COLLOQUIUM MATHEMATICUM

VOL. LXIX

1995

KRENGEL-LIN DECOMPOSITION FOR NONCOMPACT GROUPS

ΒY

WOJCIECH BARTOSZEK (PRETORIA) AND RYSZARD REBOWSKI (WROCŁAW)

1. Introduction. Let G be a locally compact σ -compact topological Hausdorff group with a right Haar measure λ . The class of all such G with equivalent right and left uniform structures is denoted by **SIN**. A comprehensive review of properties of such groups can be found in [HR] or in a more recent paper [HT]. We note that if G is in addition second countable then $G \in$ **SIN** if and only if there exists a (two-sided) invariant metric on G.

We denote by P(G) the convex convolution semigroup of all Borel (Radon) probability measures on G. For a fixed $\mu \in P(G)$, and $f \in L^p(\lambda)$ or $f \in C_0(G)$, we define

$$P_{\mu}f(x) = \int f(xg) \, d\mu(g).$$

To simplify, and in accordance with [DL2], we write T(t) for P_{δ_t} . Clearly, P_{μ} is a positive linear contraction on each $L^p(\lambda)$ where $1 \leq p \leq \infty$ as well as on $C_0(G)$. We notice that P_{μ} considered as a linear contraction on $L^{\infty}(\lambda)$ may be treated as adjoint to $P_{\tilde{\mu}}$, which obviously acts on $L^1(\lambda)$. Moreover, it is doubly stochastic on $L^1(\lambda)$. $P_{\tilde{\mu}}(\nu) = \nu \star \check{\mu}$ is an extension of $P_{\tilde{\mu}}$ to M(G), the (AL) Banach lattice of all bounded (Radon) measures on G. Clearly $P^*_{\mu}(\nu) = \nu \star \mu$, where P_{μ} is now an operator on $C_0(G)$.

The smallest closed subgroup which contains the topological support $S(\mu)$ of μ is denoted by $G(\mu)$. If $G(\mu) = G$ then we say that μ is *adapted*. We introduce another subgroup which is strongly responsible for asymptotic properties of the iterates P_{μ}^{n} . Namely, we denote by $h(\mu)$ the smallest closed subgroup $H \subseteq G$ such that

$$gH = Hg$$
 and $\mu(gH) = 1$ for each $g \in S(\mu)$.

[87]

¹⁹⁹¹ Mathematics Subject Classification: 22D40, 43A05, 43A35, 47A35, 60B15.

 $Key\ words\ and\ phrases:$ random walk, concentration function, Markov operator, ergodic theory.

The first-named author thanks the Foundation for Research Development for financial support.

In [DL2], $h(\mu)$ is identified as the closed subgroup generated by

$$\bigcup_{n=1}^{\infty} [S(\check{\mu}^{\star n} \star \mu^{\star n}) \cup S(\mu^{\star n} \star \check{\mu}^{\star n})].$$

Our notation is taken mainly from [DL2]. In particular, $\check{\mu}$ stands for the symmetric reflection of μ and \star denotes as usual the convolution operation.

In this paper we shall study the following:

PROBLEM. Characterize $\mu \in P(G)$ such that for all $f \in L^2(\lambda)$ we have

$$(\star) \qquad \qquad \lim_{n \to \infty} \|P^n_{\mu}f\|_2 = 0.$$

On the other hand, if for some $f \in L^2(\lambda)$ the convergence (\star) does not hold, then identify all such $f \in L^2(\lambda)$.

In 1984 Y. Derriennic and M. Lin [DL1] proved that if G is Abelian then (\star) holds for all $f \in L^2(\lambda)$ if and only if $h(\mu)$ is noncompact. We introduce the class \mathcal{G}_{DL} of all locally compact, σ -compact groups with the property that (\star) holds if and only if $h(\mu)$ is noncompact. It was shown in [B2] that all countable groups belong to \mathcal{G}_{DL} . Subsequently in [B3] it was proved that all Polish, locally compact groups with invariant metrics are in \mathcal{G}_{DL} . Proposition 1 of [B4] gives examples of Lie groups without invariant metrics which still belong to \mathcal{G}_{DL} . Although a full characterization of the class \mathcal{G}_{DL} is not provided here, we show that **SIN** $\subset \mathcal{G}_{DL}$.

This fact will be used in the third section which includes the main result of the paper. We extend the Krengel–Lin decomposition to the class **SIN**. Namely, we show that if μ is adapted then $L^2(\lambda) = E_0 \oplus E_1$ where $E_0 = \{f \in L^2(\lambda) : \lim_{n\to\infty} ||P_{\mu}^n f||_2 = 0\}$ and $E_1 = L^2(G, \Sigma_d(P_{\mu}), \lambda)$, where according to [F], $\Sigma_d(P_{\mu})$ stands for the *deterministic* σ -field of the Markov operator P_{μ} . We recall that it is defined as

 $\Sigma_{d}(P_{\mu}) = \{ A \subseteq G : A \text{ is measurable and } \forall_{n \in \mathbb{N}} \exists B_{n} P_{\mu}^{n} \mathbf{1}_{A} = \mathbf{1}_{B_{n}} \}.$

It is proved in [KL] that the tail σ -field

$$\Sigma_{t}(P_{\mu}) = \{A \subseteq G : A \text{ is measurable and } \forall_{n \in \mathbb{N}} \exists B_{n} P_{\mu}^{n} \mathbf{1}_{B_{n}} = \mathbf{1}_{A}\}$$

coincides with $\Sigma_{\rm d}(P_{\tilde{\mu}})$. We will prove that if E_1 is nontrivial then $\Sigma_{\rm d}(P_{\mu})$ is atomic and consists of classes of the group $h(\mu)$. As a result we get $\Sigma_{\rm d}(P_{\mu})$ $= \Sigma_{\rm d}(P_{\tilde{\mu}})$ and consequently, the deterministic part $G_1(\mu)$ defined as

ess sup{
$$A : A \in \Sigma_{d}(P_{\mu}) \cap \Sigma_{t}(P_{\mu})$$
 with $\lambda(A) < \infty$ }

is the whole group G.

CONVENTION. All groups considered in this paper are locally compact, Hausdorff, and σ -compact. Measures are Borel and Radon.

2. Concentrated probabilities. We start with some auxiliary results and provide the necessary definitions. Most of them are taken from [B3]. We say that $\mu \in P(G)$ is *concentrated* if there exist a compact set $K \subseteq G$ and a sequence $g_n \in G$ such that

$$\mu^{\star n}(g_n K) \equiv 1$$
 for all natural n .

A measure $\mu \in P(G)$ is said to be *scattered* if (\star) holds.

The following lemma, which actually is a version of the theorem on convergence of alternating sequences, has been proved in [B3]. In its proof we used Lemma 1.2 and part a) of the proof of Theorem 3.1, both from [C]. It may be easily checked that even though the separability assumption is essential for most of the proofs in [C], the results we quote are valid for general topological groups.

LEMMA 1. Let $\mu \in P(G)$. Then either μ is scattered, or there exists a probability measure $\varrho \in P(G)$ such that $\check{\mu}^{\star n} \star \mu^{\star n} \Rightarrow \varrho$ in the weak measure topology. Moreover, we have the obvious identity

(1)
$$\check{\mu} \star \varrho \star \mu = \varrho.$$

The above convergence has also been studied in [E] and from the general point of view in [AB].

As in [B3], for a unimodular group G and $\mu \in P(G)$ we define

$$T_{\mu}f(g) = \int \int f(ygz^{-1}) \, d\mu(y) \, d\mu(z)$$

We recall that any group $G \in SIN$ is unimodular (see [HR], p. 278).

LEMMA 2. Let $\mu \in P(G)$ and $G \in SIN$. Then the following conditions are equivalent:

- (a) there exists a measure $\varrho \in P(G)$ such that $\check{\mu} \star \varrho \star \mu = \varrho$,
- (β) $T_{\mu}(f_*) = f_*$ for some nonnegative and nonzero $f_* \in L^1(\lambda) \cap L^{\infty}(\lambda)$.

Proof. Only $(\alpha) \Rightarrow (\beta)$ needs to be proved. For $0 < \varepsilon < 1/2$ let f be a continuous function with compact support K such that $0 \le f \le 1$ and $\int f d\varrho > 1 - \varepsilon$. Then $\int_K T^n_\mu f d\varrho > 1 - 2\varepsilon$, so $T^n_\mu f(x_n) > 1 - 2\varepsilon$ for some $x_n \in K$. Since the family $\{T^n_\mu f : n \text{ natural}\}$ is equicontinuous ([HR], (4.14)(g)), there exists a compact neighbourhood W of e such that $T^n_\mu f(g) > 1 - 2\varepsilon$ whenever $g \in W x_n$. Consequently,

$$\int_{WK} T^n_{\mu} f \, d\lambda \ge (1 - 2\varepsilon)\lambda(Wx_n) = (1 - 2\varepsilon)\lambda(W).$$

This implies that the Cesàro L^2 limit of the sequence $T^n_{\mu}f$ (we denote it by f_*) does not vanish, and is T_{μ} -invariant. Clearly $f_* \in L^1(\lambda) \cap L^{\infty}(\lambda)$ since T_{μ} is doubly stochastic.

The following theorem extends some results of [B3] to **SIN** groups. We will apply this result in the next section. The proof is omitted as it easily follows from Theorem 2 of [B3] and Lemma 2.

THEOREM 1. Let $\mu \in P(G)$ be adapted and $G \in SIN$. Then the following conditions are equivalent:

(i) there is a compact set K and g_n , $\tilde{g}_n \in G$ so that $\mu^{*n}(g_n K) = \mu^{*n}(\tilde{g}_n K) \equiv 1$ for all n,

(ii) μ is nonscattered,

(iii) there exists $f \in L^2(\lambda)$ such that $\lim_{n \to \infty} \|P^n_{\mu} f\|_2 > 0$,

- (iv) there exists $\varrho \in P(G)$ such that $\check{\mu} \star \varrho \star \mu = \varrho$,
- (v) $h(\mu)$ is compact.

We notice that for noncompact G and adapted $\mu \in P(G)$, if $h(\mu)$ is compact then it has positive Haar measure. This follows from the identity $G/h(\mu) = \mathbb{Z}$, which may be easily inferred from [DL2], Proposition (1.6). Using Baire category methods it may be shown that the interior of $h(\mu)$ is nonempty.

3. Krengel–Lin decomposition. In this section we extend the Krengel–Lin decomposition from compact groups to the class **SIN**. We begin with the following

LEMMA 3. Let $G \in SIN$. Then for any $\mu \in P(G)$ and $f \in L^2(\lambda)$ the set

$$G_{f,\mu} = \{ t \in G : \lim_{n \to \infty} \|T(t)P_{\mu}^{n}f - P_{\mu}^{n}f\|_{2} = 0 \}$$

is a closed subgroup containing $h(\mu)$. As a result, if μ is nonscattered and $\varrho = \lim_{n \to \infty} \check{\mu}^{\star n} \star \mu^{\star n}$, then for any $f \in L^2(\lambda)$ we have

(2)
$$\lim_{\mu \to 0} \|P_{\varrho}P_{\check{\mu}}^n f - P_{\check{\mu}}^n f\|_2 = 0.$$

Proof. Without loss of generality we may assume that the considered functions f are taken from $C_0(G) \cap L^2(\lambda)$. Clearly $G_{f,\mu}$ is a subgroup. Now let $t_{\alpha} \to t_0$, where $t_{\alpha} \in G_{f,\mu}$. We find that independently of n,

$$\begin{aligned} \|T(t_{\alpha})P_{\mu}^{n}f - T(t_{0})P_{\mu}^{n}f\|_{2}^{2} \\ &= \int \left|\int \left(f(xt_{\alpha}y) - f(xt_{0}y)\right)d\mu^{*n}(y)\right|^{2}d\lambda(x) \\ &\leq \int \int |f(xt_{\alpha}y) - f(xt_{0}y)|^{2}d\mu^{*n}(y)d\lambda(x) \\ &= \int \int |f(xy^{-1}t_{0}^{-1}t_{\alpha}y) - f(x)|^{2}d\lambda(x)d\mu^{*n}(y) \leq (\varepsilon/2)^{2} \end{aligned}$$

for $t_0^{-1}t_\alpha$ close to e, the neutral element of G. Therefore for sufficiently "large" α and n we have

$$\begin{aligned} \|T(t_0)P_{\mu}^n f - P_{\mu}^n f\|_2 \\ &\leq \|T(t_0)P_{\mu}^n f - T(t_{\alpha})P_{\mu}^n f\|_2 + \|T(t_{\alpha})P_{\mu}^n f - P_{\mu}^n f\|_2 \leq \varepsilon. \end{aligned}$$

This implies that $t_0 \in G_{f,\mu}$.

From the above arguments it is easy to conclude that all sets

(3)
$$\{t \in G : \lim_{j \to \infty} \|T(t)P_{\mu}^{n_j}f - P_{\mu}^{n_j}f\|_2 = 0\},\$$

where $n_j \to \infty$ are arbitrary, are closed.

Now, let

$$G_{L^2,\mu} = \bigcap_{f \in L^2(\lambda)} G_{f,\mu}.$$

Clearly it is a closed subgroup of G. We prove $h(\mu) \subseteq G_{L^2,\mu}$. It follows from the convergence

$$\lim_{n \to \infty} \int \|T(t)P_{\mu}^{n}f - P_{\mu}^{n}f\|_{2} \, d\eta(t) = 0$$

where

$$\eta = \sum_{k=1}^{\infty} \frac{1}{2^k} \nu^{\star k} \quad \text{and} \quad \nu = \sum_{k=2}^{\infty} \frac{1}{2^k} (\mu^{\star k} \star \check{\mu}^{\star k} + \check{\mu}^{\star k} \star \mu^{\star k})$$

(see [DL2]), that for any sequence $m_j \to \infty$ there exists a subsequence $n_j \to \infty$ such that

(4)
$$\lim_{j \to \infty} \|T(t)P_{\mu}^{n_j}f - P_{\mu}^{n_j}f\|_2 = 0,$$

where t runs over a set of full η measure. By (3) the convergence (4) holds for all $t \in S(\eta) = h(\mu)$ and the inclusion $h(\mu) \subseteq G_{L^2,\mu}$ is proved.

The second part of the lemma is an easy consequence of the first one. For nonscattered $\mu \in P(G)$ we have $S(\varrho) \subseteq S(\eta) = h(\check{\mu})$. This implies that for all $f \in L^2(\lambda)$,

$$\|P_{\varrho}P_{\check{\mu}}^{n}f - P_{\check{\mu}}^{n}f\|_{2} \leq \int \|T(t)P_{\check{\mu}}^{n}f - P_{\check{\mu}}^{n}f\|_{2} \, d\varrho(t) \to 0. \quad \blacksquare$$

PROPOSITION 1. Let $G \in SIN$ and $\mu \in P(G)$ be adapted. If μ is nonscattered then $S(\varrho) = h(\mu)$, where $\varrho = \lim_{n \to \infty} \check{\mu}^{\star n} \star \mu^{\star n}$. If in addition the group G is noncompact, then

(5)
$$\varrho = \frac{\lambda|_{h(\mu)}}{\lambda(h(\mu))}$$

is the normalized Haar measure on $h(\mu)$ and $\tau = \lim_{n \to \infty} \mu^{\star n} \star \check{\mu}^{\star n} = \varrho$.

Proof. Firstly we notice that $e \in S(\varrho)$. For this, let W be a compact neighbourhood of e. By Theorem 1 the group $h(\mu)$ is compact, so it may be covered by a finite union $\bigcup_{j=1}^{p} x_j W$. Hence

$$S(\mu^{\star n}) \subseteq g^n h(\mu) \subseteq \bigcup_{j=1}^p g^n x_j W,$$

where $g \in S(\mu)$ is arbitrary. Therefore for any *n* there exists x_{j_n} such that $\mu^{*n}(g^n x_{j_n} W) > 1/p$. Consequently,

$$\check{\mu}^{\star n} \star \mu^{\star n}(W^{-1}W) = \check{\mu}^{\star n} \star \mu^{\star n}(W^{-1}x_{j_n}^{-1}g^{-n}g^n x_{j_n}W) \ge \frac{1}{p^2}$$

Passing with n to infinity we get $\rho(W^{-1}W) \ge 1/p^2$. Since W is arbitrary, it follows that $e \in S(\rho)$. In the same way we obtain $e \in S(\tau)$.

Now we apply Theorem 1 (condition (iv)). For all natural n we have

$$\mu^{\star n} \star \check{\mu}^{\star n} \star \varrho \star \mu^{\star n} \star \check{\mu}^{\star n} = \mu^{\star n} \star \varrho \star \check{\mu}^{\star n}$$

The left side tends to $\tau \star \varrho \star \tau$. By (2) the right side is convergent to τ . As a result,

(6)
$$\tau \star \varrho \star \tau = \tau$$

and consequently $\tau \star \varrho \star \tau \star \varrho = \tau \star \varrho$. It is well known (see [H]) that then $\tau \star \varrho$ must be the normalized Haar measure of the compact subgroup $S(\tau \star \varrho)$.

Now we show that $S(\tau)$ is a group. It is obvious that this closed set is symmetric and contains the neutral element of the group. It remains to prove that it is a semigroup. This follows from

$$S(\tau)S(\tau) = S(\tau)eS(\tau) \subseteq S(\tau)S(\varrho)S(\tau) = S(\tau\star\varrho\star\tau) = S(\tau)$$

Notice that $S(\varrho) \subseteq S(\tau)S(\varrho) = S(\tau \star \varrho)$. Hence $\varrho \star \tau \star \varrho = \tau \star \varrho$. Interchanging ϱ with τ in (6) we have $\varrho \star \tau \star \varrho = \varrho$, so $\varrho = \tau \star \varrho$. Since $S(\tau) \subseteq S(\tau \star \varrho)$, it follows that $\tau = \tau \star \varrho \star \tau = \varrho$. The inclusion

$$\bigcup_{n=1}^{\infty} (S(\check{\mu}^{\star n} \star \mu^{\star n}) \cup S(\mu^{\star n} \star \check{\mu}^{\star n}))$$
$$\subseteq \bigcup_{n=1}^{\infty} (S(\check{\mu}^{\star n} \star \varrho \star \mu^{\star n}) \cup S(\mu^{\star n} \star \tau \star \check{\mu}^{\star n})) = S(\varrho)$$

is obvious and we get $h(\mu) \subseteq S(\varrho)$. The opposite inclusion $S(\varrho) \subseteq h(\mu)$ is always valid so $S(\varrho) = h(\mu)$.

It is noticed in (5) that $\lambda(h(\mu)) > 0$ for noncompact G. Therefore the measure ρ may be identified as

$$\varrho = \frac{\lambda|_{h(\mu)}}{\lambda(h(\mu))}$$

and the proof is complete. \blacksquare

It is well known that on compact groups left and right uniform structures are equivalent. So, the following theorem extends the Krengel–Lin decomposition which is discussed in [KL] only for compact groups.

KRENGEL-LIN DECOMPOSITION

THEOREM 2. Let μ be an adapted probability measure on a noncompact group $G \in SIN$. If μ is nonscattered then:

(a) $\Sigma_{d}(P_{\mu}) = \sigma(\{g^{n}h(\mu) : n \in \mathbb{Z} \text{ and } g \in S(\mu) \text{ arbitrary}\}),$

(b) $\lim_{n\to\infty} \|P^n_{\mu}(f - \mathbb{E}_d f)\|_2 = 0$ for all $f \in L^2(\lambda)$, where \mathbb{E}_d stands for the conditional expectation operator with respect to $\Sigma_d(P_{\mu})$.

Proof. For natural n and j we have $P_{\mu}^{n} \mathbf{1}_{g^{j}h(\mu)} = \mathbf{1}_{g^{j-n}h(\mu)}$, so

$$\sigma(\{g^n h(\mu) : n \in \mathbb{Z}, g \in S(\mu)\}) \subseteq \Sigma_{\mathrm{d}}(P_{\mu}).$$

It follows from [F] that

 $L^{2}(G, \Sigma_{\mathrm{d}}(P_{\mu}), \lambda) = \{ f \in L^{2}(\lambda) : P_{\check{\mu}^{\star n} \star \mu^{\star n}} f = f \text{ for any natural } n \}.$

This gives $P_{\varrho}f = f$ for $f \in L^2(G, \Sigma_d(P_{\mu}), \lambda)$ where ϱ is defined in Proposition 1. Using that proposition we have

$$f(x) = \int f(xy) \, d\varrho(y) = \int {}_x f(y) \, d\varrho(y) = \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} {}_x f(y) \, d\lambda(y).$$

If $\widetilde{x} \in xh(\mu)$ then

$$f(\widetilde{x}) = \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(x^{-1}\widetilde{x}y) \, d\lambda(y) = \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) \, d\lambda(y) = f(x) + \frac{1}{\lambda(h(\mu))} + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) \, d\lambda(y) + \frac{1}{\lambda(h(\mu))} \int_{h(\mu)} x f(y) \, d\lambda(y) \, d\lambda(y) \, d\lambda(y) + \frac{1}{\lambda(h(\mu))} + \frac{1}{\lambda(h($$

This means that f is constant on cosets of $h(\mu)$, and (a) is proved. Here we notice that $\Sigma_{\rm d}(P_{\mu}) = \Sigma_{\rm d}(P_{\bar{\mu}}) = \Sigma_{\rm t}(P_{\mu})$. Since $\lambda(h(\mu))$ is finite, the deterministic part is the whole group.

To prove (b) we must show that $\lim_{n\to\infty} ||P^n_{\mu}f||_2 = 0$ for any $f \in L^2(\lambda)$ satisfying

$$\int_{gh(\mu)} f \, d\lambda = 0 \quad \text{for all } g \in G.$$

We notice that the above condition is equivalent to $P_{\varrho}f = 0$. Now,

$$\lim_{n \to \infty} \|P_{\mu}^{n}f\|_{2}^{2} = \lim_{n \to \infty} \int P_{\mu}^{*n} P_{\mu}^{n}f \cdot f \, d\lambda = \int P_{\varrho}f \cdot f \, d\lambda = 0. \quad \bullet$$

COROLLARY 1. For any adapted probability measure μ on a noncompact group $G \in SIN$ there exists a decomposition

$$L^{2}(\lambda) = E_{0} \oplus L^{2}(G, \Sigma_{d}(P_{\mu}), \lambda),$$

where $\lim_{n\to\infty} \|P^n_{\mu}f\|_2 = 0$ for all $f \in E_0$, and if nontrivial, then $(L^2(G, \Sigma_d(P_{\mu}), \lambda), P_{\mu})$ is isomorphic to the bilateral shift $(\ell^2(\mathbb{Z}), \sigma)$.

In the above decomposition it may happen that $E_0 = L^2(\lambda)$ (μ is scattered) or that E_0 is trivial ($G = \mathbb{Z}$, and $\mu = \delta_1$).

REFERENCES

- [AB] M. A. Akcoglu and D. Boivin, Approximation of L_p-contractions by isometries, Canad. Math. Bull. 32 (1989), 360-364.
- [B1] W. Bartoszek, On the asymptotic behaviour of positive linear operators, Notices South African Math. Soc. 25 (1993), 48-78.
- [B2] -, On concentration functions on discrete groups, Ann. Probab. 22 (1994).
- [B3] -, On concentrated probabilities, Ann. Polon. Math. 61 (1995), 25–38.
- [B4] -, On convolution powers on semidirect products, Israel J. Math. (1995), to appear.
- [C]I. Csiszár, On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups, Z. Wahrsch. Verw. Gebiete 5 (1966), 279-295.
- [DL1]Y. Derriennic et M. Lin, Sur le comportement asymptotique de puissances de convolution d'une probabilité, Ann. Inst. H. Poincaré 20 (1984), 127-132.
- [DL2]-, -, Convergence of iterates of averages of certain operator representations and convolution powers, J. Funct. Anal. 85 (1989), 86-102.
 - [E]P. Eisele, On shifted convolution powers of a probability measure, Math. Z. 211 (1992), 557-574.
 - [F] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, 1969.
- [HT]G. Hansel and J. P. Troallic, On a class of weakly periodic mappings, Semigroup Forum 41 (1990), 357-372.
- [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, 1963.
- [H]H. Heyer, Probability Measures on Locally Compact Groups, Springer, 1977.
- [KL] U. Krengel and M. Lin, On the deterministic and asymptotic σ -algebras of a Markov operator, Canad. Math. Bull. 32 (1) (1989), 64–73.
- R. Rębowski, Convergence of iterates of averages of group representations, [R]Rend. Circ. Mat. Palermo (2) 33 (1993), 453-461.

DEPARTMENT OF MATHEMATICS INSTITUTE OF MATHEMATICS UNIVERSITY OF SOUTH AFRICA TECHNICAL UNIVERSITY OF WROCŁAW P.O. BOX 392 WYBRZEŻE WYSPIAŃSKIEGO 27 PRETORIA 0001. SOUTH AFRICA E-mail: BARTOWK@RISC5.UNISA.AC.ZA

50-370 WROCŁAW, POLAND E-mail: REBOWSKI@PLWRTU11.BITNET

Reçu par la Rédaction le 5.7.1993; en version modifiée le 21.7.1994