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THE CLOSURE OF THE INVERTIBLES
IN A VON NEUMANN ALGEBRA

BY

LAURA BURLANDO (GENOVA) AND ROBIN HARTE (BELFAST)

In this paper we consider a subset Â of a Banach algebra A (containing
all elements of A which have a generalized inverse) and characterize mem-
bership in the closure of the invertibles for the elements of Â. Thus our
result yields a characterization of the closure of the invertible group for all
those Banach algebras A which satisfy Â = A. In particular, we prove that
Â = A when A is a von Neumann algebra. We also derive from our char-
acterization new proofs of previously known results, namely Feldman and
Kadison’s characterization of the closure of the invertibles in a von Neumann
algebra and a more recent characterization of the closure of the invertibles
in the bounded linear operators on a Hilbert space.

0. Suppose A is a ring, with identity 1 and invertible group A−1: we
shall write ([11], Definition 7.3.1; [10])

(0.1) A = {a ∈ A : a ∈ aAa}

for the regular or “relatively Fredholm” elements, those which have gener-
alized inverses in A, and

(0.2) A−1A• = A•A−1 = {a ∈ A : a ∈ aA−1a}

for the decomposably regular or “relatively Weyl” elements, with invertible
generalized inverses. As our notation anticipates, these are just the products
of invertibles and idempotents

(0.3) A• = {a ∈ A : a2 = a}.

For example, if A = B(X) (i.e., the bounded linear operators on X) for a
Hilbert space X then ([14], Theorem 3.8.2)

(0.4) A = {a ∈ A : a(X) = cl a(X)}
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(where “cl” denotes norm closure), with ([14], Theorem 3.8.6)

(0.5) A−1A• = {a ∈ A : nul(a) = nul(a∗)},
where nul(a) = dim a−1(0) is the Hilbert space dimension of the null space
of a.

When A is a Hausdorff topological ring, with jointly continuous multi-
plication and continuous inversion, then the closure of the invertibles is a
semigroup

(0.6) cl(A−1) cl(A−1) ⊆ cl(A−1),

and for a topological algebra over the rationals there is inclusion

(0.7) A−1A• ⊆ cl(A−1).

When in particular A is a real or a complex Banach algebra then ([10]; [11],
Theorem 7.3.4)

(0.8) A ∩ cl(A−1) = A−1A•.

In this note we see how (0.8) together with (0.6) and (0.7) gives a new kind
of characterization of cl(A−1) when A is the bounded linear operators on a
complex Hilbert space, or more generally a von Neumann algebra; as a result
we are able to offer possibly a clearer view of the existing characterization
of Feldman/Kadison [8] and Olsen [17].

Throughout this paper, by a Banach algebra we shall mean a Banach
algebra with identity.

1. Theorem. If A is a real or complex Banach algebra, and if a ∈ A
and (pn) is a sequence of idempotents of A satisfying

(1.1) ‖a− apn‖ → 0 as n →∞ and {apn : n ∈ N} ⊆ A

then

(1.2) a ∈ cl(A−1) ⇔ {apn : n ∈ N} ⊆ A−1A•.

P r o o f. Backward implication in (1.2) is (0.7), together with the idempo-
tent property of the closure operation; forward implication is the semigroup
property (0.6) with (0.8).

If A is a Banach algebra, we define

(1.3) Â = {a ∈ A : there exists a sequence (pn)
of idempotents of A satisfying (1.1)}.

Then Theorem 1 provides a characterization of Â∩cl(A−1). For the Banach
algebras A satisfying Â = A, Theorem 1 actually gives a characterization of
cl(A−1). We shall show how the equality Â = A is satisfied when A = B(X)
for a Hilbert space X, or, more generally, when A is a von Neumann algebra.
Henceforth, all Hilbert spaces we consider are assumed to be complex.
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When A = B(X) for a Hilbert space X then every operator a ∈ A has
sequences (pn) of projections satisfying (1.1): this uses the polar decomposi-
tion a = sgn(a)|a| of a ∈ A and the spectral theorem for the positive operator
|a| ∈ A. We recall that the “modulus” of a ∈ A is given by the square root
([11], Theorem 9.9.5; [14]; [16], Theorem 2.2.1):

(1.4) |a| = (a∗a)1/2 ∈ B(X),

computed using the continuous function calculus ([16], Theorem 2.1.13) de-
rived from the commutative Gelfand–Naimark theorem, and then the “sign”
or “argument” of a is the partial isometry defined ([11], (10.8.1.5); [16], The-
orem 2.3.4; [20]) by setting

(1.5) sgn(y + z) = lim
n

axn if y = lim
n
|a|xn ∈ cl|a|(X) and z ∈ |a|(X)⊥.

This is well defined and bounded because

(1.6) ‖|a|x‖ = ‖ax‖ (x ∈ X).

The operator u = sgn(a) now satisfies

(1.7) u = uu∗u; u−1(0) = |a|−1(0) = a−1(0); a = u|a|,
and there is implication

(1.8) ba = ab and ba∗ = a∗b ⇒ sgn(a)b = b sgn(a) (as b|a| = |a|b).
The polar decomposition of the adjoint is given ([20], Exercise 7.26) by

(1.9) sgn(a∗) = sgn(a)∗ and |a∗| = sgn(a)|a| sgn(a)∗,

and finally if f is a polynomial then

(1.10) sgn(a)f(a∗a) = f(aa∗) sgn(a).

Since the positive operator |a| = (a∗a)1/2 is selfadjoint the spectral theorem
is valid: the continuous function calculus extends ([16], Theorems 2.5.4 and
2.5.5) to a norm-decreasing *-homomorphism

(1.11) f → f(|a|) : D → A

into A from the C∗-algebra D of bounded Borel measurable complex-valued
functions on the spectrum σ(|a|) ⊆ C of |a| ∈ A. When K ⊆ C is a Borel
set we shall write

(1.12) eaK = χK∩σ(|a|)(|a|),
where χS denotes the characteristic function of S ⊆ C.

2. Theorem. If a ∈ A = B(X) for a Hilbert space X and 0 < ε ≤ ‖a‖
then pε = ea[ε, ‖a‖] satisfies

(2.1) p2
ε = pε, ‖a− apε‖ ≤ ε and apε ∈ A.
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P r o o f. The first part follows from the idempotent property of a charac-
teristic function χK = χ2

K ∈ D and the second from (1.6) and the inequality
|(1−χK)z| < ε on σ(|a|), which holds for K = [ε, ‖a‖]∩ σ(|a|). For the last
part observe ([20], pp. 196–197) that

(2.2) ‖ax‖ ≥ ε‖x‖ if x = pεx,

so that apε(X) is closed, and appeal to (0.4): explicitly apε = apεbapε with
b ∈ A defined by setting

(2.3) b(apεx + z) = pεx if x ∈ X and z ∈ apε(X)⊥.

Theorem 2 tells us that Â = A when A = B(X) for a Hilbert space
X, and then Theorem 1 tells us that the closure of the invertibles in A is
characterised by (1.2). We can further recognise the right hand side of (1.2)
as the condition written down by Bouldin [2], in terms of the “essential
nullity” and “essential defect”:

(2.4) essnul(a) = inf
0<ε≤‖a‖

nul ea[ε, ‖a‖]

and

(2.5) essdef(a) = essnul(a∗).

The first of these coincides ((2.1), (2.2) and [7], Lemma 1.2) with the “ap-
proximate nullity” of Edgar, Ernest and Lee ([7], Definition 1.3), which is
a refinement of the concept of Kato ([15], IV, (5.9)). By the well ordering
property of the cardinal numbers it follows that there is εa > 0 for which

(2.6) 0 < ε ≤ εa ⇒ essnul(a) = nul ea[ε, ‖a‖].

We are ready to recover, in Theorem 3 below, the characterization of
the closure of B−1(X) as obtained by Bouldin ([2], Theorem 3), and inde-
pendently by Burlando ([4], Theorem 1.10). Our proof will be shorter, as
Theorem 1 enables us to deal with regular elements and then appeal to (0.8)
and (0.5).

3. Theorem. If a ∈ A = B(X) for a Hilbert space X then

(3.1) a ∈ cl(A−1) ⇔ essnul(a) = essdef(a).

P r o o f. By Theorem 1 and (2.5) it is sufficient to show, with pε =
ea[ε, ‖a‖] and qε = ea∗ [ε, ‖a‖],

(3.2) apε ∈ A−1A• ⇔ nul pε = nul qε.

To establish (3.2) note that by (2.2),

(3.3) (apε)−1(0) = p−1
ε (0) and (a∗qε)−1(0) = q−1

ε (0),
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while, using (1.10),

a∗qε = sgn(a∗)|a∗|qε = sgn(a∗)qε|a∗| = pε sgn(a)∗|a∗| = pεa
∗ = (apε)∗

and hence

(3.4) (apε)∗−1(0) = q−1
ε (0).

Now (3.3) and (3.4), together with (0.5), give (3.2).

When the space X is separable then (3.1) can be rewritten in an enter-
taining fashion (which could also be derived from [1], Theorem 3):

4. Theorem. If A = B(X) for a separable Hilbert space X then

(4.1) cl(A−1) = A ∪ (A \A),

where

(4.2) A = {a ∈ A : nul(a) = def(a) (= nul(a∗))}.
P r o o f. With no separability assumption, inclusion one way is clear

from (0.8) together with (0.5):

(4.3) cl(A−1) ⊆ (A∩ cl(A−1))∪ (A \A) = A−1A• ∪ (A \A) ⊆ A∪ (A \A).

Conversely, suppose the Hilbert space X to be separable. Then ([15], The-
orem IV.5.10)

(4.4) a ∈ A ⇒ essnul(a) = nul(a) and essdef(a) = def(a)

and

(4.5) a 6∈ A ⇒ essnul(a) = ∞ and essdef(a) = ∞,

where we write “∞” for the first infinite cardinal (alternatively, for (4.4)
and (4.5), there is a direct argument using the polar decomposition). Hence

(4.6) a ∈ A ∪ (A \A) ⇒ essnul(a) = essdef(a) ⇒ a ∈ cl(A−1).

Theorem 3 extends to von Neumann algebras: when X is a (possibly
non-separable) Hilbert space, we shall say that a C∗-subalgebra A of B(X)
is a von Neumann algebra on X if it coincides with its double commutant
comm2(A) on X. Notice that this forces A to contain the identity op-
erator on X. Necessary and sufficient for an abstract C∗-algebra B to be
*-isomorphic to a von Neumann algebra ([19], Theorem 1.16.7; [16], Remark
4.1.2) is that B is a dual Banach space. If a ∈ B(X) then by (1.8),

(4.7) {|a|, sgn(a)} ⊆ comm2(a, a∗),

so that the polar decomposition can be performed within a von Neumann
algebra (namely, when a ∈ A for a von Neumann algebra A on X, then |a|
and sgn(a) also belong to A, as comm2(a, a∗) ⊆ comm2(A) = A). If K ⊆ C
is a Borel set then ([16], Theorem 2.5.5)

(4.8) eaK ∈ comm2(|a|) ⊆ comm2(a, a∗).
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When A is a von Neumann algebra on X it follows that, in particular, the
spectral projections ea[ε, ‖a‖] and ea∗ [ε, ‖a‖] belong to A for any ε > 0 and
for any a ∈ A.

To express conditions like (3.2) in the von Neumann algebra we need
“equivalence” of projections: if p∗ = p = p2 and q∗ = q = q2 in a C∗-algebra
A we shall write

(4.9) p ∼ q ⇔ ∃w ∈ A, w∗w = p and ww∗ = q.

When A = B(X), this reduces to the condition that their ranges have equal
Hilbert space dimension:

(4.10) dim p(X) = dim q(X).

Notice that condition (4.10) is necessary for equivalence of p and q also in
the case of a generic C∗-subalgebra of B(X); when A = B(X) then (4.10)
implies p ∼ q: if w0 : p(X) → q(X) is an (isometric) isomorphism put
wx = w0px for each x ∈ X.

If a ∈ A for a von Neumann algebra A on X then by (4.8),

(4.11) {R(a), N⊥(a)} = {ea∗(0, ‖a‖], ea(0, ‖a‖]} ⊆ comm2(a, a∗),

where R(a) is the orthogonal projection on the closure of the range of a and
N⊥(a) the orthogonal projection with the same null space as a; therefore
R(a), N⊥(a) ∈ A. In addition, since

(4.12) R(a) = sgn(a) sgn(a)∗ and N⊥(a) = sgn(a)∗ sgn(a),

it follows that

(4.13) R(a) ∼ N⊥(a).

Necessary and sufficient for a ∈ A to be decomposably regular is that the
complementary projections R⊥(a) and N(a) (where R⊥(a) = 1−R(a) and
N(a) = 1−N⊥(a)) are equivalent:

5. Theorem. If A ⊆ B = B(X) is a von Neumann algebra on a Hilbert
space X then

(5.1) A = A ∩B = {a ∈ A : a(X) = cl a(X)},

and

(5.2) A−1A• = {a ∈ A : N(a) ∼ R⊥(a)} ⊆ A ∩B−1B•.

P r o o f. It is clear that

A ⊆ A ∩B = {a ∈ A : a(X) = cl a(X)}.

If a ∈ A has closed range then so does |a|, and hence |a|+N(a) is invertible
in B; the inverse is given by
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(|a|+ N(a))−1 = gN⊥(a) + N(a)
(with g ∈ B satisfying g|a| = N⊥(a) = |a|g).

But now b = (|a| + N(a))−1 sgn(a)∗ satisfies a = aba, and thus is a gener-
alized inverse for a in B. Since A−1 = A ∩ B−1 ([11], Theorem 9.9.7 and
(9.9.4.4); [16], Theorem 2.1.11; [14], Theorem 3.1) and |a| + N(a) ∈ A, it
follows that b ∈ A, which proves (5.1). For (5.2) suppose that a = cp with
c ∈ A−1 and p ∈ A•; we claim that

(5.3) R⊥(a) = R(d) and N(a) = N⊥(d) with d = R⊥(a)cN(a).

For example, the null space of d is the same as that of 1 − N⊥(a), which
is the same as that of c(1 − N⊥(a)), because ([11], Theorem 10.9.1) the
intersection of the range of a=cp, which is the null space of R⊥(a), and the
range of c(1− p), reduces to {0}. By (4.13) and (5.3) the first part of (5.2)
is contained in the second; conversely, if a ∈ A has closed range and there
is w∈ A for which N(a)= w∗w and R⊥(a)= ww∗ then w= ww∗w and

(5.4) v = w + sgn(a) ⇒ v∗v = 1 = vv∗ and sgn(a) = vN⊥(a).

Again |a|+ 1−N⊥(a) is invertible in A, as is v; thus

(5.5) a = v|a| = v(|a|+ N(a))N⊥(a) ∈ A−1A•,

giving the equality part of (5.2). The inclusion at the end is clear.

Actually, (5.1) holds in the more general case of a C∗-subalgebra A of
B(X): as remarked in [13], this can be deduced from the representations
formulae for the Moore–Penrose inverse in B(X) provided by several authors
(see [9]). In the von Neumann algebra case, (5.1) is proved also in [12]
(Theorems 5 and 6), by means of a different technique.

(5.1), together with (4.8) and Theorem 2, tells us that, when A is a von
Neumann algebra on a Hilbert space X, then equality Â = A holds, and
consequently cl(A−1) is characterized by Theorem 1.

The following extended version of Theorem 3 is due to Feldman and
Kadison ([8], Theorem 1) and has also been proved by Olsen ([17], Theorem
2.2; [18], page 357); we give here a new proof of this result, by deriving it
from the general characterization we have given in Theorem 1.

6. Theorem. If A is a von Neumann algebra on a Hilbert space X then
for any ε0 > 0,

(6.1) cl(A−1) = {a ∈ A : 1− ea[ε, ‖a‖] ∼ 1− ea∗ [ε, ‖a‖] if 0 < ε ≤ ε0}.

P r o o f. If we set pε = ea[ε, ‖a‖] and qε = ea∗ [ε, ‖a‖], by (2.1) and (5.1)
the apε are in A. Repeating the argument for Theorem 3, it is sufficient to
show that

(6.2) apε ∈ A−1A• ⇔ 1− pε ∼ 1− qε,
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which follows from (5.2) and a closer look at (3.3) and (3.4):

(6.3) N⊥(apε) = pε and R(apε) = qε.

Olsen ([17], Theorem 2.2) goes further, finding a formula for the distance
of an arbitrary von Neumann algebra element from the invertible group. For
operators Burlando ([5] Theorem 2.9) also does, in a form not involving the
spectral resolution of the modulus. Another formula for the distance to the
invertible group in B(X) can be found in [3], Theorem 7 (see [6] for some
comments about the proof).

We are unable to deduce (6.2) from (3.2), as inclusion at the end of
(5.2) cannot be replaced by equality: the element w of B(X) which ensures
equivalence in B(X) of two projections p, q ∈ A may not be in A. For
example let D = B(`2) and look at

(6.4) a =
(

u 0
0 u∗

)
∈ A =

(
D 0
0 D

)
⊆

(
D D
D D

)
= B = B(X),

where X = `2 × `2 and u : (x1, x2, x3, . . .) 7→ (0, x1, x2, . . .) is the unilateral
shift on `2. The projections

(6.5) p = N(a) and q = R⊥(a)

satisfy (4.10) but not (4.9) (in A; of course p and q satisfy (4.9) in B).
Finally, we remark that, generally speaking, the equality Â = A is

not satisfied by C∗-algebras. For example, let A be the C∗-algebra of all
complex-valued continuous functions on [0, 1]. Then A• = {0, 1}, so that
Â = A = {0} ∪A−1, which is strictly contained in A.
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UNIVERSITÀ DI GENOVA BELFAST BT7 1NN

VIA DODECANESO 35 NORTHERN IRELAND, UK

16146 GENOVA, ITALY E-mail: RHARTE@MATHS.TCD.IE

E-mail: BURLANDO@DIMA.UNIGE.IT
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