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THE RIEMANN THEOREM
AND DIVERGENT PERMUTATIONS

BY

ROMAN W I T U  L A (GLIWICE)

In this paper the fundamental algebraic propeties of convergent and di-
vergent permutations of N are presented. A permutation p of N is said to be
divergent if at least one conditionally convergent series

∑
an of real terms

is rearranged by p to a divergent series
∑

ap(n). All other permutations
of N are called convergent. Some generalizations of the Riemann theorem
about the set of limit points of the partial sums of rearrangements of a given
conditionally convergent series are also studied.

1. Basic notation and terminology. The sets of reals, positive
integers, even and odd positive integers will be denoted by R, N, 2N and
2N− 1, respectively.

A finite nonempty subset I of N is said to be an interval , or equivalently,
an interval of N if I is the range of some increasing sequence of consecutive
elements of N.

We will use the symbols (a, b), [a, b] and [a, b) with a, b ∈ N to denote
intervals of R as well as the respective intervals of N, depending on the
context. Similarly, the symbol

∑
an will denote either an infinite series of

the form
{ ∑m

n=1 an : m ∈ N
}

or its sum whenever this series is convergent.
The terms of all series discussed in the paper are reals. We will denote by
{an}, also according to the context, either an infinite sequence with domain
N or the range of this sequence.

For abbreviation, we write A < B for two nonempty subsets A and B of
N when a < b for any a ∈ A and b ∈ B.

We call a sequence {An} of nonempty subsets of N increasing if An <
An+1 for every n ∈ N.

We say that a nonempty subset A of N is a union of k mutually separated
intervals (MSI for abbreviation) if there exist k intervals I1, . . . , Ik ⊂ N
which form a partition of A and dist(Ii, Ij) ≥ 2 for any distinct i, j ≤ k.
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A permutation p of N is said to be convergent if for every conditionally
convergent series

∑
an the p-rearranged series

∑
ap(n) is also convergent.

A permutation of N which is not convergent is said to be divergent .
A permutation p of N is called sum-preserving if for every conditionally

convergent series
∑

an, the convergence of
∑

ap(n) implies that
∑

an =∑
ap(n).
Proofs of all theorems presented in this paper will be published separa-

tely ([22]).

1. Algebraic properties of convergent and divergent permu-
tations. The following two equivalent characterizations of convergent and
divergent permutations are well known (see [1], [5–10], [13–17], [19–20], [23]).

Lemma 1.1. A permutation p of N is convergent iff there exists a positive
integer k such that the set p(I) is a union of at most k MSI for every interval
I ⊂ N (the minimal positive integer k with this property will be denoted
by k(p)).

Lemma 1.2. A permutation p of N is divergent iff for every positive
integer n there exists an interval I ⊂ N such that p(I) is a union of at least
n MSI.

It can be easily deduced from the first characterization that the com-
position of two convergent permutations, p and q, is also convergent and
k(pq) ≤ k(p)k(q). We note that there exist convergent permutations such
that their inverses are divergent. In other words, the set C of all convergent
permutations is only a semigroup under the composition of permutations.

Example 1.1. Let us define two different convergent permutations p
and q satisfying the following conditions:

(I) p−1 and q−1 are divergent;
(II) p([1, n]) = [1, n] for infinitely many positive integers n;

(III) q(I) is a union of at least two MSI for every interval I ⊂ N having
at least two members.

The permutation p is defined as follows:

p(2i + 2n − 2) = i + 2n − 2 and p(2i− 1 + 2n − 2) = i + (3 · 2n−1)− 2

for every i = 1, . . . , 2n−1 and n ∈ N. Then p(I) is a union of at most three
MSI for every interval I ⊂ N. In other words, p is a convergent permutation.
Moreover, we have

p([1, 2n+1 − 2]) = [1, 2n+1 − 2]

for every n ∈ N, which implies (II). Since the set

p−1([2n − 1, 3 · 2n−1 − 2])
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is a union of 2n−1 MSI for every n ∈ N we see that p−1 is a divergent
permutation.

Now put In = [2n − 1, 2n+1 − 2] for every n ∈ N and let us define the
permutation q by the following relations:

(1) q(2N− 1) =
⋃
n∈N

I2n−1 and q(2N) =
⋃
n∈N

I2n,

(2) q−1(In) < q−1(In+2), n ∈ N,

and

(3) the restriction of q−1 to In is decreasing for every n ∈ N.

Then it can be deduced that q(I) is a union of at most five MSI for every
interval I ⊂ N and that the condition (III) is satisfied. Moreover, it follows
that q−1(In) is a union of 2n MSI for every n ∈ N, which means that q−1 is
a divergent permutation.

There are also permutations p of N such that both p and p−1 are diver-
gent.

Example 1.2. As in the previous example we are going to define two
divergent permutations p and q with some extreme combinatorial properties:

(I) p−1 and q−1 are divergent;
(II) p([1, n]) = [1, n] for infinitely many positive integers n;

(III) k(q, I) → ∞ as card I → ∞, where I ⊂ N is an interval and the
positive integer k(q, I) is defined in such a way that q(I) is a union of k(q, I)
MSI.

The permutation p is defined by

p(2i + 2m − 2) = i + 2m − 2, p(2i− 1 + 2m − 2) = i + 3 · 2m−1 − 2,

p(i + 2n − 2) = 2i + 2n − 2 and p(i + 3 · 2n−1 − 2) = 2i− 1 + 2n − 2

for every m ∈ 2N− 1 and n ∈ 2N. Then the following three statements can
be readily verified:

(1) p([1, 2n+1 − 2]) = [1, 2n+1 − 2] for every n ∈ N,

(2) p([2m− 1, 3 · 2m−1− 2]) is a union of 2m−1 MSI for every m ∈ 2N− 1,

(3) p−1([2n − 1, 3 · 2n−1 − 2]) is a union of 2n−1 MSI for every n ∈ 2N.

That p and p−1 are divergent follows immediately from (2) and (3), respec-
tively. On the other hand, (1) implies (II).

Now let {xn} and {yn} be two increasing sequences of odd and even
positive integers, respectively, and let

lim
n→∞

(xn+1 − xn) = lim
n→∞

(yn+1 − yn) = ∞.
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The permutation q is defined to be the increasing mapping of the sets
2N− 1, {yn} and 2N\{yn} onto {xn}, 2N and (2N− 1)\{xn}, respectively.
The proof of (III) is left to the reader.

Both examples presented above suggest the following two different par-
titions of the family P of all permutations of N:

P = C ∪D and P = CC ∪ CD ∪DC ∪DD,

where D ⊂ P denotes the family of all divergent permutations while the
sets AB with A,B ∈ {C,D} are defined as follows:

p ∈ AB ⇔ p ∈ A and p−1 ∈ B,

for every permutation p of N.
The following interesting relations between the subsets of P described

above are presented in [22]. Below the symbol ◦ stands for the composition
of nonempty subsets of P defined by

S ◦ T = {στ : σ ∈ S, τ ∈ T and στ(n) := σ(τ(n)) for every n ∈ N}.
We have

CC ◦ A = A ◦ CC = A

for every A ∈ {C,D,CC,CD,DC,DD}, and thus CC is the unit for the
composition ◦. Next we have

CD ◦ CD = CD and DC ◦DC = DC,

in other words, both families CD and DC are closed under ◦. On the con-
trary, the family DD is very large with respect to the composition ◦ since

DD ◦DD = P.

Moreover, we have

DC ◦DD = DD ◦DC = D and CD ◦DD = DD ◦ CD = CD ∪DD,⋃
n∈N

Cn =
⋃
n∈N

Dn = G,

Cn ⊆ Cn+1, Dn ⊆ Dn+1 and Cn ∪Dn ⊆ Cn+1 ∩Dn+1

for every n ∈ N, where G denotes the group generated by C,

C1 := CD, D1 := DC, Cn+1 := CD ◦Dn and Dn+1 := DC ◦ Cn, n ∈ N.

It is interesting that both families C2 and D2 are large, as can be seen
from the following relations:

P\DD ⊆ C2 ∩D2 and DD ∩ C2 ∩D2 6= ∅.
At the same time we have

C2 ∪D2 6= P and C2\D2 6= ∅.
We note that G is a proper subset of P, as shown in [13].
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2. A strengthening of the Riemann theorem. The following beau-
tiful theorem was proved by Riemann.

If
∑

an is a conditionally convergent series then for every closed interval
I of R? (:= 2-point compactification of R) there exists a permutation p of N
such that σap(n) = I.

Here and subsequently, σbn stands for the set of limit points of the partial
sums of the series

∑
bn. Notice that the permutation p in the Riemann

theorem is divergent whenever I 6=
{ ∑

an

}
.

In this section it will be shown that a permutation p satisfying the as-
sertion of the Riemann theorem can always be found in the family DD, but
not always in D(k) := {p ∈ D : there exists an increasing sequence {rn} of
positive integers such that p−1([1, rn]) is a union of at most k MSI for every
n ∈ N}, for any k ∈ N.

We note that

D(k) ∩DD 6= ∅, D(k) ∩DC 6= ∅,
D(k) ∩DC ⊂ D(k + 1) ∩DC

for every k ∈ N, and ⋃
k∈N

D(k) ∩DC = DC.

Our considerations start with the theorem describing, for each condi-
tionally convergent series

∑
an, two classes J3 and J5 of closed intervals

of R? such that for every I ∈ J3 and J ∈ J5 there exist permutations
p ∈ D(3) ∩DC and q ∈ D(5) ∩DC such that σap(n) = I and σaq(n) = J .

Theorem 2.1. Let
∑

an be a conditionally convergent series and let I be
a closed interval of R?. Then there exists a permutation p ∈ DD such that
σap(n) = I. Additionally , if

∑
an ∈ I or I has the form [α, +∞] or [−∞, β]

with α, β ∈ R?, α < +∞ and β > −∞, then there exists a permutation
q ∈ DC with k(q−1) ≤ 5 such that σaq(n) = I. In the case when

∑
an ∈ I

it may be assumed that k(q−1) ≤ 3.

The reason that for each k ∈ N and for any conditionally convergent
series

∑
an we cannot find a permutation p ∈ D(k) such that σap(n) = I

for some compact intervals I ⊂ R, is given in the following easy lemma.

Lemma 2.2. Let p ∈ D(k) for some k ∈ N. Then for every conditionally
convergent series

∑
an the following implication holds: if σap(n) = [α, β] ⊂

R then

(?) k(α− β) + β ≤
∑

an ≤ k(β − α) + α.

Corollary 2.2.1. Each p ∈
⋃

k∈N D(k) is a sum-preserving permuta-
tion.
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Corollary 2.2.2. Let p ∈ P and let
∑

an be a conditionally convergent
series. If the p-rearranged series

∑
ap(n) is convergent and

∑
an 6=

∑
ap(n)

then p ∈ DD and p 6∈
⋃

k∈N D(k).

Corollary 2.2.3. Let p ∈ DC and let
∑

an be a conditionally conver-
gent series. If σap(n) = [α, β] ⊂ R then

c(p)(α− β) + β ≤
∑

an ≤ c(p)(β − α) + α,

where c(p) := min{n ∈ N : there exists an infinite subset B of N such that
p−1([1, b]) is a union of n MSI for every b ∈ B}. Note that 2c(p) − 1 ≤
k(p−1).

Corollary 2.2.4. For every conditionally convergent serie
∑

an and
for every k ∈ N there exist closed intervals I ⊂ R such that σap(n) 6= I for
each p ∈ D(k).

In the following example we show that both inequalities (?) from the
assertion of Lemma 2.2 are sharp. Only the case k = 2 will be discussed in
the example below.

Example 2.1. Let s, t ∈ N. Let {In} and {Jn} be increasing sequences
of intervals which form two different partitions of N defined by the relations

card In = 2(s + t)tn−1, card J2 = s,

card J2n+2 = tn−1 + stn and card J2n−1 = (s + t)tn−1

for every n ∈ N. The permutation p is defined to be the increasing mapping
of the sets

⋃
n∈N J2n−1 and

⋃
n∈N J2n onto 2N and 2N − 1, respectively. It

is then easily seen that p ∈ DC and

p−1([1, max In]) = [1, max J2n](1)
∪ [min J2n+2, t

n + tn−1 − 2 + min J2n+2]

for every n.
Consider the series

∑
an whose terms are defined as follows:

aj = −(s + t)−1t−n+1 and aj+1 = (s + t)−1t−n+1

for every index j of the form j = 2i− 2 + min In with i = 1, . . . , (s + t)tn−1

and n ∈ N. We see that∑
an = 0 and σap(n) =

[
1− s− 1

s + t
, 2− s− 1

s + t

]
.

Using Lemma 2.2 we get

(2) −s− 1
s + t

≤
∑

an ≤ 3− s− 1
s + t
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by (1). Additionally, if we set bn = −an for every n ∈ N then∑
bn = 0, σbp(n) =

[
− 2 +

s− 1
s + t

,−1 +
s− 1
s + t

]
and consequently we get

(3) −3 +
s− 1
s + t

≤
∑

bn ≤
s− 1
s + t

.

Immediately from (2) and (3) it may be concluded, for k = 2, that neither
of the two k’s occurring in the inequality (?) of Lemma 2.2 can be replaced
by a constant of the form γkk with γk ∈ (0, 1).

R e m a r k 2.1. There is an interesting connection between the family
of sets D(k), k ∈ N, introduced in this section and the permutations of N
which rearrange some conditionally convergent series into a series diverging
to infinity. It was proved in [21] that for a given divergent permutation p
there is a conditionally convergent series

∑
an such that

∑
ap(n) = +∞ iff

Ln → ∞ as n → ∞. Here Ln denotes the number of mutually separated
intervals which form a partition of p([1, n]) for every n ∈ N. It is easy
to verify that Ln → ∞ as n → ∞ iff p−1 belongs to the complement of⋃

k∈N D(k).

3. The Riemann theorem with fixed permutations and variable
series. The following theorem was shown independently in [7] and [21] (in
[7] the authors do not discuss unbounded intervals).

Theorem 3.1. For each divergent permutation p, for any closed interval
I ⊂ R?, I 6= {−∞}, {+∞}, and for any α ∈ I∩R there exists a conditionally
convergent series

∑
an such that∑

an = α and σap(n) = I.

Notice that the condition
∑

an ∈ I above is essential due to the fact
that D(1) 6= ∅.

To the author’s knowledge, the next result seems to be new. It is an
important supplement to Theorem 3.1.

Theorem 3.2. Let p ∈ D. Suppose that there exists a conditionally
convergent series

∑
an such that the p-rearranged series

∑
ap(n) is also

convergent and that
∑

an 6=
∑

ap(n). Then for every α ∈ R and every
nonempty closed interval I ⊂ R? there exists a conditionally convergent
series

∑
bn such that ∑

bn = α and σbp(n) = I.

Corollary 3.2.1. Each divergent permutation falls into one of the two
classes: the sum-preserving permutations and the permutations satisfying
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the conclusion of Theorem 3.2. Additionally , if S denotes the family of
divergent sum-preserving permutations, then S ◦S = D(1) ◦D(1) = P (see
[19]), and (D\S) ◦ (D\S) = P.

R e m a r k 3.1. For every positive integer k ≥ 2 there exists a sum-
preserving permutation p ∈ D(k)\

⋃k−1
i=1 D(k) such that p−1 6∈

⋃
i∈N D(i).

Furthermore, there exists a sum-preserving permutation p such that neither
p nor p−1 belongs to

⋃
i∈N D(i) (see [7]).

Our next aim is to extend Theorem 3.1 to the cases where a divergent
permutation p is replaced by an arbitrary set of divergent permutations.

Theorem 3.3. (i) For any nonempty countable family F of divergent
permutations and for any compact interval I = [a, b] ⊂ R there exists a
conditionally convergent series

∑
an such that∑

an =
1
2

(a + b) and σaf(n) = I

for every permutation f ∈ F.
(ii) Let p ∈ D and let F be a nonempty countable subset of D. Then for

any two α, β ∈ R, α ≤ β, there exists a conditionally convergent series
∑

bn

such that ∑
bn = β, σbp(n) = [α, +∞]

and

[α, 2β − α] ⊆ σbf(n) for every f ∈ F.

Moreover , there exists a conditionally convergent series
∑

cn such that∑
cn = 0 and σcf(n) = R for every f ∈ F (see [21]).

It is not surprising that none of the following two generalizations of
Theorem 3.3(i) is true in full generality:

(i) one where the interval I ⊂ R is replaced by a given family {If : f ∈
F} of finite closed intervals of R;

(ii) one where the condition
∑

an = 1
2 (a + b) is replaced by

∑
an = α

with α a given member of I.

On the other hand, it is amazing that neither (i) nor (ii) holds for the
family {D : D ⊂ DC and card D = 2} because there exist permutations
p, q ∈ DC satisfying the following condition:

For every conditionally convergent series
∑

an there exist ε, δ ∈ [0, +∞]
such that

(iii) σap(n) = [−ε +
∑

an, δ +
∑

an] and σaq(n) = [−δ +
∑

an, ε +
∑

an].
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In the sequel, if σap(n) = σaq(n) for some conditionally convergent series∑
an then

σap(n) = σaq(n) =
[
−ε +

∑
an, ε +

∑
an

]
for some ε ∈ [0, +∞].

Example 3.1. Let us put In = [2n − 1, 2n+1 − 2],

Uk,n = [2n − 1, 2n − 1 + k] and Vk,n = [2n − 1, 2n+1 − 2− k)

for every k = 0, 1, . . . , 2n − 2 and n ∈ N. Let p and q be defined by

p(2n − 1 + i) = 2n − 1 + 2i, p(3 · 2n−1 − 1 + i) = 2n + 2i,

q(2n − 1 + i) = 2n+1 − 2− 2i and q(3 · 2n−1 − 1 + i) = 2n+1 − 3− 2i

for every i = 0, 1, . . . , 2n−1 − 1 and n ∈ N. The verification of the following
relations is then immediate:

(1)
∑

i∈Uk,n

ap(i) =
( ∑

i∈In

ai

)
−

∑
i∈Vk,n

aq(i)

and

(2) p(In) = q(In) = In ⇒
∑
i∈In

ap(i) =
∑
i∈In

aq(i) =
∑
i∈In

ai

for every series
∑

an and for any indices k = 1, . . . , 2n − 1 and n ∈ N.
Moreover, if a series

∑
an is convergent then from (1) and (2) we deduce

that there exist ε, δ ∈ [0, +∞] such that the relations (iii) above hold.

The generalizations of the type (i) and (ii) of Theorem 3.1 to some infinite
sets of divergent permutations are rather unexpected. For example, there
exists a sequence {pk} of divergent permutations satisfying the following
two conditions:

(1) for every conditionally convergent series
∑

an the sequence {σapk(n) :
k ∈ N} is nonincreasing, i.e. we have∑

an ∈ σapk+1(n) ⊆ σapk(n)

for every k ∈ N;
(2) for any two nonincreasing sequences {αk} and {βk} of members of the

interval (0, +∞] ⊂ R? there exists a conditionally convergent series
∑

an

which is convergent to 0 and such that

(2a) σapk(n) = [−αk, βk] for every k ∈ N.

Example 3.2. We set

pk(2n−2+i) = 2n−2+2i and pk(2n−2+2n−k−1+i) = 2n+2n−k−2i−3

for every i = 0, 1, . . . , 2n−k−1 − 1, k = 0, 1, . . . , n− 1, n ∈ N. Moreover, we
set pk(i) = i for all other i ∈ N, i.e. for i ∈ N\

⋃∞
n=k+2[2n−2, 2n−2+2n−k).
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Let {αk : k ∈ N0} and {βk : k ∈ N0} be nonincreasing sequences of
elements of (0, +∞] ⊂ R?. First we choose an auxiliary nondecreasing
sequence {fn} of positive integers such that f1 = 1, fn ≤ n − 1 for every
n ∈ N, n ≥ 2, and

lim
n→∞

fn = lim
n→∞

(n− fn) = ∞.

When α0, β0 ∈ R we define the terms of the desired series
∑

an in the
following way. For every n ∈ 2N we set

ar =



βn−fn2−fn+2 for r = 2n + 2fn−1 − 2, 2n + 2fn−1,
2n + 2fn−1 + 2, . . . , 2n + 2fn − 4,

(βn−fn−1 − βn−fn
)2−fn+1 for r = 2n + 2fn − 2,

2n + 2fn , . . . , 2n + 2fn+1 − 4,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(β1 − β2)2−n+3 for r = 5 · 2n−2 − 2, 5 · 2n−2,

. . . , 3 · 2n−1 − 6, 3 · 2n−1 − 4,
(β0 − β1)2−n+2 for r = 3 · 2n−1 − 2, 3 · 2n−1,

. . . , 2n+1 − 6, 2n+1 − 4.
For every n ∈ 2N− 1 we set

ar =



αn−fn2−fn+2 for r = 2n + 2fn−1 − 2, 2n + 2fn−1,
2n + 2fn−1 + 2, . . . , 2n + 2fn − 4,

(αn−fn
− αn−fn−1)2−fn+1 for r = 2n + 2fn − 2,

2n + 2fn , . . . , 2n + 2fn+1 − 4,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(α2 − α1)2−n+3 for r = 5 · 2n−2 − 2, 5 · 2n−2,

. . . , 3 · 2n−1 − 6, 3 · 2n−1 − 4,
(α1 − α0)2−n+2 for r = 3 · 2n−1 − 2, 3 · 2n−1,

. . . , 2n+1 − 6, 2n+1 − 4.
Furthermore, we set ar = 0 for all remaining indices r ∈ 2N and ar = −ar+1

for every r ∈ 2N− 1.
If a finite number of elements of the sequences {αn} and {βn} are equal

to +∞ then the definition of terms of the series
∑

an requires some modi-
fications. For example, if α0 = α1 = β0 = β1 = β2 = +∞ and α2, β3 ∈ R
then for every even positive integer n we set

ar =



βn−fn2−fn+2 for r = 2n + 2fn−1 − 2, 2n + 2fn−1,
2n + 2fn−1 + 2, . . . , 2n + 2fn − 4,

(βn−fn−1 − βn−fn
)2−fn+1 for r = 2n + 2fn − 2,

2n + 2fn , . . . , 2n + 2fn+1 − 4,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(β3 − β4)2−n+5 for r = 17 · 2n−4 − 2, 17 · 2n−4,

. . . , 9 · 2n−3 − 6, 9 · 2n−3 − 4,
n2−n for r = 9 · 2n−3 − 2, 9 · 2n−3,

. . . , 2n+1 − 6, 2n+1 − 4.
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Furthermore, for every odd positive integer n we set

ar =



αn−fn
2−fn+2 for r = 2n + 2fn−1 − 2, 2n + 2fn−1,

2n + 2fn−1 + 2, . . . , 2n + 2fn − 4,
(αn−fn − αn−fn−1)2−fn+1 for r = 2n + 2fn − 2,

2n + 2fn , . . . , 2n + 2fn+1 − 4,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(α3 − α2)2−n+4 for r = 9 · 2n−3 − 2, 9 · 2n−3,

. . . , 5 · 2n−2 − 6, 5 · 2n−2 − 4,
−n2−n for r = 5 · 2n−2 − 2, 5 · 2n−2,

. . . , 2n+1 − 6, 2n+1 − 4.
All remaining terms are defined as in the previous case. The verification of
the properties (1) and (2a) is left to the reader.

To end this section we give an example of divergent permutations p and
q and conditionally convergent series

∑
an and

∑
bn satisfying the following

conditions: ∑
ap(n) =

∑
bq(n) = +∞

and ∑
an =

∑
bn =

∑
aq(n) =

∑
bp(n) = 0.

This surprising example is a substantial supplement to the generalizations
of Theorem 3.3.

Example 3.3. Let us fix a partition {In} of N such that

In < In+1 and card I2n−1 = card I2n = 2n2 + 2(n− 1)2

for every n ∈ N. Let {xn} and {yn} denote the increasing sequences of all
members of

⋃
n∈N I2n−1 and

⋃
n∈N I2n, respectively.

The permutation p is defined to be the increasing mapping of⋃
n∈N

[min I2n−1, min I2n−1 + 2n2) and
⋃
n∈N

[min I2n−1 + 2n2, max I2n−1]

onto {x2n} and {x2n−1}, respectively. Moreover, we put p(y2n−1) = y2n

and p(y2n) = y2n−1 for every n ∈ N. On the other hand, the permutation q
is defined to be the increasing mapping of⋃

n∈N
[min I2n, min I2n + 2n2) and

⋃
n∈N

[min I2n + 2n2, max I2n]

onto {y2n} and {y2n−1}, respectively. Additionally, we put q(x2n−1) = x2n

and q(x2n) = x2n−1 for every n ∈ N. The terms of the series
∑

an and
∑

bn

are defined in the following way:

ak =


n−1, k ∈ I2n−1 ∩ {x2i}, n ∈ N,
−n−1, k ∈ I2n−1 ∩ {x2i−1}, n ∈ N,
0, k ∈

⋃
n∈N I2n;
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and

bk =


n−1, k ∈ I2n ∩ {y2i}, n ∈ N,
−n−1, k ∈ I2n ∩ {y2i−1}, n ∈ N,
0, k ∈

⋃
n∈N I2n−1.

Then the following relations can be easily verified:

j∑
i=u2n+1

ap(i) =



3n + 1
n+1 − [u2n+1 + (n + 1)2 − j − 1]+ · 1

n+1

+[j − u2n+1 − (n + 1)2 + 1]+ · 1
n+2

for u2n+1 ≤ j < u2n+1 + 2(n + 1)2,
3n + 1

n+1 + 1
n+2 + [u2n+2 − n2 − 1− j]+ · 1

n

−[j + 1 + n2 − u2n+2]+ · 1
n+1

for u2n+1 + 2(n + 1)2 ≤ j < u2n+2,

and

j∑
i=u2n+2

bq(i) =



3n + 1
n+1 − [u2n+2 + (n + 1)2 − j − 1]+ · 1

n+1

+[j − u2n+2 − (n + 1)2 + 1]+ · 1
n+2

for u2n+2 ≤ j < u2n+2 + 2(n + 1)2,
3n + 1

n+1 + 1
n+2 + [u2n+3 − n2 − 1− j]+ · 1

n

−[j + 1 + n2 − u2n+3]+ · 1
n+1

for u2n+2 + 2(n + 1)2 ≤ j < u2n+3,

for every n ∈ N, where un := min In, n ∈ N and [m]+ := max{0,m} for
every m ∈ R.
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