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A NOTE ON STRICTLY POSITIVE RADON MEASURES

BY

GRZEGORZ P L E B A N E K (WROC LAW)

Recently van Casteren [1] presented the following characterization of
topological spaces admitting a strictly positive Radon measure.

Theorem 1. The following are equivalent for a topological space X:

(i) there exists a strictly positive Radon measure on X;
(ii) for every open subset U of X one can choose a compact set K(U) ⊆ U

such that for every sequence (Un)n∈ω with int(
⋂

n∈ω Un) 6= ∅ there is a set
A ⊆ ω of non-zero density such that

⋂
n∈A K(Un) 6= ∅.

Here and below every topological space is assumed to be Hausdorff. By
a Radon measure on a space X we mean a finite compact-regular measure
defined on the Borel σ-algebra of X. A measure is said to be strictly positive
if it is non-zero on every non-empty open set. Thus a Radon measure µ on a
space X is strictly positive if and only the support of µ is the whole space. A
subset A of the set ω of natural numbers is said to be of non-zero density if

lim sup
n→∞

|A ∩ n|
n

> 0,

where n = {0, 1, . . . , n− 1}.
We find the condition (ii) of Theorem 1 to be a concise topological char-

acterization of spaces admitting a strictly positive measure. However, the
proof given in [1] is rather complicated. In this note we present a shorter
argument based on some classical results.

We shall first recall the notion of intersection numbers introduced by
Kelley [4].

Given a finite sequence (P1, . . . , Pn) of sets, cal(P1, . . . , Pn) is the maxi-
mum of k such that there are 1 ≤ m1 < . . . < mk ≤ n with

⋂k
i=1 Pmi 6= ∅.

Note that

cal(P1, . . . , Pn) =
∥∥∥ n∑

i=1

χPi

∥∥∥,
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where ‖·‖ denotes the supremum norm and χP is the characteristic function
of a set P . The intersection number κ(P) of an arbitrary family P is defined
as

κ(P) = inf{cal(P1, . . . , Pn)/n : Pi ∈ P, n ≥ 1}.

Theorem 2 (Kelley [4], see also [2] and [10]). Given a family P of subsets
of a set X and r > 0, the following are equivalent :

(a) there is a probability quasi-measure µ with µ(P ) ≥ r for all P ∈ P;
(b) κ(P) ≥ r.

By a quasi-measure we mean a finitely additive and non-negative set
function defined on an algebra of sets. The condition ensuring the existence
of a measure as in (a) of Theorem 2 is much more complicated (see [9]).
However, in special cases σ-additivity is for free—the following Theorem 3
seems to be well known (see the remark at the end of this paper).

Theorem 3. If P is a family of compact subsets of a space X then there
exists a probability Radon measure µ such that µ(K) ≥ κ(P) for K ∈ P.

Theorem 2 made it possible to give a combinatorial characterization of
measurable Boolean algebras and was subsequently used to describe compact
spaces having a strictly positive Radon measure; this is exposed in Chapter 6
of [2]. As we noted in [8], Theorem 3 yields the following:

Theorem 4. A topological space X has a strictly positive Radon measure
if and only if there exists a family P of non-empty compact subsets of X
such that P =

⋃
n∈ω Pn, where κ(Pn) > 0, and P is a π-base for X (that

is, every non-empty open set contains an element of P).

The proof of Theorem 1 we shall present below shows that character-
izations of spaces having a strictly positive Radon measure contained in
Theorem 1 and Theorem 4 are in fact closely related. Our proof is based on
two lemmata we shall now prove.

Lemma 1. If µ is a finite measure and Pn’s are measurable sets with
µ(Pn) ≥ r, where r > 0, then

⋂
n∈A Pn 6= ∅ for some set A ⊆ ω of non-zero

density.

P r o o f. Let gn = (1/n)
∑n

i=1 χPi
and g = lim supn→∞ gn. Since

∫
gn dµ

≥ r, it follows from Fatou’s lemma that
∫

g dµ ≥ r. Hence g(x0) > 0 for
some x0, and, consequently, A = {n ∈ ω : x0 ∈ Pn} has non-zero density.

Lemma 2. For a family P of sets the following are equivalent :

(a) κ(P) > 0;
(b) for every sequence (Pn)n∈ω from P there exists a set A ⊆ ω of non-

zero density such that the family {Pn : n ∈ A} has the finite intersection
property.
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P r o o f. (a)⇒(b). Put r = κ(P) and let A be the algebra generated by
P. By the Stone representation theorem there is an isomorphism ̂ between
A and the algebra of open and closed subsets of a certain compact space S.
Clearly κ({P̂ : P ∈ P}) = r, so by Theorem 3 there is a Radon measure
µ on S with µ(P̂ ) ≥ r for P ∈ P. Now to check (b) it suffices to apply
Lemma 1, and notice that

⋂
n∈A P̂n 6= ∅ means that the family {Pn : n ∈ A}

has the finite intersection property.
(b)⇒(a). Suppose that κ(P) = 0. This means that for every k there

are nk ∈ ω and P k
1 , . . . , P k

nk
∈ P such that ‖

∑nk

i=1 χP k
i
‖ ≤ nk2−k. Put

mk =
∑k

i=1 ni, and let (Qn)n be an enumeration of the sequence

P 1
1 , . . . , P 1

n1
, P 2

1 , . . . , P 2
n2

, . . .

We have ‖
∑mk

i=1 χQi
‖ ≤ n12−1 + . . . + nk2−k, which implies easily that

(1/mk)‖
∑mk

i=1 χQi
‖ tends to 0. Note that this would give (1/n)‖

∑n
i=1 χQi

‖
→ 0 if we knew that the sequence mk+1/mk were bounded from above.

Consider now a sequence R1, R2, . . . in which the segment P k
1 , . . . , P k

nk

appears rk = [nk+1/nk] + 1 times. We just apply the above remarks to Rj ’s
and the subsequence of natural numbers that can be written as r1n1 + . . .+
rini + jni+1, where j ≤ ri+1.

It follows that (1/n)‖
∑n

i=1 χRi
‖ → 0, which means that A ⊆ ω has zero

density whenever
⋂

n∈A Rn 6= ∅, a contradiction.

P r o o f o f T h e o r e m 1. If µ is a strictly positive Radon measure on
X we can find for every open V ⊆ X a compact K(V ) ⊆ V with µ(K(V )) ≥
(1/2)µ(V ). Now (ii) follows immediately from Lemma 1.

To check that (ii) is sufficient for the existence of a strictly positive
Radon measure on X, consider the family S of all (closed) subsets of X
which are supporting some Radon measure. Note that if S0, S1, . . . ∈ S then
S =

⋃
n∈ω Sn is again in S. Indeed, if Sn is the support of a probability

Radon measure µn then S is the support of
∑

n∈ω 2−nµn. We are to check
that X ∈ S.

Let C be the family of sets K(V ), where X \ S ⊆ V for some S ∈ S.
Then κ(C) = 0; indeed, otherwise by Theorem 3 there is a Radon measure
µ which is positive on elements from C. In particular, µ(K(X \ S)) > 0,
where S is the support of µ, a contradiction with K(X \ S) ⊆ X \ S.

It follows that there is S0 ∈ S such that κ({K(V ) : V ⊇ X \ S0}) = 0
(since the intersection number is attained on some countable subfamily; this
is a consequence of the fact that S is countably upward directed). Now (ii)
and Lemma 2 imply that X \ S0 = ∅ and we are done.
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Let us note that subsets of ω of non-zero density play a crucial role in
(b) of Lemma 2. Consider, for instance, the following example of a family
C with κ(C) = 0, having the property that every sequence from C has a
subsequence with non-empty intersection.

Put K = {A ⊆ ω : |A ∩ n| ≤
√

n}. Identifying the power set of ω with
the Cantor set 2ω, we may treat K as a closed subset of 2ω. Let the family
C consist of the sets Cn = {A ∈ K : n ∈ A}. Since every A ∈ K has zero
density, using Lemma 2 we get κ(C) = 0. On the other hand, for every
increasing sequence (nk)k∈ω, A = {nk2 : k ∈ ω} ∈ K, so

⋂
k∈ω Cnk2 6= ∅.

Some of the results from [1] dealing with families of functions rather than
families of sets can be proved accordingly. In our opinion, it is convenient
to start such considerations from the following.

Consider a lattice L of subsets of an abstract set X, and an algebra A
generated by L. Note that for every quasi-measure on A the associated inte-
gral is well defined for all functions that are uniform limits of A-measurable
simple functions.

Recall that a quasi-measure µ on A is said to be L-regular if

µ(A) = sup{µ(L) : L ∈ L, L ⊆ A}
for every A ∈ A.

Theorem 5. Let G be a family of non-negative and bounded functions
on X such that {g ≥ t} ∈ L whenever g ∈ G and t ≥ 0. The following are
equivalent for r ≥ 0:

(a) there exists an L-regular probability quasi-measure µ on A such that∫
g dµ ≥ r for every g ∈ G;

(b) ‖
∑n

i=1 gi‖ ≥ nr whenever g1, . . . , gn ∈ G and n ≥ 1.

Theorem 5 is likely to be known but we do not know whether its proof
is written down somewhere. We shall sketch a possible argument.

(a)⇒(b) follows immediately from the inequality∥∥∥ n∑
i=1

gi

∥∥∥ ≥ ∫ n∑
i=1

gi dµ.

To prove the reverse implication one can apply the Mazur–Orlicz–Kauf-
man interpolation theorem, stating that if p is a subadditive function on an
Abelian semigroup H and q is any function on H such that p(h1+. . .+hn) ≥
q(h1) + . . . + q(hn) whenever h1, . . . , hn ∈ H, then there exists an additive
function ξ such that q(h) ≤ ξ(h) ≤ p(h) for h ∈ H (see [3], cf. [10] and [5]).

We take H to be a semigroup of non-negative functions on X that are
uniform limits of A-measurable simple functions, put p(h) = ‖h‖, and put
q(h) = r if h ∈ G, q(h) = 0 otherwise. Now (b) is what we need to verify the
assumption of the theorem mentioned above. Thus there is an additive and
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non-negative function ξ on H with ξ(h) ≤ ‖h‖ for all h ∈ H and ξ(g) ≥ r
for g ∈ G.

Consider now a quasi-measure m given by m(A) = ξ(χA). According to a
result due to Lembcke [6], Korollar 2.12 (see also Pachl [7], Proposition 3.4),
there is an L-regular probability quasi-measure µ on A such that µ(L) ≥
m(L) for L ∈ L. We shall check that

∫
g dµ ≥ r whenever g ∈ G.

For a given g ∈ G and a natural number n ≥ 1, we consider the function

gn =
1
n

n∑
i=1

χLi , where Li =
{

x ∈ X : g(x) ≥ ‖g‖ i

n

}
.

We have g ≥ gn ≥ g − ‖g‖/n and Li ∈ L, so∫
g dµ ≥

∫
gn dµ =

1
n

n∑
i=1

µ(Li) ≥
1
n

n∑
i=1

m(Li)

=
1
n

ξ
( n∑

i=1

Li

)
= ξ(gn) = ξ(g)− ξ(g − gn) ≥ r − ‖g‖

n
,

and this shows that µ is as required.

Note that if G is a family of characteristic functions then Theorem 5
gives Kelley’s result (Theorem 2), since its condition (b) means that κ({P :
χP ∈ G}) ≥ r. In case L is a lattice of compact subsets of a topologi-
cal space X, every L-regular quasi-measure is σ-additive and extends to a
Radon measure. Thus, in such a setting, we may demand in condition (a)
of Theorem 5 that µ is a Radon measure. In particular, Theorem 3 is a
consequence of Theorem 5.
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