^{2}}$ lies in the center of $W(x)$. Hence

$$
\left[u^{6 m^{2}}, v\right]=0 .
$$

By Lemma 3.2 we see that for each $w \in A$ there is a positive integer $n(w)$ so that $\left[w^{n(w)}, v\right]=0$. Hence $v \in T(A)$. As $T(A)$ is a subalgebra of A, we have $A=T(A)$.

Corollary 3.4. Under the hypotheses of Theorem 3.3, A is commutative if A is a semi-prime algebra.

Proof. If A is a semi-prime algebra then $T(A)=Z$ by [3, Th. 2].

REFERENCES

[1] I. N. Herstein, Noncommutative Rings, Carus Math. Monographs 15, Math. Assoc. America, 1968.
[2] -, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969
[3] -, On the hypercenter of a ring, J. Algebra 36 (1975), 151-157.
4] -, Rings with Involution, Univ. of Chicago Press, Chicago, 1976.
[5] T. Z. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267-268.
[6] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
[7] B. Yood, Commutativity theorems for Banach algebras, Michigan Math. J. 37 (1990), 203-210.
[8] -, On commutativity of unital Banach algebras, Bull. London Math. Soc. 23 (1991), 278-280.
[9] —, Some commutativity theorems for Banach algebras, Publ. Math. Debrecen, to appear.

DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802
U.S.A.

E-mail: SNARE@MATH.PSU.EDU

