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ON UNCOUNTABLE COLLECTIONS OF CONTINUA

AND THEIR SPAN
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DUŠAN REPOV Š (TRIESTE AND LJUBLJANA) ,

ARKADIJ B. SKOPENKOV (MOSCOW)

AND EVGENIJ V. Š Č EP IN (MOSCOW)

We prove that if the Euclidean plane R
2 contains an uncountable col-

lection of pairwise disjoint copies of a tree-like continuum X, then the sym-
metric span of X is zero, sX = 0. We also construct a modification of
the Oversteegen–Tymchatyn example: for each ε > 0 there exists a tree
X ⊂ R

2 such that σX < ε but X cannot be covered by any 1-chain. These
are partial solutions of some well-known problems in continua theory.

1. Introduction. It is well known that the plane R
2 does not contain

uncountably many pairwise disjoint triods [14]. This result has been gener-
alized in various directions [1], [3], [4], [16], [19], [21] and [22]. In the present
paper we obtain further strengthenings of some of these results.

Consider the following conditions on a planar tree-like continuum X:

(C) X is chainable;

(U) The plane contains uncountably many disjoint copies of X;

(Σ) σX = 0; and

(S) sX = 0.

Let X̃∗

ε = {(x, y) ∈ X2 | dist(x, y) ≥ ε} be the deleted product of X.

Consider the involution t(x, y) = (y, x) on X̃∗

ε . Then the span of X is defined
as follows [12]:
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σX = sup{ε ≥ 0 | there is a subcontinuum Z ⊂ X̃∗

ε

such that pr1(Z) = pr2(Z)}

and the symmetric span of X is defined [8] by

sX = sup{ε ≥ 0 | there is a subcontinuum Z ⊂ X̃∗

ε such that Z = t(Z)}.

The implication (C)⇒(U) was proved in [20] and (C)⇒ (Σ) in [12].
Clearly, (Σ)⇒(S) is obvious. It is an open problem in continua theory
whether (U)⇒(C) [10] or (U)⇒(Σ) [7, 430], or (S)⇒(Σ) [7, 434], or (Σ)⇒(C)
[7, 435] (see [13], [15]).

C ⇒ Σ
⇓ ⇓
U ⇒ S

We prove a theorem which provides us with a tool for evaluation of the
symmetric span (compare [2, 1.1.2], [16, I, Th. 2.6], [16, II, Th. 4]).

Theorem (1.1). (a) If X ⊂ R
2 is a tree-like continuum and f : X → R

2

is a map ε-close to an inclusion and such that X ∩ f(X) = ∅, then sX ≤ ε.
Moreover , if there is a vector ~ε ∈ R

2 such that f(x) = x + ~ε, then σX ≤
ε = |~ε |.

(b) If f, g : X → R
2 are ε-close maps with disjoint images from a tree-like

continuum, then sf ≤ ε.

Here,

sf = sup{ε > 0 | there is a subcontinuum Z ⊂ X2 such that Z = t(Z)

and dist(f(x), f(y)) ≥ ε for each (x, y) ∈ Z}.

Let χ : (R̃2)∗ε → S1 be the map defined by χ(x, y) = (x−y)/‖x−y‖. The
proof of Theorem (1.1)(a) is based on the fact that under the assumptions of
the theorem, χ|X̃∗

ε

is an inessential equivariant mapping. Take a covering χ̃ :

X̃∗

ε → R of χ|X̃∗

ε

and for (x, y) ∈ X̃∗

ε define that x < y if χ̃(x, y) < χ̃(y, x).

Evidently, “<” is a continuous relation (in general it is not transitive). Hence

X̃∗

ε cannot contain a subcontinuum Z such that Z = t(Z), so sX ≤ ε. If
X ∩ (X + ~ε) = ∅, then each subcontinuum of X has a <-minimal point.

Hence X̃∗

ε cannot contain a subcontinuum Z such that pr1 Z = pr2 Z, so
σX ≤ ε.

Conjecture (1.2). The condition “f(x) = x+~ε ” is unnecessary for the
existence of a <-minimal point in every subcontinuum of X (Conjecture (1.2)
implies that (U)⇒(Σ)).

Corollary (1.3). (a) ((U)⇒(S)) If the plane contains an uncountable

collection of disjoint copies of a tree-like continuum X (or even the product
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of X with a convergent sequence), then sX = 0. Moreover , if these copies

are obtained by parallel transfers from one another , then σX = 0.
(b) If fα : X → R

2 is a collection of maps from a tree-like continuum X
with disjoint images, then sfα = 0 for all but countably many α.

Since from sX = 0 it follows that X is atriodic [8], (U)⇒(S) generalizes
Moore’s and Burgess’ [4] theorems.

Ingram has constructed in [10] an uncountable collection of pairwise
disjoint, nonhomeomorphic, tree-like continua with the positive symmetric
span in the plane. This shows that the implication (U)⇒(S) does not extend
to the case of nonhomeomorphic compacta. From (U)⇒(S) it follows that
Ingram’s continuum K [10], satisfying sK > 0, yields an example of an
atriodic continuum K such that the plane does not contain an uncountable
collection of pairwise disjoint copies of K (this answers a question from [5]).

We also construct an example which is a modification of [16, I, Fig. 1].
The proof that σK < ε is based on the “moreover” part of Theorem (1.1)(a)
and is shorter than in [16].

Example (1.4). For each ε > 0, there is a tree K ⊂ R
2 such that σK < ε,

but K cannot be covered by any chain with link diameters less than 1.

2. Proofs

P r o o f o f T h e o r e m (1.1)(a). Suppose, to the contrary, that sX > ε.

Then there is a subcontinuum Z ⊂ X̃∗

ε such that Z = t(Z). Let χ′ : X2 →
S1 be the map defined by χ′(x, y) = χ(x, f(y)). For each (x, y) ∈ Z, since
dist(x, y) ≥ ε and dist(y, f(y)) < ε, it follows that χ(x, y) and χ′(x, y) are
not antipodal points of S1. Hence χ|Z and χ′|Z are homotopic. Since X
is tree-like, X2 is acyclic and so χ′ is inessential. Therefore χ|Z is also
inessential.

By the following lemma (which is an improvement of [6, (3.1.2)] for the
case n = 1), Z is not connected, which is a contradiction (compare [11, proof
of Corollary 1]).

Lemma (2.1). If there exists an inessential equivariant mapping χ : Z →
S1 (with respect to some involution t on Z and antipodal involution on S1),
then there exists an equivariant mapping Z → S0 (in particular , Z is not

connected).

P r o o f. Denote the universal covering of S1 by p : R → S1. Since χ is
inessential, it follows that there is a lifting χ̃ : Z → R of χ:

R

Z S1

p

��

χ̃}}}}}}>>

χ //
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Define χ1 : Z → S0 as

χ1(z) =

{
1, χ̃(z) > χ̃(t(z)),
−1, χ̃(z) < χ̃(t(z)).

Since χ is equivariant, it follows that for each x ∈ Z, χ(x) 6= χ(t(x)), hence
χ̃(x)6=χ̃(t(x)). Therefore χ1 is well defined. Evidently, χ1 is equivariant.
Since {x ∈ Z | χ̃(x) > χ̃(t(x))} and {x ∈ Z | χ̃(x) < χ̃(t(x))} are open, χ1

is continuous.

Now, suppose that f(x) = x + ~ε and σX > ε. Then there is a sub-

continuum Z ⊂ X̃∗

ε such that pr1 Z = pr2 Z. For each (x, y) ∈ X̃∗

ε write
x < y if χ̃(x, y) < χ̃(y, x) (we use the notation of Lemma (2.1)). By the
following lemma there is a <-minimal point u ∈ pr1 Z = pr2 Z. Then there
are v,w ∈ X such that (u, v), (w, u) ∈ Z. Since Z is connected and “<” is
continuous, either v < u < w or w < u < v. This is a contradiction to the
<-minimality of u.

Lemma (2.2). Every subcontinuum of X has a <-minimal point (i.e. a

point u such that u < x whenever (u, x) ∈ X∗

ε ).

P r o o f. We may assume that the given subcontinuum is X itself. Let
Oxy be a Cartesian coordinate system such that the directions of Ox and
~ε are the same and the orientation on S1 induced by this system coin-
cides with the one induced by p(t). Hence we may assume that χ((0, 0),
(cos 2πt, sin 2πt)) = p(t). Let us prove that every point a ∈ X with the
minimal y-projection is <-minimal.

Since dist(χ, χ′|X̃∗

ε

) < 1/4, there is a covering χ̃′ : X2 → R of χ′ which

is (1/4)-close to χ̃ on X̃∗

ε . Since |χ̃(u, z) − χ̃(z, u)| = 1/2, the inequality
χ̃(u, z) > χ̃(z, u) holds if and only if χ̃′(u, z) > χ̃′(z, u). By the choice of u,
χ′(u × X) ⊂ p[0, 1/2]. If χ′(u, z) = p(1/2) for some z ∈ X, then on the line
going through u and parallel to ~ε, the points z, z +~ε, u, u+~ε are situated in
this order. But u and z and z+~ε and u+~ε are joined by the nonintersecting
continua X and ~ε + X lying in the upper half-plane with respect to the
line. This is a contradiction, hence χ′(u × X) ⊂ p[0, 1/2). Analogously,
χ′(X × u) ⊂ p(−1/2, 0]. Because of this and since χ′(u, u) = p(0), we have
χ̃′(u, z) ≥ χ̃′(u, u) ≥ χ̃′(z, u) for each z ∈ X. Therefore χ̃(u, z) > χ̃(z, u)

whenever (u, z) ∈ X̃∗

ε .

P r o o f o f T h e o r e m (1.1)(b). Suppose that ε < sf . Then there is a
subcontinuum Z ⊂ X2 such that Z = t(Z) and dist(f(x), f(y)) ≥ ε for each
(x, y) ∈ Z. Then, as in the proof of (a), the map χ ◦ (f × f)|Z is inessential
and equivariant. Hence Z is not connected, which is a contradiction.

P r o o f o f C o r o l l a r y (1.3). (a) By [9], the product of X with the
Cantor set embeds in R

2. We obtain the conclusion with a weaker assump-
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tion that X × C embeds in R
2. Here C = c0 ∪

⋃
∞

m=1 cm is a convergent
sequence such that c0 = limm→∞ cm. If X × C ⊂ R

2, then for each ε > 0,
there is a map f : X × c0

∼= X × cm →֒ R
2 which is ε-close to the inclusion

X × c0 →֒ R
2 and such that X × c0 ∩ f(X × c0) = X × c0 ∩ X × cm = ∅.

By Theorem (1.1)(a), s(X × c0) < ε for each ε > 0, therefore sX = 0.

The “moreover” part is proved analogously.

(b) Clearly, it suffices to prove that there exists α such that sfα = 0.
Similarly to (a), it suffices to prove that if f : X × X → R

2 is a map such
that fm(X)∩fn(X) = ∅ for m 6= n, then sf0 = 0 (here fm(X) = f(X, cm)).
As in the proof of (a), sf0 < ε for each ε > 0, therefore sf0 = 0.

C o n s t r u c t i o n o f E x a m p l e (1.4). Fix an integer n. Let

K = {0} × [2, 3] ∪
n⋃

l=1

([0, l] × {a2l−1} ∪ {l} × [a2l−1, a2l]

∪ [0, l + 1] × {a2l} ∪ {0} × [a2l+1, a2l]),

where

a2l−1 = 2 −
2l − 2

n
and a2l = 2 −

2l − 2

n
−

2l − 1

n2

(see Fig. 1 for n = 4). Let ~ε = (−c,−2/n−b), where c > 0 and 0 < b < 2/n2.
Then K ∩ (K + ~ε) = ∅. By Theorem (1.1)(a),

σK ≤ inf
c,b

√
c2 + (2/n + b)2 = 2/n.

Let us prove that for each chain covering K, the diameter of at least one
of its links is greater than 1, provided n ≥ 5. This property was claimed
without proof in [16] for their example. Suppose, on the contrary, that
K = C1 ∪ . . . ∪ Cm, where the Ci are closed subsets of K of diameter
less than 1, and Ci ∩ Cj 6= 0 if and only if |i − j| ≤ 1. Without loss of
generality, we may assume that the intersection of each Ci with any straight
line segment contained in K is connected. Let us fix some notation. Let
xi = (n+1−i, a2(n−i)), 0 ≤ i ≤ n−2, ui = (n+1−i, a2(n−i−1)), 1 ≤ i ≤ n−2,
z = (0, 3), t = (0, 0), v = (1, 1/n2), yi = (2, a2n+1−i), 2 ≤ i ≤ 2n − 2 (see
Fig. 1). For p, q ∈ K, we denote by 〈pq〉 the closure of the connected
component of K \ {p, q} which contains both p and q.

Evidently, x0 and z are contained in the first and in the last link of the
chain {Ci}. Without loss of generality, we may assume that x0 ∈ C1 and
z ∈ Cm. Let k be the greatest integer such that Ck∩〈x0y2〉 6= ∅. Since 〈x0y2〉
is connected, for each s = 1, . . . , k, Cs∩〈x0y2〉 6= ∅ (if Ci∩〈x0y2〉 = ∅ for some
i = 2, . . . , k−1, then (C1∪ . . .∪Ci−1)∩〈x0y2〉 and 〈Ci+1∪ . . .∪Ck〉∩〈x0y2〉
are disjoint nonempty subsets of 〈x0y2〉 whose union is 〈x0y2〉, which is a
contradiction).
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Fig. 1
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Also, Ck∩〈tv〉 6= ∅. Indeed, in the opposite case there is a point p ∈ Ck∩
〈vy2〉. As in the previous paragraph, since 〈pu1〉 ∪ 〈u1x0〉 (when p ∈ 〈vu1〉)
or 〈px0〉 (when p ∈ 〈u1x0〉) is connected, it follows that each C1, . . . , Ck

intersects 〈pu1〉 ∪ 〈u1x0〉 or 〈px0〉, respectively. Hence the link containing t
intersects 〈vy2〉. Therefore it has diameter greater than dist(t, 〈vy2〉) > 1,
which is a contradiction.

Let C = C1 ∪ . . .∪Ck. Then x1 ∈ C. Indeed, take an integer i such that
x ∈ Ci. Since dist(x1, x0) > 1, we have Ci ∩ (〈zu2〉 ∪ 〈y2u2〉) = ∅ and by
our assumption, Ci ∩ 〈x1v〉 is a segment. Therefore Ci ∩ 〈x0y2〉 6= ∅ and so
x1 ∈ C.

Next, 〈y3y4〉 ∈ C. Indeed, in the opposite case take a point q ∈ 〈y3y4〉
closest to y4 such that 〈qu2〉 ∪ 〈u2x1〉 ⊂ C (if q 6∈ 〈u2x1〉) or 〈qx1〉 ⊂ C (if
q ∈ 〈u2x1〉). Then q ∈ Cl ∩ Ci, where l > k ≥ i. Since Ci ∩ Cj = ∅ when
|i − j| > 1, it follows that i = k and l = k + 1. Since Ck ∩ 〈vt〉 6= ∅ and
q ∈ Ck ∩ 〈y3y4〉, it follows that diamCk > dist(〈vt〉, 〈y3y4〉) > 1, which is a
contradiction.

Analogously, x2 ∈ C, then 〈y5y6〉 ∈ C and so on. Hence xn−2 ∈ C.
Since each C1, . . . , Ck intersects 〈x0y2〉, the diameter of the link Ci ⊂ C
containing xn−2 is greater than dist(xn−2, 〈x0y2〉) = 2 − 4/n − 3/n2 > 1
when n ≥ 5, which is a contradiction.
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