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ON WEIGHTED INEQUALITIES
FOR OPERATORS OF POTENTIAL TYPE

BY

SHIYING ZHAO (ST. LOUIS, MISSOURI)

In this paper, we discuss a class of weighted inequalities for operators of
potential type on homogeneous spaces. We give sufficient conditions for the
weak and strong type weighted inequalities

sup
λ>0

λ|{x ∈ X : |T (f dσ)(x)| > λ}|1/q
ω ≤ C

( ∫
X

|f |p dσ
)1/p

and ( ∫
X

|T (f dσ)|q dω
)1/q

≤ C
( ∫

X

|f |p dσ
)1/p

in the cases of 0 < q < p ≤ ∞ and 1 ≤ q < p < ∞, respectively, where
T is an operator of potential type, and ω and σ are Borel measures on
the homogeneous space X. We show that under certain restrictions on the
measures those sufficient conditions are also necessary. A consequence is
given for the fractional integrals in Euclidean spaces.

1. Introduction. Weighted norm inequalities for fractional integrals or
Riesz potentials have been studied by many authors. Among them, E. T. Sa-
wyer and R. L. Wheeden [8] recently considered a general family of potential-
like operators on homogeneous spaces, and characterized two-weight norm
inequalities for these operators in the case 1 < p ≤ q < ∞ (cf. also [2] and
[9]). In this paper, we shall consider the case of q < p.

A homogeneous space (X, d, µ) is a set X together with a quasi-metric
d and a doubling measure µ. We recall that a quasi-metric is a mapping
d : X ×X → [0,∞) which satisfies the same conditions as a metric, except
that the triangle inequality is weakened to

(1.1) d(x, y) ≤ κ(d(x, z) + d(z, y)) for all x, y, z ∈ X,
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where κ ≥ 1 is a constant which is independent of x, y, and z. Without
loss of generality (see [3]), we may assume that all balls B(x, r) = {y ∈ X :
d(x, y) < r} are open. Also, we assume that all annuli B(x,R) \ B(x, r)
in X are nonempty for R > r > 0. As usual, for a ball B = B(x, r) and
c > 0, we denote by cB the ball B(x, cr). For convenience, we shall call
a Borel set Q ⊂ X a cube centered at x ∈ X if there exists r > 0 so that
B(x, r) ⊂ Q ⊂ B(x, ϑr), where ϑ ≥ 1 is a fixed constant. We also recall that
a doubling measure µ on X is a nonnegative measure on the Borel subsets
of X so that |2B|µ ≤ Cµ|B|µ for all balls B ⊂ X, where |B|µ denotes the
µ-measure of the ball B. For simplicity, we shall assume that all measures
considered in this paper are locally finite and vanish at individual points.

Let σ and ω be Borel measures on a homogeneous space X. The opera-
tors T studied in this paper have the form

(1.2) T (f dσ)(x) =
∫

X

K(x, y)f(y) dσ(y), x ∈ X,

where the kernel K(x, y) is nonnegative, lower semicontinuous and satisfies
the following condition: There are constants C1 > 1 and C2 > 1 such that

(1.3)
K(x, y) ≤ C1K(x′, y) whenever d(x′, y) ≤ C2d(x, y);
K(x, y) ≤ C1K(x, y′) whenever d(x, y′) ≤ C2d(x, y).

We shall denote the adjoint of T by T ∗, which is given by

(1.4) T ∗(g dω)(y) =
∫

X

K(x, y)g(x) dω(x), y ∈ X.

For a ball B in X, we set

(1.5) ϕ(B) = sup{K(x, y) : x, y ∈ B, and d(x, y) ≥ α−1r(B)},

for some fixed constant α ≥ 2κ, where κ is the constant in (1.1).
For 0 < p < ∞, let Lp,∞(dω) be the weak-Lp space with respect to the

measure ω with the quasi-norm

(1.6) ‖f‖Lp,∞(dω) = sup
λ>0

λ|{x ∈ X : |f(x)| > λ}|1/p
ω ,

and, for 1 ≤ p ≤ ∞, let Lp(dω) be the Lp space with respect to the measure
ω with the norm

(1.7) ‖f‖Lp(dω) =
( ∫

X

|f(x)|p dω(x)
)1/p

,

where the obvious change is needed when p = ∞.
In the case of 1 < p ≤ q < ∞ and X = Rn, the solution to the two-

weight problem is due to E. T. Sawyer ([6] and [7], see also [8] and [9] for the
counterpart for homogeneous spaces). Sawyer’s condition for the weak-type
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inequality

(1.8) ‖T (f dσ)‖Lq,∞(dω) ≤ C‖f‖Lp(dσ)

is that

(1.9)
( ∫

Q

T ∗(χQ dω)(x)p′ dσ(y)
)1/p′

≤ C|Q|1/q′

ω

holds for all cubes Q in Rn, where p′ = p/(p− 1); while for the strong-type
inequality

(1.10) ‖T (f dσ)‖Lq(dω) ≤ C‖f‖Lp(dσ)

is that both

(1.11)
( ∫

Rn

T (χQ dσ)(x)q dω(x)
)1/q

≤ C|Q|1/p
σ

and

(1.12)
( ∫

Rn

T ∗(χQ dω)(x)p′ dσ(x)
)1/p′

≤ C|Q|1/q′

ω

hold for all cubes Q in Rn. However, the characterization for the case q < p
remains open. In this paper, we give some sufficient conditions in order to
have the weak and strong type inequalities (1.8) and (1.10) for this case, and
we shall show that, under certain restrictions on measures, those conditions
are also necessary. Our conditions are suggested by a recent work [10] of
I. E. Verbitsky on the fractional maximal function.

In order to state our results, we need the following dyadic cube decom-
position of a homogeneous space X. It has been shown in [8] that for some
r > 1 (in fact, r = 8κ5 will do), and any (large negative) integer m, there
are points {xk

j } ⊂ X and a family Dm = {Ek
j } of cubes in X centered at xk

j

for k = m,m + 1, . . . and j = 1, 2, . . . such that

(i) B(xk
j , rk) ⊂ Ek

j ⊂ B(xk
j , rk+1),

(ii) for each k = m,m+1, . . . , X =
⋃

j Ek
j and {Ek

j } is pairwise disjoint
in j, and

(iii) if k < l then either Ek
j ∩ El

i = ∅ or Ek
j ⊂ El

i.

We set D =
⋃

m∈ZDm and call the cubes in D dyadic cubes. If Q = Ek
j ∈

Dm, for some m ∈ Z, we define the side-length of Q to be l(Q) = 2rk, and
denote by Q∗ the containing ball B(xk

j , rk+1) of Q.
Let 1 ≤ q < p < ∞. For a given operator of potential type T , we

consider the following auxiliary functions:

(1.13) Ψ∗p (x) = sup
Q∈D: x∈Q

(
1

|Q|ω

∫
ηQ∗

T ∗(χQ dω)p′ dσ

)1/p′

,
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and

(1.14) Ψq(x) = sup
Q∈D: x∈Q

(
1

|Q|σ

∫
ηQ∗

T (χQ dσ)q dω

)1/q

,

where η is a sufficiently large fixed constant; we shall assume that η ≥ 2κ.
We also set

(1.15) Φp(x) = sup
Q∈D: x∈Q

{ϕ(Q)|Q|1/p
ω |Q|1/p′

σ },

where by ϕ(Q) we mean ϕ(Q∗).

Theorem 1.1. Let 0 < q < p ≤ ∞, p > 1. Then in order that the
weak-type inequality (1.8) holds for all f ∈ Lp(dσ), it is sufficient that

(1.16) Ψ∗p ∈ Lpq/(p−q),∞(dω).

Conversely , (1.8) implies

(1.17) Φp ∈ Lpq/(p−q),∞(dω).

Theorem 1.2. Let 1 ≤ q < p < ∞. Then the strong-type inequality
(1.10) holds for all f ∈ Lp(dσ) if both the following conditions are satisfied :

(1.18) Ψ∗p ∈ Lpq/(p−q)(dω) and Ψq ∈ Lpq/(p−q)(dσ).

Conversely , (1.10) implies

(1.19) Φp ∈ Lpq/(p−q)(dω) and Φq ∈ Lpq/(p−q)(dσ).

We do not know, in general, whether conditions (1.16) and (1.18) are
necessary for the weak-type inequality (1.8) and the strong-type inequality
(1.10), respectively. However, the next theorem shows that this is the case if
both ω and σ are doubling, and ω subjects to the following A∞-like condition
for some range of the exponent ε: There exists a constant Cε > 0 such that

(1.20)
(
|B′|ω
|B|ω

)ε

≤ Cε
ϕ(B)
ϕ(B′)

for all pairs of balls B′ ⊂ B in X.

Theorem 1.3. Let ω and σ be doubling measures on X. Then condition
(1.17) is necessary and sufficient in order that the weak-type inequality (1.8)
holds for 0 < q < p ≤ ∞ provided that ω satisfies condition (1.20) with
the exponent 0 < ε < 1; and the first condition of (1.19) is necessary and
sufficient in order that the strong-type inequality (1.10) holds for 1 ≤ q < p <
∞ provided that ω satisfies condition (1.20) with the exponent 0 < ε < 1/q.

We remark that, for the strong-type inequality, if both ω and σ are
doubling then for (1.10) the second condition in (1.19) is necessary and
sufficient if σ satisfies condition (1.20) with the exponent 0 < ε < 1/p, or
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either one of the conditions in (1.19) is necessary and sufficient if both ω
and σ satisfy condition (1.20) with the exponent 0 < ε < 1.

A typical example of operators of potential type is the fractional integral,
which is defined, in the Euclidean space Rn, by

(1.21) Tγ(f dσ)(x) =
∫

Rn

f(y)
|x− y|n−γ

dσ(y),

where 0 < γ < n. We note that, for Tγ , we have ϕ(B) ≈ |B|γ/n−1 for all
balls B in Rn, where |B| denotes the Lebesgue measure of the ball B ⊂ Rn.

For the operator Tγ and A∞ weights ω and σ, we have the following
corollary of Theorem 1.2, which was obtained earlier in [10] with a different
approach. We recall first that a measure ω belongs to the A∞ class of
Muckenhoupt if there are constants C ≥ 1 and 0 < δ ≤ 1 such that

(1.22)
1
C

(
|E|
|Q|

)1/δ

≤ |E|ω
|Q|ω

≤ C

(
|E|
|Q|

)δ

for all cubes Q and all measurable subsets E of Q (see [1]).

Corollary 1.4. Let X = Rn, T = Tγ , and 1 ≤ q < p < ∞. Suppose
that both ω and σ ∈ A∞. Then the strong-type inequality (1.10) holds if and
only if either Φp ∈ Lpq/(p−q)(dω) or Φq ∈ Lpq/(p−q)(dσ).

2. Proof of Theorem 1.1. We shall assume that 0 < q < p < ∞.
Only a few obvious modifications of the following proof are needed when
p = ∞. We start with the proof of the sufficiency part of the theorem. Let
f ∈ Lp(dσ) be given. For λ > 0, we define Ωλ = {x ∈ X : T (f dσ)(x) > λ},
which is an open set by the lower semicontinuity of the kernel K(x, y). To
finish the proof, it is enough to show that

(2.1) sup
λ>0

λq|Ωλ ∩D|ω ≤ C‖f‖q
Lp(dσ)

for all dyadic cubes D ∈ D, with the constant C independent of D and f .
We set ΩΨ

λ = {x ∈ Ωλ : ‖f‖Lp(dσ)Ψ
∗
p (x)p/(p−q) ≤ βλ}, where β > 0

is a constant which will be chosen at the end of the proof. Then, for an
arbitrarily fixed dyadic cube D such that Ωλ ∩D 6= ∅,

Ωλ ∩D ⊂ (ΩΨ
λ ∩D) ∪ {x ∈ X : ‖f‖Lp(dσ)Ψ

∗
p (x)p/(p−q) > βλ},

and hence

λq|Ωλ ∩D|ω ≤ λq|ΩΨ
λ ∩D|ω(2.2)

+ λq|{x ∈ X : ‖f‖Lp(dσ)Ψ
∗
p (x)p/(p−q) > βλ}|ω.

It follows immediately from condition (1.16), which is equivalent to
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(Ψ∗p )p/(p−q) ∈ Lq,∞(dω), that

(2.3) λq|{x ∈ X : ‖f‖Lp(dσ)Ψ
∗
p (x)p/(p−q) > βλ}|ω ≤ C(‖f‖Lp(dσ)/β)q.

We now estimate the first term in (2.2). For m ∈ Z, we denote by Dλ,m

the dyadic cubes Q ∈ Dm with the property that RQ∗ ⊂ Ωλ, where R = 3κ2,
and let Ωλ,m =

⋃
Q∈Dλ,m

Q. It is obvious that limm→−∞Ωλ,m = Ωλ.
Let A > 1 be a constant which will be chosen shortly. It is easy to

observe that Ωλ ⊂ Ωλ/A and Ωλ,m ⊂ Ωλ/A,m for all m ∈ Z. It is shown
in [8] that the sequence {Qj} of maximal dyadic cubes in Dλ/A,m has the
following properties:

(i) Ωλ/A,m =
⋃

j Qj and Qi ∩Qj = ∅ for i 6= j,
(2.4) (ii) RQj ⊂ Ωλ/A, and 2κRrQ∗

j ∩Ωc
λ/A 6= ∅ for all j, and

(iii)
∑

j χ2κQ∗
j
≤ CχΩλ/A

.

Let j be temporarily fixed such that Qj ∩ΩΨ
λ 6= ∅. It is well known that

the operator T satisfies the following maximum principle (see [8]): There is
a positive constant C, independent of D, f , λ, m, j and A, such that

(2.5) T (χ(2κQ∗
j
)cf dσ)(x) ≤ C(λ/A) for all x ∈ Qj .

With C as in (2.5), we now choose A = 2C, and then it follows that∫
2κQ∗

j

K(x, y)f(y) dσ(y) = T (f dσ)(x)− T (χ(2κQ∗
j
)cf dσ)(x) > λ/2

for all x ∈ Qj∩Ωλ,m. Let xj ∈ Qj∩ΩΨ
λ . Then, by using Hölder’s inequality,

we have
λ

2
|Qj ∩Ωλ,m|ω <

∫
Qj

∫
2κQ∗

j

K(x, y)f(y) dσ(y) dω(x)

=
∫

2κQ∗
j

T ∗(χQj dω)f dσ

≤
( ∫

ηQ∗
j

T ∗(χQj dω)p′dσ
)1/p′( ∫

2κQ∗
j

fp dσ
)1/p

≤ |Qj |1/p′

ω Ψ∗p (xj)
( ∫

2κQ∗
j

fp dσ
)1/p

≤ |Qj |1/p′

ω

(
βλ

‖f‖Lp(dσ)

)1−q/p( ∫
2κQ∗

j

f(y)p dσ(y)
)1/p

.

Summing over the family of all maximal cubes Qj in Dλ/A,m which are
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contained in D, and then using Hölder’s inequality again, we obtain

λ|ΩΨ
λ ∩Ωλ,m ∩D|ω

≤ 2
(

βλ

‖f‖Lp(dσ)

)1−q/p ∑
j: Qj⊂D

|Qj |1/p′

ω

( ∫
2κQ∗

j

fp dσ
)1/p

≤ 2
(

βλ

‖f‖Lp(dσ)

)1−q/p( ∑
j: Qj⊂D

|Qj |ω
)1/p′( ∑

j

∫
2κQ∗

j

fp dσ
)1/p

≤ C(βλ)1−q/p(|Ωλ/A ∩D|ω)1/p′‖f‖q/p
Lp(dσ),

where we have used (2.4)(iii).
Since the constant C in the last inequality is independent of m, by letting

m → −∞ on the left-hand side, we obtain

(2.6) λq|ΩΨ
λ ∩D|ω ≤ Cβ1−q/p(λq|Ωλ/A ∩D|ω)1/p′‖f‖q/p

Lp(dσ).

Combining the estimates (2.3) and (2.6) in (2.2), and then taking the
supremum in λ for 0 < λ < N , we obtain

sup
0<λ<N

λq|Ωλ ∩D|ω

≤ C

(
β1−q/p( sup

0<λ<N
λq|Ωλ ∩D|ω)1/p′‖f‖q/p

Lp(dσ) +
‖f‖q

Lp(dσ)

βq

)
.

Since 0 < sup0<λ<N λp|Ωλ ∩D|ω ≤ Np|D|ω < ∞, we are able to choose

β =
( ‖f‖q

Lp(dσ)

sup0<λ<N λq|Ωλ ∩D|ω

)1/(q+p′)

.

With this value of β, the last inequality becomes

sup
0<λ<N

λq|Ωλ ∩D|ω ≤ C( sup
0<λ<N

λq|Ωλ ∩D|ω)q/(q+p′)‖f‖qp′/(q+p′)
Lp(dσ) .

Therefore, (2.1) follows from division and then letting N →∞.
The necessity part of the theorem is an easy consequence of the following

result [10, Theorem 1.1], which can be proved for homogeneous spaces in a
similar way as in [10].

Lemma 2.1. Let 0 < q < p < ∞, and ω be a Borel measure on X.
Let Lp(dω) be either the space Lp,∞(dω) or the space Lp(dω). Suppose that
% : D → [0,∞) is a nonnegative set function. Then the weighted inequality

(2.7) ‖ sup
Q∈D

{λQ%(Q)χQ}‖Lq(dω) ≤ C
( ∑

Q∈D
λp

Q

)1/p



102 S. ZHAO

holds for all {λQ} ∈ lp with λQ ≥ 0 if and only if

(2.8) sup
Q∈D

{%(Q)|Q|1/p
ω χQ} ∈ Lpq/(p−q)(dω).

We now consider the following test function:

(2.9) f =
( ∑

Q∈D

λp
Q

|Q|σ
χQ

)1/p

with λQ ≥ 0 and λQ = 0 if |Q|σ = 0.

As shown in [8], there exists a constant C depending only on κ in (1.1) and
C1, C2 in (1.3) so that if B is a ball in X then

(2.10) ϕ(B) ≤ CK(x, y) for all x, y ∈ B.

We then have the estimate

T (f dσ)(x) ≥ λQ

|Q|1/p
σ

∫
Q

K(x, y) dσ(y) ≥ C−1λQϕ(Q)|Q|1/p′

σ χQ(x)

for all Q ∈ D. Therefore, (1.8) implies that

‖ sup
Q∈D

{λQϕ(Q)|Q|1/p′

σ χQ}‖Lq,∞(dω) ≤ C
( ∑

Q∈D
λp

Q

)1/p

,

and hence ‖Φp‖Lpq/(p−q),∞(dω) ≤ C according to Lemma 2.1 (with %(Q) =

ϕ(Q)|Q|1/p′

σ ). This concludes the proof of Theorem 1.1.

3. Proof of Theorem 1.2. The necessity part of the theorem follows
from Lemma 2.1 in the same way as in the last section. The proof of the
sufficiency part is a modification of the proof in [7] (see also [8] and [9]) for
the 1 < p ≤ q < ∞ case. For the reader’s convenience, we shall include
most of details.

Without loss of generality, we suppose that f is nonnegative and bounded
with compact support. For each k ∈ Z, we set Ωk = {x ∈ X : T (f dσ)(x) >
2k}. For each m ∈ Z, let Dk,m denote the dyadic cubes Q ∈ Dm with the
property that RQ∗ ⊂ Ωk for a fixed constant R which will be chosen later.
Let {Qk

j }j be the maximal (with respect to inclusion) cubes in Dk,m. It is
not difficult to check that the following Whitney-type properties are valid
(cf. [8]): For any fixed constant η ≥ 2κ (the value will be determined during
the proof), there exists R (equal to a large multiple of κη) such that

(i) Ωk,m =
⋃

j Qk
j and Qk

j ∩Qk
i = ∅ for i 6= j,

(ii) RQk
j
∗ ⊂ Ωk and 2κRrQk

j
∗ ∩Ωc

k 6= ∅ for all k and j,
(3.1) (iii)

∑
j χηQk

j
∗ ≤ CχΩk

for all k,

(iv) the number of Qk
s intersecting a fixed ηQk

j
∗ is at most C,

(v) Qk
j ( Ql

i implies k > l.
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Let n > 2 be an integer so that 2n−2 > C, where the constant C is in
the maximum principle (2.5). We then have

(3.2)
∫

X

T (f dσ)q dω ≤ lim
m→−∞

∑
k,j

(2k+n)q|Ek
j |ω,

where Ek
j = Qk

j ∩ (Ωk+n−1,m \Ωk+n). For x ∈ Ek
j ⊂ Ωk+n−1,m, by applying

the maximum principle (2.5) to each dyadic cube Qk
j (with λ = 2k and

A = 1 there), we obtain

T (χ2κQk
j
∗f dσ)(x) = T (f dσ)(x)− T (χ(2κQk

j
∗)cf dσ)(x)

> 2k+n−1 − C2k > 2k+n−1 − 2k+n−2 = 2k+n−2 ≥ 2k,

and so

|Ek
j |ω ≤ 2−k

∫
Ek

j

T (χ2κQk
j
∗f dσ) dω = 2−k

∫
2κQk

j
∗

fT ∗(χEk
j
dω) dσ

=2−k
∫

2κQk
j
∗\Ωk+n

fT ∗(χEk
j
dω)dσ+2−k

∫
2κQk

j
∗∩Ωk+n

fT ∗(χEk
j

dω) dσ

= 2−k(θk
j + τk

j ).

We next define the sets E, F and G of indices (j, k) as in [7], that is,

E = {(k, j) : |Ek
j |ω ≤ β|ηQk

j

∗|ω},

F = {(k, j) : |Ek
j |ω > β|ηQk

j

∗|ω and θk
j > τk

j },

G = {(k, j) : |Ek
j |ω > β|ηQk

j

∗|ω and θk
j ≤ τk

j },

where β (0 < β < 1) is a constant to be chosen at the end of the proof.
Then the sum on the right-hand side of (3.2) can be split into three parts,
the sums over the sets E, F and G, respectively. We have∑

(k,j)∈E

(2k+n)q|Ek
j |ω ≤ Cβ

∑
k,j

2kq|ηQk
j

∗|ω

≤ Cβ
∑

k

2kq|Ωk|ω by (3.1)(iii)

≤ Cβ
∫

X

( ∑
k

2kqχΩk

)
dω ≤ Cβ

∫
X

T (f dσ)q dω.

For notational convenience, we set

Ak
j =

1
|Qk

j |σ

∫
Qk

j

f dσ,
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Θk
j =

(
1

|Qk
j |ω

∫
ηQk

j
∗

T ∗(χQk
j
dω)p′dσ

)1/p′

,

Ψk
j =

(
1

|Qk
j |σ

∫
ηQk

j
∗

T (χQk
j
dσ)qdω

)1/q

.

By Hölder’s inequality,

∑
(k,j)∈F

(2k+n)q|Ek
j |ω ≤ C

∑
k,j

|Ek
j |ω

(
2θk

j

|Ek
j |ω

)q

≤ Cβ−q
∑
k,j

|Ek
j |ω

(
1

|ηQk
j
∗|ω

∫
2κQk

j
∗\Ωk+n

fT (χEk
j

dω) dσ

)q

≤ Cβ−q
∑
k,j

|Ek
j |ω

|ηQk
j
∗|qω

( ∫
ηQk

j
∗

T ∗(χQk
j
dω)p′dσ

)q/p′( ∫
ηQk

j
∗\Ωk+n

fp dσ
)q/p

≤ Cβ−q
∑
k,j

(|Ek
j |ω(Θk

j )pq/(p−q))1−q/p
( ∫

ηQk
j
∗\Ωk+n

fp dσ
)q/p

≤ Cβ−q
( ∑

k,j

|Ek
j |ω(Θk

j )pq/(p−q)
)1−q/p( ∑

k,j

∫
ηQk

j
∗\Ωk+n

fp dσ
)q/p

≤ Cβ−q
( ∫

X

(Ψ∗p )pq/(p−q) dω
)1−q/p( ∫

X

fp dσ
)q/p

≤ Cβ−q
( ∫

X

fp dσ
)q/p

by (1.18),

where we have used the following estimates:∑
k,j

|Ek
j |ω(Θk

j )pq/(p−q) ≤
∫

X

( ∑
k,j

(Θk
j )pq/(p−q)χEk

j

)
dω

≤
∫

X

( ∑
k,j

χηQk
j
∗\Ωk+n

)
(Ψ∗p )pq/(p−q) dω ≤ C

∫
X

(Ψ∗p )pq/(p−q) dω,

and ∑
k,j

∫
ηQk

j
∗\Ωk+n

fp dσ ≤
∫

X

( ∑
k,j

χηQk
j
∗\Ωk+n

)
fp dσ ≤ C

∫
X

fp dσ,
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since ∑
j,k

χηQk
j
∗\Ωk+n

≤ C
∑

k

χΩk\Ωk+n
≤ Cn.

We now estimate the remaining part of the sum on the right-hand side
of (3.2), that is, the sum over the set G. Following [7], we define

Hk
j = {i : Qk+n

i ∩ 2κQk
j

∗ 6= ∅}, Lk
j = {s : Qk

s ∩ 2κQk
j

∗ 6= ∅}.

We observe that the growth condition (1.3) on the kernel K(x, y) implies
that, for x 6∈ 2κQk+n

i

∗
,

max
y∈Qk+n

i

K(x, y) ≤ C min
y∈Qk+n

i

K(x, y),

and hence

max
y∈Qk+n

i

T ∗(χEk
j

dω)(y) ≤ C min
y∈Qk+n

i

T ∗(χEk
j

dω)(y) for all i ∈ Hk
j ,

since 2κQk+n
i

∗ ⊂ Ωk+n by (3.1)(ii) and Ek
j ∩Ωk+n = ∅. It then follows that

τk
j =

∫
2κQk

j
∗∩Ωk+n

fT ∗(χEk
j
dω) dσ

≤ C
∑

i∈Hk
j

( min
y∈Qk+n

i

T ∗(χEk
j

dω)(y))
∫

Qk+n
i

f dσ

≤ C
∑

i∈Hk
j

( ∫
Qk+n

i

T ∗(χEk
j

dω) dσ
)(

1
|Qk+n

i |σ

∫
Qk+n

i

f dσ

)

≤ C
∑
s∈Lk

j

( ∑
i: Qk+n

i
⊂Qk

s

( ∫
Qk+n

i

T ∗(χEk
j

dω) dσ
)
Ak+n

i

)
.

Let K and N be integers such that −∞ < K < ∞ and 0 ≤ N < n. We
set

(3.3) GK,N = {(k, j) ∈ G : k ≥ K, k ≡ N (mod n)}.

We now claim that

(3.4)
∑

(k,j)∈GK,N

(2k+n)q|Ek
j |ω ≤ C

( ∫
X

fp dσ
)q/p

with a constant C independent of the integers K and N .
Let K and N be temporarily fixed. We shall use the so-called “principal”

cubes which are defined as follows: Denote by IK,N all of indices (j, k) so that
k ≥ K and k ≡ N (mod n). Let Γ

(0)
K,N consist of those indices (k, j) ∈ IK,N
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for which Qk
j is maximal. If Γ

(s)
K,N has been defined, let Γ

(s+1)
K,N consist of

those (k, j) ∈ IK,N for which there is (t, u) ∈ Γ
(s)
K,N with Qk

j ⊂ Qt
u and

(i) Ak
j > 2At

u,
(3.5)

(ii) Al
i ≤ 2At

u whenever Qk
j ( Ql

i ⊂ Qt
u.

Define ΓK,N =
⋃∞

s=0 Γ
(s)
K,N , and for each (k, j) ∈ IK,N , define P (Qk

j ) to
be the smallest cube Qt

u containing Qk
j and with (t, u) ∈ ΓK,N . We then

have

(i) P (Qk
j ) = Qt

u implies Ak
j ≤ 2At

u,
(3.6)

(ii) Qk
j ( Qt

u and (t, u) ∈ ΓK,N imply Ak
j > 2At

u.

We note that if Qk+n
i ⊂ Qk

s and (k + n, i) 6∈ ΓK,N then P (Qk+n
i ) =

P (Qk
s), and therefore∑

(k,j)∈GK,N

(2k+n)q|Ek
j |ω ≤ C

∑
k,j

|Ek
j |ω

(
2τk

j

|Ek
j |ω

)q

≤ Cβ−q
∑
k,j

|Ek
j |ω

|ηQk
j
∗|qω

(τk
j )q

≤ Cβ−q
∑
k,j

∑
s∈Lk

j

|Ek
j |ω

|ηQk
j
∗|qω

( ∑
i:P (Qk+n

i
)=P (Qk

s )

Qk+n
i

⊂Qk
s

( ∫
Qk+n

i

T ∗(χEk
j
dω) dσ

)
Ak+n

i

)q

+ Cβ−q
∑
k,j

|Ek
j |ω

|ηQk
j
∗|qω

( ∑
i∈Hk

j

(k+n,i)∈ΓK,N

( ∫
Qk+n

i

T ∗(χEk
j

dω) dσ
)
Ak+n

i

)q

= I + II .

For a fixed (t, u) ∈ ΓK,N , we claim that there is a large constant η
independent of (t, u) such that Qk

j ⊂ ηQt
u
∗ for all indices (k, j) such that

Qk
s ⊂ Qt

u for some s ∈ Lk
j . To see this, we will use the Whitney properties.

If s ∈ Lk
j , then Qk

s ∩ 2κQk
j
∗ 6= ∅, by the definition, and hence there is

z ∈ Qk
s ∩ 2κQk

j
∗. Then, by the Whitney structure, Rl(Qk

s) ≈ d(z,Ωc
k) ≈

Rl(Qk
j ), where R is a large multiple of κη for η ≥ 2κ to be chosen; recall

also that l(Q) denotes the side-length of the dyadic cube Q, and therefore
l(Qk

j ) ≤ Cl(Qk
s) with C depending only on κ. On the other hand, Qk

s ⊂ Qt
u

implies that Qu
t ∩ 2κQk

j
∗ 6= ∅, and l(Qk

s) ≤ l(Qt
u). This shows that the

constant η can be chosen so that it is independent of (t, u). We also note
that the cardinality of Lk

j is at most C by (3.1)(iv). Thus,
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∑
(k,j)∈GK,N

∑
s∈Lk

j

P (Qk
s )=Qt

u

|Ek
j |ω

|ηQk
j
∗|qω

( ∑
i: P (Qk+n

i
)=P (Qk

s )

Qk+n
i

⊂Qk
s

( ∫
Qk+n

i

T ∗(χEk
j

dω)dσ
)
Ak+n

i

)q

≤
∑
k,j

∑
s∈Lk

j

P (Qk
s )=Qt

u

|Ek
j |ω

|ηQk
j
∗|qω

( ∫
Qk

s

T ∗(χEk
j

dω) dσ
)q

(2At
u)q by (3.1)(i)

≤ C(At
u)q

∑
k,j

∑
s∈Lk

j

P (Qk
s )=Qt

u

|Ek
j |ω

|ηQk
j
∗|qω

( ∫
Ek

j

T (χQt
u

dσ) dω
)q

≤ C(At
u)q

∑
k,j

∑
s∈Lk

j

P (Qk
s )=Qt

u

∫
Ek

j

T (χQt
u

dσ)q dω by Hölder’s inequality

≤ C(At
u)q
∫

ηQt∗
u

T (χQt
u

dσ)q dω by the comments above and (3.1)(i)

≤ CAt
u|Qt

u|σ(Ψ t
u)q.

Summing the last inequality over (t, u) ∈ ΓK,N yields

I ≤ Cβ−q
∑

(t,u)∈ΓK,N

(At
u)q|Qt

u|σ(Ψ t
u)q

≤ Cβ−q
∫

X

( ∑
(t,u)∈ΓK,N

(Ψ t
u)q(At

u)qχQt
u
(y)

)
dσ(y)

≤ Cβ−q
∫

X

(Ψq)qMdy
σ (f)q dσ

≤ Cβ−q
( ∫

X

(Ψq)pq/(p−q) dσ
)1−q/p( ∫

X

Mdy
σ (f)p dσ

)q/p

≤ Cβ−q
( ∫

X

Mdy
σ (f)p dσ

)q/p

by (1.18),

since (3.6)(ii) and the geometric series imply that for each fixed y,∑
(t,u)∈ΓK,N

(Ψ t
u)q(At

u)qχQt
u
(y) ≤

∑
(t,u)∈ΓK,N

Ψq(y)q(At
u)qχQt

u
(y)

≤ 2qΨq(y)q sup
Qt

u3y
(At

u)q ≤ 2qΨq(y)qMdy
σ (f)q,

where Mdy
σ is the dyadic maximal operator with respect to the measure σ,
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which is defined by

Mdy
σ (g)(x) = sup

x∈Q: Q∈D

1
|Q|σ

∫
Q

|g(y)| dσ(y).

For a fixed (k, j) ∈ GK,N , it follows from Hölder’s inequality that( ∑
i∈Hk

j

(k+n,i)∈ΓK,N

( ∫
Qk+n

i

T ∗(χEk
j

dω) dσ
)
Ak+n

i

)q

≤
( ∑

i∈Hk
j

(k+n,i)∈ΓK,N

( ∫
Qk+n

i

T ∗(χQk
j
dω)p′ dσ

)1/p′

|Qk+n
i |1/p

σ Ak+n
i

)q

≤
( ∑

i∈Hk
j

∫
Qk+n

i

T ∗(χQk
j
dω)p′ dσ

)q/p′( ∑
i∈Hk

j

(k+n,i)∈ΓK,N

|Qk+n
i |σ(Ak+n

i )p
)q/p

.

By the same argument as above, we can show that if i ∈ Hk
j then Qk+n

i ⊂
ηQk

j
∗ for sufficiently large η (larger than its earlier value). Indeed, if i ∈ Hk

j

then Qk+n
i touches 2κQk

j
∗. If z ∈ Qk+n

i ∩ 2κQk
j
∗, then, by the Whitney

structure, d(z,Ωc
k+n) ≈ Rl(Qk+n

i ) and d(z,Ωc
k) ≈ Rl(Qk

j ) (R is a large
multiple of κη for η > 2κ to be chosen). But d(z,Ωc

k+n) ≤ d(z,Ωc
k) since

Ωk+n ⊂ Ωk. Thus, l(Qk+n
i ) ≤ Cl(Qk

j ) with C depending only on κ, and it
follows that η can be chosen as desired. Therefore, the first factor of the
last expression is at most( ∫

ηQk
j
∗

T ∗(χQk
j
dω)p′dσ

)q/p′

= |Qk
j |q/p′

ω (Θk
j )q.

On the other hand, for a fixed (t, u) ∈ ΓK,N , if u ∈ Ht−n
j then, by the

definition of Ht−n
j , we have Qt

u ∩ 2κQt−n
j

∗ 6= ∅, and it then follows from the
last observation that Qt

u ⊂ ηQt−n
j

∗
. Thus, if z is any point of Qt

u,

(3.7)
∑

j

χHt−n
j

(u) ≤
∑

j

χηQt−n
j

∗(z) ≤ C,

by the Whitney property (3.1)(i).
Therefore, II is estimated by

Cβ−q
∑

(k,j)∈GK,N

|Ek
j |ω

|ηQk
j
∗|qω

|Qk
j |q/p′

ω (Θk
j )q

( ∑
i∈Hk

j

(k+n,i)∈ΓK,N

|Qk+n
i |σ(Ak+n

i )p
)q/p
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≤ Cβ−q
∑
k,j

(|Ek
j |ω(Θk

j )pq/(p−q))1−q/p
( ∑

i∈Hk
j

(k+n,i)∈ΓK,N

|Qk+n
i |σ(Ak+n

j )p
)q/p

≤ Cβ−q
( ∑

k,j

|Ek
j |ω(Θk

j )pq/(p−q)
)1−q/p( ∑

k,j

∑
i∈Hk

j

(k+n,i)∈ΓK,N

|Qk+n
i |σ(Ak+n

j )p
)q/p

≤ Cβ−q
( ∫

X

(Ψ∗p )pq/(p−q) dω
)1−q/p( ∑

k,j

∑
i∈Hk

j

(k+n,i)∈ΓK,N

|Qk+n
i |σ(Ak+n

j )p
)q/p

≤ Cβ−q
( ∑

k,j

∑
i∈Hk

j

(k+n,i)∈ΓK,N

|Qk+n
i |σ(Ak+n

j )p
)q/p

by (1.18)

= Cβ−q
( ∑

k,j,i

χHk
j
(i)χΓK,N

(k + n, i)|Qk+n
i |σ(Ak+n

j )p
)q/p

= Cβ−q
( ∑

t,j,u

χHt−n
j

(u)χΓK,N
(t, u)|Qt

u|σ(At
u)p

)q/p

= Cβ−q
( ∑

(t,u)∈ΓK,N

( ∑
j

χHt−n
j

(u)
)
|Qt

u|σ(At
u)p

)q/p

≤ Cβ−q
( ∑

(t,u)∈ΓK,N

|Qt
u|σ(At

u)p
)q/p

by (3.7)

≤ Cβ−q
( ∫

X

Mdy
σ (f)p dσ

)q/p

.

Combining inequalities, we obtain∑
(k,j)∈GK,N

(2k+n)q|Ek
j |ω ≤ Cβ−q

( ∫
X

Mdy
σ (f)p dσ

)q/p

≤ Cβ−q
( ∫

X

fp dσ
)q/p

;

the last inequality follows from the fact that the dyadic maximal operator
Mdy

σ is strong-type (Lp(dσ), Lp(dσ)) for 1 < p < ∞. This proves (3.4). Now
let K → −∞ in (3.4) and then sum over N = 0, 1, 2, . . . , n− 1 to get∑

(k,j)∈G

(2k+n)q|Ek
j |ω ≤ Cβ−q

( ∫
X

fp dσ
)q/p

.

We have now proved that∑
k,j

(2k+n)q|Ek
j |ω =

( ∑
(k,j)∈E

+
∑

(k,j)∈F

+
∑

(k,j)∈G

)
(2k+n)q|Ek

j |ω
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≤ Cβ
∫

X

T (f dσ)q dω + Cβ−q
( ∫

X

fp dσ
)q/p

with the constant C independent of m. By letting m →∞, we obtain

(3.8)
∫

X

T (f dσ)q dω ≤ Cβ
∫

X

T (f dσ)q dω + Cβ−q
( ∫

X

fp dσ
)q/p

.

We claim that the first term on the right-hand side of (3.8) is finite.
Accepting the claim for the moment, we are then able to choose β so small
that Cβ < 1/2. Subtracting the first term on the right-hand side of (3.8)
from both sides, we obtain (1.10) for f ≥ 0 bounded with compact support,
and hence for arbitrary f ≥ 0 by the monotone convergence theorem.

We finally show that the claim we made above follows from Theorem
1.1. We first note that, since 1 < q < p < ∞, by virtue of Theorem 1.1 and
duality, the condition Ψq ∈ Lpq/(p−q)(dσ) implies that ‖T ∗(g dω)‖Lp′,∞(dσ) ≤
C‖g‖Lq′ (dω) for all g ∈ Lq′(dω). We now let g be a nonnegative function on
X so that ‖g‖Lq′ (dω) ≤ 1, and let B be a ball in X. We then have∫

X

T (χB dσ)g dω =
∫
B

T ∗(g dω) dσ

=
∞∫

0

|B ∩ {y ∈ X : T ∗(g dω)(y) > λ}|σ dλ

≤
∞∫

0

min{|B|σ, |{y ∈ X : T ∗(g dω)(y) > λ}|σ} dλ

≤
∞∫

0

min
{
|B|σ,

C

λp′
‖g‖p′

Lq′ (dω)

}
dλ

≤
∞∫

0

min
{
|B|σ,

C

λp′

}
dλ ≤ C|B|1/p

σ .

By taking the supremum over all such g, we see that ‖T (χB dσ)‖Lq(dω) ≤
C|B|1/p

σ , which is finite by the local finiteness of the measure σ. Therefore,
if f is bounded by a constant A and supported in a ball B, then T (f dσ) ≤
AT (χB dσ), which belongs to the class Lq(dσ). This completes the proof of
the claim and hence the proof of Theorem 1.2.

4. Proofs of Theorem 1.3 and Corollary 1.4. Both proofs of
Theorem 1.3 and Corollary 1.4 are based on the following result, the proof
is adapted from [5]. (See also [10, Corollary 1.2] for a similar result.)
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Proposition 4.1. Let D be the family of dyadic cubes in X, and let
%(Q) ≥ 0 (Q ∈ D) be such that

(4.1)
∑
Q′

%(Q′) ≤ C%%(Q),

where the sum is taken over any family of disjoint dyadic cubes Q′ ∈ D such
that Q′ ⊂ Q. Assume that 0 < r < ∞ and ω satisfies condition (1.20) with
the exponent 0 < ε ≤ 1. Then

(4.2)
∫

X

sup
Q3x

{ϕ(Q)%(Q)}r dσ(x)

≤ C
∫

X

sup
Q3x

{
ϕ(Q)%(Q)

(
|Q|σ
|Q|ω

)1/r}r

dω(x).

In the case of X = Rn and ϕ(Q) ≈ |Q|γ/n−1, (4.2) is also valid for ω ∈ A∞.

P r o o f. Let λ be a fixed positive constant which will be chosen shortly.
For each nonnegative integer k, we define

Ωk = {x ∈ X : sup
Q3x

{ϕ(Q)%(Q)} > λk}

and, for each m ∈ Z, let {Qk
j }j be the family of maximal dyadic cubes in

Q ∈ Dm such that

ϕ(Qk
j )%(Qk

j ) > λk.

Then Ωk,m =
⋃

j Qk
j is a disjoint union and limm→−∞Ωλ,m = Ωλ. More-

over, if Q̃k
j ∈ Dm is the smallest dyadic cube which contains Qk

j properly,
then, by (1.3), it is not hard to verify (see [11]) that ϕ(Q̃k

j ) ≤ Cϕϕ(Qk
j ), since

Qk
j and Q̃k

j have compatible side-lengths. We also have %(Qk
j ) ≤ C%%(Q̃k

j )
by (4.1). Therefore

λk < ϕ(Qk
j )%(Qk

j ) ≤ CϕC%ϕ(Q̃k
j )%(Q̃k

j ) ≤ CϕC%λ
k.

We now choose λ > CεCϕC2
% . Let Ek

j = Qk
j ∩ (Ωk,m \Ωk+1). Then {Ek

j }j,k

is disjoint, and Ωk,m \Ωk+1 =
⋃

j Ek
j . We claim that

(4.3) |Qk
j |ω < β|Ek

j |ω,

for some constant β > 1 independent of j and k.
To prove the claim, we estimate

|Qk
j ∩Ωk+1|ω
|Qk

j |ω
=

∑
i

|Qk
j ∩Qk+1

i |ω
|Qk

j |ω
=

∑
i: Qk+1

i
⊂Qk

j

|Qk+1
i |ω
|Qk

j |ω
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≤
∑

i: Qk+1
i

⊂Qk
j

(
Cε

ϕ(Qk
j )

ϕ(Qk+1
i )

)1/ε

by (1.20)

≤
(

Cε

ϕ(Qk
j )

λk+1

)1/ε ∑
i: Qk+1

i
⊂Qk

j

%(Qk+1
i )1/ε

≤
(

Cε

ϕ(Qk
j )

λk+1

∑
i: Qk+1

i
⊂Qk

j

%(Qk+1
i )

)1/ε

since 0 < ε ≤ 1

≤
(

Cε

ϕ(Qk
j )%(Qk

j )
λk+1

)1/ε

by (4.1)

≤
(

CεCϕC2
%

λ

)1/ε

< 1.

This shows that

|Ek
j |ω = |Qk

j |ω − |Qk
j ∩Ωk+1|ω >

(
1−

(
CεCϕC2

%

λ

)1/ε)
|Qk

j |ω,

and hence the claim is proved. In the case of X = Rn and ϕ(Q) ≈ |Q|γ/n−1,
one can estimate |Qk

j ∩ Ωk+1|/|Qk
j | instead of |Qk

j ∩ Ωk+1,m|ω/|Qk
j |ω, and

then use the definition of A∞ weights (see also [5]).
Now, by the definition of Ek

j and the estimate (4.3), we obtain∑
j,k

(λk+1)r|Ek
j |σ ≤

∑
j,k

λr(ϕ(Qk
j )%(Qk

j ))r|Qk
j |σ

≤ βλr
∑
j,k

(ϕ(Qk
j )%(Qk

j ))r
|Qk

j |σ
|Qk

j |ω
|Ek

j |ω by (4.3)

≤ C
∫

X

sup
Q3x

{
ϕ(Qk

j )%(Q)
(
|Q|σ
|Q|ω

)1/r}r

dω(x),

where the constant C is independent of m. It then follows that∫
X

sup
Q3x

{ϕ(Q)%(Q)}r dσ(x) ≤ lim
m→−∞

∑
j,k

(λk+1)r|Ek
j |σ

≤ C
∫

X

sup
Q3x

{
ϕ(Qk

j )%(Q)
(
|Q|σ
|Q|ω

)1/r}r

dω(x).

This completes the proof of the proposition.
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We now prove Theorem 1.3. It is easy to see from (2.10) that Φp ≤ CΨ∗p
and Φq ≤ CΨq. We now prove that the inverse is also true if ω and σ
satisfy the hypothesis of the theorem. We first recall that the doubling
property of ω implies that there exist α, β > 1 such that |αB|ω ≥ β|B|ω
for all balls B (see [11]). Without loss of generality, we can assume α ≥ 2κ.
Now, let Q ∈ D be fixed. For each fixed y ∈ Q, we choose a decreasing
sequence of balls B0

y ⊃ B1
y ⊃ B2

y ⊃ . . . so that B0
y = B(y, αr(Q∗)) and

Bk
y = B(y, α−k+1r(B0

y)) for k ≥ 1. We then have Q∗ ⊂ B0
y ⊂ ϑQ∗, where

ϑ = κ(α + 1). We also note that, by virtue of (2.10), we have

(4.4) ϕ(B) ≤ Cϕ(B′) for all pairs of balls B′ ⊂ B.

Then, since |{x}|ω = 0, we obtain∫
Q

K(x, y) dω(x) ≤
∫

Q∗

K(x, y) dω(x) ≤
∞∑

k=1

ϕ(Bk
y )|Bk

y |ω

≤ Cϕ(B0
y)|B0

y |ω
∞∑

k=1

( |Bk
y |ω

|B0
y |ω

)1−ε

by (1.20)

≤ Cϕ(B0
y)|B0

y |ω
∞∑

k=1

(
1
βk

)1−ε

≤ Cϕ(Q)|ϑQ∗|ω by (4.4)
≤ Cϕ(Q)|Q|ω since ω is doubling.

Therefore, by using the doubling property of σ, we have(
1

|Q|ω

∫
ηQ∗

( ∫
Q

K(x, y) dω(x)
)p′

dσ(y)
)1/p′

≤ Cϕ(Q)|Q|1/p
ω |Q|1/p′

σ ,

for all Q ∈ D, and hence Ψ∗p ≤ CΦp. Then the first statement of the theorem
follows from Theorem 1.1.

To prove the second statement, we also need to show Ψq ≤ CΦq. To do
this, we first apply Minkowski’s inequality to obtain(

1
|Q|σ

∫
ηQ∗

( ∫
Q

K(x, y) dσ(y)
)q

dω(x)
)1/q

≤ 1

|Q|1/q
σ

∫
Q

( ∫
ηQ∗

K(x, y)q dω(x)
)1/q

dσ(y).

Then we repeat the same argument as above and use the assumption 0 <
ε < 1/q.

Next, by applying Proposition 4.1 with r = pq/(p − q) and %(Q) =
|Q|1/q

ω |Q|1/q′

σ (we note that (4.1) is satisfied by using Hölder’s inequality),
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we have

‖Φq‖Lpq/(p−q)(dσ)

≤ C

∥∥∥∥ sup
Q3x

{
ϕ(Q)|Q|1/q

ω |Q|1/q′

σ

(
|Q|σ
|Q|ω

)(p−q)/pq}∥∥∥∥
Lpq/(p−q)(dω)

= C‖Φp‖Lpq/(p−q)(dω).

Thus, the second statement follows from Theorem 1.2. This concludes the
proof of Theorem 1.3.

Finally, we sketch the proof of Corollary 1.4. First of all, since both
ω, σ ∈ A∞ by assumption, and in particular ω is absolutely continuous with
respect to the Lebesgue measure, it follows from a theorem of Muckenhoupt
and Wheeden (see [4]) that∫

ηQ∗

Tγ(χQ dω)p′ dσ ≤ C
∫

ηQ∗

sup
Q′3y

{
|Q′ ∩Q|ω
|Q′|1−γ/n

}p′

dσ.

Then, by using (4.2) with r = p′ and %(Q) = |Q|σ, and also noting that
T ∗γ = Tγ , the right-hand side of last inequality is bounded by

C
∫

ηQ∗

sup
Q′3y

{
|Q′|ω

|Q′|1−γ/n

(
|Q′|σ
|Q′|ω

)1/p′}p′

dω(y) = C
∫

ηQ∗

Φp(y)p′ dω(y).

Therefore, since ω is doubling and pq/(p− q) = p′q′/(q′ − p′),

‖Ψ∗p ‖Lpq/(p−q)(dω) ≤ C

∥∥∥∥ sup
Q3x

(
1

|Q|ω

∫
ηQ∗

Φp′

p dω

)1/p′∥∥∥∥
Lp′q′/(q′−p′)(dω)

≤ C‖Mω(Φp′

p )‖1/p′

Lq′/(q′−p′)(dω)
≤ C‖Φp‖Lpq/(p−q)(dω),

where Mω is the Hardy–Littlewood maximal operator with respect to the
doubling measure ω, which is strong-type (Lq′/(q′−p′)(dω), Lq′/(q′−p′)(dω)).

The same arguments as above and in the proof of Theorem 1.3 show that

‖Ψq‖Lpq/(p−q)(dσ) ≤ C‖Φq‖Lpq/(p−q)(dσ),

‖Φq‖Lpq/(p−q)(dω) ≤ C‖Φp‖Lpq/(p−q)(dσ),

and
‖Φp‖Lpq/(p−q)(dω) ≤ C‖Φq‖Lpq/(p−q)(dσ).

Thus, the corollary follows from Theorem 1.2.
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