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A NOTE ON STRICTLY POSITIVE RADON MEASURES

BY

GRZEGORZ PLEBANEK (WROCLAW)

Recently van Casteren [1] presented the following characterization of
topological spaces admitting a strictly positive Radon measure.

THEOREM 1. The following are equivalent for a topological space X:

(i) there exists a strictly positive Radon measure on X;

(ii) for every open subset U of X one can choose a compact set K(U) C U
such that for every sequence (Up)new with int((, ., Un) # 0 there is a set
A Cw of non-zero density such that (), c 4 K(Up) # 0.

Here and below every topological space is assumed to be Hausdorff. By
a Radon measure on a space X we mean a finite compact-regular measure
defined on the Borel o-algebra of X. A measure is said to be strictly positive
if it is non-zero on every non-empty open set. Thus a Radon measure p on a
space X is strictly positive if and only the support of u is the whole space. A
subset A of the set w of natural numbers is said to be of non-zero density if
|ANn|
_ >

lim sup
n—00 n

0,

where n = {0,1,...,n — 1}.

We find the condition (ii) of Theorem 1 to be a concise topological char-
acterization of spaces admitting a strictly positive measure. However, the
proof given in [1] is rather complicated. In this note we present a shorter
argument based on some classical results.

We shall first recall the notion of intersection numbers introduced by
Kelley [4].

Given a finite sequence (P, ..., P,) of sets, cal(Py, ..., P,) is the maxi-
mum of k such that there are 1 < m; < ... < my, < n with ﬂle P, #0.
Note that

)

n
cal(Py,...,P,) = H pri
i=1
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where || - || denotes the supremum norm and x p is the characteristic function
of a set P. The intersection number (P) of an arbitrary family P is defined
as

k(P) = inf{cal(P1,...,P,)/n: P, € P, n>1}.

THEOREM 2 (Kelley [4], see also [2] and [10]). Given a family P of subsets
of a set X and r > 0, the following are equivalent:

(a) there is a probability quasi-measure p with u(P) > r for all P € P;
(b) K(P) >r.

By a quasi-measure we mean a finitely additive and non-negative set
function defined on an algebra of sets. The condition ensuring the existence
of a measure as in (a) of Theorem 2 is much more complicated (see [9]).
However, in special cases o-additivity is for free—the following Theorem 3
seems to be well known (see the remark at the end of this paper).

THEOREM 3. If P is a family of compact subsets of a space X then there
exists a probability Radon measure p such that (K) > k(P) for K € P.

Theorem 2 made it possible to give a combinatorial characterization of
measurable Boolean algebras and was subsequently used to describe compact
spaces having a strictly positive Radon measure; this is exposed in Chapter 6
of [2]. As we noted in [8], Theorem 3 yields the following;:

THEOREM 4. A topological space X has a strictly positive Radon measure
if and only if there exists a family P of non-empty compact subsets of X
such that P = U, c,, Pn, where k(P,) > 0, and P is a n-base for X (that
is, every non-empty open set contains an element of P).

The proof of Theorem 1 we shall present below shows that character-
izations of spaces having a strictly positive Radon measure contained in
Theorem 1 and Theorem 4 are in fact closely related. Our proof is based on
two lemmata we shall now prove.

LEMMA 1. If p is a finite measure and P, ’s are measurable sets with
w(Py) > r, where r > 0, then () P, # 0 for some set A C w of non-zero
density.

neA

Proof. Let g, = (1/n) >, xp, and g = limsup,,_, . gn. Since [ g, du
> r, it follows from Fatou’s lemma that [gdp > r. Hence g(zg) > 0 for
some xg, and, consequently, A = {n € w: xg € P,,} has non-zero density.

LEMMA 2. For a family P of sets the following are equivalent:
(a) £(P) > 0;

(b) for every sequence (P,)new from P there exists a set A C w of non-
zero density such that the family {P, : n € A} has the finite intersection

property.
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Proof. (a)=(b). Put r = k(P) and let A be the algebra generated by
P. By the Stone representation theorem there is an isomorphism ~ between
A and the algebra of open and closed subsets of a certain compact space S.
Clearly k({P : P € P}) = r, so by Theorem 3 there is a Radon measure
pon S with u(P) > r for P € P. Now to check (b) it suffices to apply
Lemma 1, and notice that (), 4 P, # () means that the family {P, : n € A}
has the finite intersection property.

(b)=(a). Suppose that x(P) = 0. This means that for every k there
are n, € w and Pf,...,P¥ € P such that ||} 7%, xpr| < nk2~%. Put

my = Zle n;, and let (@), be an enumeration of the sequence

P!,....,P) P}... P, ...

We have || > x0:]l < n1271 + ...+ ng27%, which implies easily that

(1/m)|| 2 x| tends to 0. Note that this would give (1/n)|| Y-, xo,
— 0 if we knew that the sequence my1/my were bounded from above.

Consider now a sequence Ry, R, ... in which the segment Pf, ... ,Pr’fk
appears ri = [ng41/n,] + 1 times. We just apply the above remarks to R;’s
and the subsequence of natural numbers that can be written as rinq +...+
Tin; + Jniy1, where j < 1.

It follows that (1/n)|| Y7, Xr:|| — 0, which means that A C w has zero
density whenever (1, .4 Ry # (), a contradiction.

Proof of Theorem 1. If u is a strictly positive Radon measure on
X we can find for every open V C X a compact K (V) C V with u(K(V)) >
(1/2)u(V'). Now (ii) follows immediately from Lemma 1.

To check that (ii) is sufficient for the existence of a strictly positive
Radon measure on X, consider the family S of all (closed) subsets of X
which are supporting some Radon measure. Note that if Sy, S1,... € S then
S = Unew Sn is again in S. Indeed, if S, is the support of a probability
Radon measure j,, then S is the support of » _ 27"u,. We are to check
that X € S.

Let C be the family of sets K(V), where X \ S C V for some S € S.
Then x(C) = 0; indeed, otherwise by Theorem 3 there is a Radon measure
p which is positive on elements from C. In particular, u(K(X \ S)) > 0,
where S is the support of u, a contradiction with K (X \ §) C X \ S.

It follows that there is Sy € S such that x({K(V) : V 2 X\ Sp}) =0
(since the intersection number is attained on some countable subfamily; this
is a consequence of the fact that S is countably upward directed). Now (ii)
and Lemma 2 imply that X \ Sy = () and we are done.
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Let us note that subsets of w of non-zero density play a crucial role in
(b) of Lemma 2. Consider, for instance, the following example of a family
C with x(C) = 0, having the property that every sequence from C has a
subsequence with non-empty intersection.

Put K = {A Cw: |ANn| < /n}. Identifying the power set of w with
the Cantor set 2, we may treat K as a closed subset of 2“. Let the family
C consist of the sets C),, = {A € K : n € A}. Since every A € K has zero
density, using Lemma 2 we get x(C) = 0. On the other hand, for every
increasing sequence (ny)rew, A = {ni2 1 k € w} € K, 50 (e, Cn,n 7 0.

Some of the results from [1] dealing with families of functions rather than
families of sets can be proved accordingly. In our opinion, it is convenient
to start such considerations from the following.

Consider a lattice £ of subsets of an abstract set X, and an algebra .4
generated by L. Note that for every quasi-measure on A the associated inte-
gral is well defined for all functions that are uniform limits of A-measurable
simple functions.

Recall that a quasi-measure p on A is said to be L-regular if

n(A) =sup{u(L): L e L, L C A}
for every A € A.

THEOREM 5. Let G be a family of non-negative and bounded functions
on X such that {g >t} € L whenever g € G and t > 0. The following are
equivalent for r > 0:

(a) there exists an L-regular probability quasi-measure p on A such that
Jgdu>r for every g € G;
(b) || 325 gill = nr whenever g1,...,g, € G and n > 1.

Theorem 5 is likely to be known but we do not know whether its proof
is written down somewhere. We shall sketch a possible argument.
(a)=(b) follows immediately from the inequality

Hzgi > [> gidp.
=1 =1

To prove the reverse implication one can apply the Mazur—Orlicz—Kauf-
man interpolation theorem, stating that if p is a subadditive function on an
Abelian semigroup H and ¢ is any function on H such that p(h1+...+h,) >
q(h1) + ...+ q(hy,) whenever hq,...,h, € H, then there exists an additive
function ¢ such that g(h) < &(h) < p(h) for h € H (see [3], cf. [10] and [5]).

We take H to be a semigroup of non-negative functions on X that are
uniform limits of A-measurable simple functions, put p(h) = ||h||, and put
q(h) =7rif h € G, q(h) = 0 otherwise. Now (b) is what we need to verify the
assumption of the theorem mentioned above. Thus there is an additive and
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non-negative function £ on H with £(h) < ||h| for all h € H and &(g) > r
for g € G.

Consider now a quasi-measure m given by m(A) = (xa). According to a
result due to Lembcke [6], Korollar 2.12 (see also Pachl [7], Proposition 3.4),
there is an L-regular probability quasi-measure p on A such that u(L) >
m(L) for L € L. We shall check that [ gdp > r whenever g € G.

For a given g € G and a natural number n > 1, we consider the function

1< i
= dow where L= { € X 19(0) 2 ol }

We have g > g, > g — ||g||/n and L; € L, so

fngngndM:iZN(Li) > %Zm(Lz)

=1

n

- %5(ZL) =&(gn) =&(9) —&(9 —gn) =7 — M,
i=1

and this shows that p is as required.

Note that if G is a family of characteristic functions then Theorem 5
gives Kelley’s result (Theorem 2), since its condition (b) means that x({P :
xp € G}) > r. In case L is a lattice of compact subsets of a topologi-
cal space X, every L-regular quasi-measure is o-additive and extends to a
Radon measure. Thus, in such a setting, we may demand in condition (a)
of Theorem 5 that p is a Radon measure. In particular, Theorem 3 is a
consequence of Theorem 5.

REFERENCES

[1] J. A. van Casteren, Strictly positive Radon measures, J. London Math. Soc. 49
(1994), 109-123.

[2] W.W.Comfortand S. Negrepontis, Chain Conditions in Topology, Cambridge
Univ. Press, 1982.

[3] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966),
269-272.

[4] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177.

[6] J. Kindler, A Mazur-Orlicz type theorem for submodular set functions, J. Math.
Anal. Appl. 120 (1986), 533-546.

[6] J. Lembcke, Konservative Abbildungen und Fortsetzung reguldrer Masse, Z.
Wahrsch. Verw. Gebiete 15 (1970), 57-96.

[7] J. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978), 157-168.

[8] G. Plebanek, On strictly positive measures on topological spaces, Atti Sem. Mat.
Fis. Univ. Modena 39 (1991), 181-191.



192 G. PLEBANEK

[9] G. Plebanek, Families of sets of positive measure, Trans. Amer. Math. Soc. 332
(1992),
181-191.

[10] M. Wilhelm, Ezistence of additive functionals on semigroups and the von Neu-
mann minimaz theorem, Colloq. Math. 35 (1975), 267-274.

INSTITUTE OF MATHEMATICS
WROCLAW UNIVERSITY

PL. GRUNWALDZKI 2/4

50-384 WROCLAW, POLAND

E-mail: GRZES@MATH.UNI.WROC.PL

Recu par la Rédaction le 4.11.1994



