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THE CLOSURE OF THE INVERTIBLES
IN A VON NEUMANN ALGEBRA

BY

LAURA BURLANDO (GENOVA) axp ROBIN HARTE (BELFAST)

In this paper we consider a subset A of a Banach algebra A (containing
all elements of A which have a generalized inverse) and characterize mem-
bership in the closure of the invertibles for the elements of A. Thus our
result yields a characterization of the closure of the invertible group for all
those Banach algebras A which satisfy A = A. In particular, we prove that
A = A when A is a von Neumann algebra. We also derive from our char-
acterization new proofs of previously known results, namely Feldman and
Kadison’s characterization of the closure of the invertibles in a von Neumann
algebra and a more recent characterization of the closure of the invertibles
in the bounded linear operators on a Hilbert space.

0. Suppose A is a ring, with identity 1 and invertible group A~': we
shall write ([11], Definition 7.3.1; [10])

(0.1) A={a€A:acala}

for the regular or “relatively Fredholm” elements, those which have gener-
alized inverses in A, and

(0.2) ATTA* = A*A ' ={ac A:acad a}

for the decomposably reqular or “relatively Weyl” elements, with invertible
generalized inverses. As our notation anticipates, these are just the products
of invertibles and idempotents

(0.3) A*={a€A:a®=a}.

For example, if A = B(X) (i.e., the bounded linear operators on X) for a
Hilbert space X then ([14], Theorem 3.8.2)

(0.4) A={aecA:a(X)=ca(X)}
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(where “cl” denotes norm closure), with ([14], Theorem 3.8.6)
(0.5) A7TA® = {a € A : nul(a) = nul(a*)},

where nul(a) = dima~1(0) is the Hilbert space dimension of the null space
of a.

When A is a Hausdorff topological ring, with jointly continuous multi-
plication and continuous inversion, then the closure of the invertibles is a
semigroup

(0.6) c(A™Hel(A™Y) Cel(a™h),
and for a topological algebra over the rationals there is inclusion
(0.7) ATTA® Cel(A™h).

When in particular A is a real or a complex Banach algebra then ([10]; [11],
Theorem 7.3.4)

(0.8) Anc(A™) =AtA.

In this note we see how (0.8) together with (0.6) and (0.7) gives a new kind
of characterization of cl(A~!) when A is the bounded linear operators on a
complex Hilbert space, or more generally a von Neumann algebra; as a result
we are able to offer possibly a clearer view of the existing characterization
of Feldman/Kadison [8] and Olsen [17].

Throughout this paper, by a Banach algebra we shall mean a Banach
algebra with identity.

1. THEOREM. If A is a real or complex Banach algebra, and if a € A
and (py) is a sequence of idempotents of A satisfying

(1.1) la —apn|]| =0 as n—oo and {ap,:ncN}CA
then
(1.2) a€cl(A™) e {ap,:ne N} C A~1A®,

Proof. Backward implication in (1.2) is (0.7), together with the idempo-
tent property of the closure operation; forward implication is the semigroup
property (0.6) with (0.8). m

If A is a Banach algebra, we define
(13) A={aec A: there exists a sequence (p,)
of idempotents of A satisfying (1.1)}.

Then Theorem 1 provides a characterization of AN cl(A™1). For the Banach
algebras A satisfying A= A, Theorem 1 actually gives a characterization of
cl(A™1). We shall show how the equality A = A is satisfied when A = B(X)
for a Hilbert space X, or, more generally, when A is a von Neumann algebra.
Henceforth, all Hilbert spaces we consider are assumed to be complex.
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When A = B(X) for a Hilbert space X then every operator a € A has
sequences (py,,) of projections satisfying (1.1): this uses the polar decomposi-
tion a = sgn(a)|a| of a € A and the spectral theorem for the positive operator
la| € A. We recall that the “modulus” of a € A is given by the square root
([11], Theorem 9.9.5; [14]; [16], Theorem 2.2.1):

(1.4) a] = (a*a)/? € B(X),

computed using the continuous function calculus ([16], Theorem 2.1.13) de-
rived from the commutative Gelfand-Naimark theorem, and then the “sign”
or “argument” of a is the partial isometry defined ([11], (10.8.1.5); [16], The-
orem 2.3.4; [20]) by setting

(1.5) sgn(y + 2) = limaz, if y =lim|a|z, € clla|(X) and z € |a|(X)*.
n n

This is well defined and bounded because

(1.6) llalz|l = flaz]] (= € X).
The operator u = sgn(a) now satisfies
(1.7) w=uwu*u; u H(0) =l|a| "1 (0) =a"1(0); a=ulal,

and there is implication

(1.8)  ba = ab and ba™ = a*b = sgn(a)b =bsgn(a) (as bla| = |a|b).
The polar decomposition of the adjoint is given ([20], Exercise 7.26) by
(1.9) sgn(a®) =sgn(a)* and |a*| =sgn(a)|alsgn(a)®,

and finally if f is a polynomial then

(1.10) sgn(a)f(a*a) = f(aa®)sgn(a).

Since the positive operator |a| = (a*a)'/? is selfadjoint the spectral theorem

is valid: the continuous function calculus extends ([16], Theorems 2.5.4 and
2.5.5) to a norm-decreasing *-homomorphism

(1.11) f—f(al):D— A
into A from the C*-algebra D of bounded Borel measurable complex-valued
functions on the spectrum o(|a|) C C of |a| € A. When K C C is a Borel
set we shall write
(112) eaK = XKﬁo‘(\aD(’a“)a
where g denotes the characteristic function of S C C.

2. THEOREM. If a € A = B(X) for a Hilbert space X and 0 < € < ||a|
then p. = eqle, ||al|] satisfies

(2.1) pg =ps, |la—ap:||<e and ap.€ A.
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Proof. The first part follows from the idempotent property of a charac-
teristic function xx = x% € D and the second from (1.6) and the inequality
|(1—xk)z| < e on o(|a]), which holds for K = [e, ||a|]]No(]a|]). For the last
part observe ([20], pp. 196-197) that

(2:2) laz]| > ellz]|  if = = pex,

so that ap.(X) is closed, and appeal to (0.4): explicitly ap. = ap.bap. with
b € A defined by setting

(2.3) blapex +2) =p.x  if z€ X and z € ap.(X)*. =

Theorem 2 tells us that A = A when A = B(X) for a Hilbert space
X, and then Theorem 1 tells us that the closure of the invertibles in A is
characterised by (1.2). We can further recognise the right hand side of (1.2)
as the condition written down by Bouldin [2], in terms of the “essential
nullity” and “essential defect”:

(2.4) essnul(a) = inf nule,le, | al|]
0<e<all

and

(2.5) essdef(a) = essnul(a™).

The first of these coincides ((2.1), (2.2) and [7], Lemma 1.2) with the “ap-
proximate nullity” of Edgar, Ernest and Lee ([7], Definition 1.3), which is
a refinement of the concept of Kato ([15], IV, (5.9)). By the well ordering
property of the cardinal numbers it follows that there is £, > 0 for which

(2.6) 0 <e<e, = essnul(a) =nule,e, ||al|]-

We are ready to recover, in Theorem 3 below, the characterization of
the closure of B~1(X) as obtained by Bouldin ([2], Theorem 3), and inde-
pendently by Burlando ([4], Theorem 1.10). Our proof will be shorter, as
Theorem 1 enables us to deal with regular elements and then appeal to (0.8)
and (0.5).

3. THEOREM. If a € A = B(X) for a Hilbert space X then
(3.1) a € cl(A™!) < essnul(a) = essdef(a).

Proof. By Theorem 1 and (2.5) it is sufficient to show, with p. =
eale, [lall] and ge = eqx[e, [|al]],

(3.2) ap. € A7'A® < nulp. = nulg,.
To establish (3.2) note that by (2.2),
(3.3) (ape)™1(0) =pz*(0) and (a”q:)"'(0) = ¢z '(0),
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while, using (1.10),
a*q. = sgn(a*)|a*|qe = sgn(a*)qe|a®| = pe sgn(a)*|a*| = pea™ = (ap:)*
and hence
(3.4) (ape)*~1(0) = ¢Z1(0).
Now (3.3) and (3.4), together with (0.5), give (3.2). m

When the space X is separable then (3.1) can be rewritten in an enter-
taining fashion (which could also be derived from [1], Theorem 3):

4. THEOREM. If A = B(X) for a separable Hilbert space X then

(4.1) (A7) =AU (A\ A),
where
(4.2) A= {a€ A:nul(a) = def(a) (= nul(a®))}.

Proof. With no separability assumption, inclusion one way is clear
from (0.8) together with (0.5):

(4.3) (A7) C(ANc(A ) UA\A) = A1TA°U(A\A) CAU(A\ A).

Conversely, suppose the Hilbert space X to be separable. Then ([15], The-
orem IV.5.10)

(4.4) a € A= essnul(a) = nul(a) and essdef(a) = def(a)
and
(4.5) a ¢ A= essnul(a) = oo and essdef(a) = oo,

where we write “c0” for the first infinite cardinal (alternatively, for (4.4)
and (4.5), there is a direct argument using the polar decomposition). Hence

(4.6) a € AU(A\A) = essnul(a) = essdef(a) = a € cl(A7}). m

Theorem 3 extends to von Neumann algebras: when X is a (possibly
non-separable) Hilbert space, we shall say that a C*-subalgebra A of B(X)
is a von Neumann algebra on X if it coincides with its double commutant
comm?(A) on X. Notice that this forces A to contain the identity op-
erator on X. Necessary and sufficient for an abstract C*-algebra B to be
*-isomorphic to a von Neumann algebra ([19], Theorem 1.16.7; [16], Remark
4.1.2) is that B is a dual Banach space. If a € B(X) then by (1.8),

(4.7) {lal,sgn(a)} C comm?(a,a*),

so that the polar decomposition can be performed within a von Neumann
algebra (namely, when a € A for a von Neumann algebra A on X, then |a]
and sgn(a) also belong to A, as comm?(a,a*) C comm?(A4) = A). If K C C
is a Borel set then ([16], Theorem 2.5.5)

(4.8) ea X € comm?(|a]) € comm?(a,a”).
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When A is a von Neumann algebra on X it follows that, in particular, the
spectral projections e, e, ||al|] and ey« [e, ||a||] belong to A for any £ > 0 and
for any a € A.

To express conditions like (3.2) in the von Neumann algebra we need
“equivalence” of projections: if p* = p = p? and ¢* = ¢ = ¢® in a C*-algebra
A we shall write

(4.9) p~gs dJwe A ww=pand ww* = q.

When A = B(X), this reduces to the condition that their ranges have equal
Hilbert space dimension:

(4.10) dimp(X) = dim¢(X).

Notice that condition (4.10) is necessary for equivalence of p and ¢ also in
the case of a generic C*-subalgebra of B(X); when A = B(X) then (4.10)
implies p ~ ¢ if wy : p(X) — ¢(X) is an (isometric) isomorphism put
wzx = wopx for each z € X.

If a € A for a von Neumann algebra A on X then by (4.8),

(4.11) {R(a), N*(a)} = {ea=(0, [lal], ea(0, [|a]]} € comm?(a,a®),

where R(a) is the orthogonal projection on the closure of the range of a and
N+(a) the orthogonal projection with the same null space as a; therefore

R(a), Nt(a) € A. In addition, since

(4.12) R(a) = sgn(a)sgn(a)* and N*(a)=sgn(a)*sgn(a),
it follows that
(4.13) R(a) ~ N*(a).

Necessary and sufficient for a € A to be decomposably regular is that the
complementary projections R*(a) and N(a) (where R*(a) =1 — R(a) and
N(a) =1— N=t(a)) are equivalent:

5. THEOREM. If A C B = B(X) is a von Neumann algebra on a Hilbert
space X then

(5.1) A=ANB={ac A:a(X)=ca(X)},
and
(5.2) A7'A* ={a€ A:N(a) ~R*(a)} CANB™'B".

Proof. It is clear that
ACANB={acA:a(X)=ca(X)}

If a € A has closed range then so does |a|, and hence |a| + N (a) is invertible
in B; the inverse is given by
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(lal + N(a))™" = gN*(a) + N(a)
(with g € B satisfying gla| = N*(a) = |a|g).

But now b = (|a| + N(a)) !sgn(a)* satisfies @ = aba, and thus is a gener-
alized inverse for a in B. Since A= = AN B~! ([11], Theorem 9.9.7 and
(9.9.4.4); [16], Theorem 2.1.11; [14], Theorem 3.1) and |a| + N(a) € A, it
follows that b € A, which proves (5.1). For (5.2) suppose that a = ¢p with
c€ A~! and p € A®; we claim that

(5.3)  R‘(a)=R(d) and N(a)= N*(d) withd= R"(a)cN(a).
For example, the null space of d is the same as that of 1 — N+(a), which
is the same as that of c¢(1 — N1(a)), because ([11], Theorem 10.9.1) the
intersection of the range of a=cp, which is the null space of R*(a), and the
range of ¢(1— p), reduces to {0}. By (4.13) and (5.3) the first part of (5.2)
is contained in the second; conversely, if a € A has closed range and there
is we A for which N(a)= w*w and R*(a)= ww* then w= ww*w and

(5.4) v=w+sgn(a) =>v'v=1=wvv* and sgn(a)=vN"*(a).
Again |a| + 1 — N1(a) is invertible in A, as is v; thus

(5.5) a=vla| = v(la| + N(a))Nt(a) € A71A®,

giving the equality part of (5.2). The inclusion at the end is clear. m

Actually, (5.1) holds in the more general case of a C*-subalgebra A of
B(X): as remarked in [13], this can be deduced from the representations
formulae for the Moore—Penrose inverse in B(X) provided by several authors
(see [9]). In the von Neumann algebra case, (5.1) is proved also in [12]
(Theorems 5 and 6), by means of a different technique.

(5.1), together with (4.8) and Theorem 2, tells us that, when A is a von
Neumann algebra on a Hilbert space X, then equality A=A holds, and
consequently cl(A~!) is characterized by Theorem 1.

The following extended version of Theorem 3 is due to Feldman and
Kadison ([8], Theorem 1) and has also been proved by Olsen ([17], Theorem
2.2; [18], page 357); we give here a new proof of this result, by deriving it
from the general characterization we have given in Theorem 1.

6. THEOREM. If A is a von Neumann algebra on a Hilbert space X then
for any ¢ > 0,

(6.1) c(A)={acA:1—eys|al]] ~1—eqe lall] if 0<e<eo}
Proof. If we set p. = e,e, [|al]] and g. = eq-[e, [[al], by (2.1) and (5.1)

the ap. are in A. Repeating the argument for Theorem 3, it is sufficient to
show that

(6.2) ap. € AT'A* o 1—p. ~1—gq.,
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which follows from (5.2) and a closer look at (3.3) and (3.4):
(6.3) N+(ap.) =p. and R(ap.)=gq.. =

Olsen ([17], Theorem 2.2) goes further, finding a formula for the distance
of an arbitrary von Neumann algebra element from the invertible group. For
operators Burlando ([5] Theorem 2.9) also does, in a form not involving the
spectral resolution of the modulus. Another formula for the distance to the
invertible group in B(X) can be found in [3], Theorem 7 (see [6] for some
comments about the proof).

We are unable to deduce (6.2) from (3.2), as inclusion at the end of
(5.2) cannot be replaced by equality: the element w of B(X) which ensures
equivalence in B(X) of two projections p,q € A may not be in A. For
example let D = B(¢3) and look at

(6.4) a:<g 3*)€A:<€ g>g<g g>:B:B(X),

where X = {ly X ly and u : (z1,22,23,...) — (0,21, x2,...) is the unilateral

shift on /5. The projections

(6.5) p=N(a) and ¢= R"*(a)

satisfy (4.10) but not (4.9) (in A; of course p and ¢ satisfy (4.9) in B).
Finally, we remark that, generally speaking, the equality A = A is

not satisfied by C*-algebras. For example, let A be the C*-algebra of all

complex-valued continuous functions on [0,1]. Then A®* = {0,1}, so that

A=A={0}UA~", which is strictly contained in A.
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