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MEASURABILITY OF FUNCTIONS WITH
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AND MEASURABLE HORIZONTAL SECTIONS

BY
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A function f : R → R is approximately continuous iff it is continuous in
the density topology, i.e., for any open set U ⊆ R the set E = f−1(U) is
measurable and has Lebesgue density one at each of its points. Approximate
continuity was introduced by Denjoy [7] in his study of derivatives. Denjoy
proved that bounded approximately continuous functions are derivatives. It
follows that approximately continuous functions are Baire 1, i.e., pointwise
limits of continuous functions. For more on these concepts, see Bruckner [3],
Lukeš, Malý, Zaj́ıček [17], Tall [22], and Goffman, Neugebauer, Nishiura [9].

For any f : R2 → R define

fx(y) = fy(x) = f(x, y)

for any x, y ∈ R. A function f : R2 → R is separately continuous if fx

and fy are continuous for every x, y ∈ R. Lebesgue [16] in his first paper
proved that any separately continuous function is Baire 1. He also showed
that if fx is continuous for all x and fy is Baire α for all y, then f is Baire
α + 1 (see Kuratowski [14], p. 378). For more historical comments and
generalizations see Rudin [18]. Sierpiński [20] showed that there exists a
nonmeasurable f : R2 → R which is separately Baire 1 (the characteristic
function of a nonmeasurable subset of the plane which meets every horizontal
and vertical line in at most one point).

In this paper we shall prove:

Theorem 1. Let f : R2 → R be such that fx is approximately continuous
and fy is Baire 1 for every x, y ∈ R. Then f is Baire 2.

Theorem 2. Suppose there exists a real-valued measurable cardinal.Then
for any function f : R2 → R and α < ω1, if fx is approximately continuous
and fy is Baire α for every x, y ∈ R, then f is Baire α + 1 as a function of
two variables.
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Theorem 3. (i) Suppose that R can be covered by ω1 closed null sets.
Then there exists a nonmeasurable function f : R2 → R such that fx is
approximately continuous and fy is Baire 2 for every x, y ∈ R.

(ii) Suppose that R can be covered by ω1 null sets. Then there exists a
nonmeasurable function f : R2 → R such that fx is approximately continu-
ous and fy is Baire 3 for every x, y ∈ R.

Theorem 4. In the random real model , for any function f : R2 → R
if fx is approximately continuous and fy is measurable for every x, y ∈ R,
then f is measurable as a function of two variables.

R e m a r k s. Davies [5] showed that any function of two variables which
is separately approximately continuous is Baire 2. Theorem 1, which gen-
eralizes this, was announced in Laczkovich and Petruska [15], but the proof
was never published. In Davies and Dravecký [6] and Grande [10] it is shown
that CH implies the existence of a nonmeasurable function f such that fx is
approximately continuous for every x and fy is measurable for every y. It
is easy to check that these constructions, in fact, give Baire 2 sections. Our
Theorem 3 is a refinement of this observation. Note that Bartoszyński and
Shelah [1] have shown that it is relatively consistent with ZFC that R is the
union of ω1 meager null sets, but not the union of ω1 closed null sets. It is
well known that R can be the union of ω1 closed null sets and the continuum
arbitrarily large.

In Theorem 2 we only use the assumption that for any family of contin-
uum many subsets of the real line there exists a measure extending Lebesgue
measure and making the family measurable. This is slightly weaker than a
real-valued measurable and has the consistency strength of a weakly com-
pact cardinal (see Carlson [4]).

It follows from Lebesgue’s argument that any function f : R2 → R
such that fx is continuous and fy is measurable for all x, y ∈ R must be
measurable as a function of two variables. Theorems 3 and 4 show that this
fact is independent of set theory if we replace continuous by approximately
continuous.

P r o o f o f T h e o r e m 1. This is an immediate consequence of the
following theorem due to Bourgain, Fremlin and Talagrand [2].

Theorem 5 (Bourgain, Fremlin, Talagrand). Let (X, Σ, µ) be a proba-
bility space and let f : X × R → R be bounded. If fx is Baire 1 for every
x ∈ X and fy is measurable for every y ∈ R, then the function

y 7→
∫

X

fydµ(x) (y ∈ R)

is Baire 1.
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Suppose that fx is approximately continuous and fy is Baire 1 for ev-
ery x, y ∈ R. Without loss of generality we may assume that f is bounded.
(Otherwise, let h : R → (0, 1) be a homeomorphism. Then h ◦ f is approxi-
mately continuous when x is fixed, and measurable when y is fixed. Hence
h ◦ f is Baire 2 and therefore h−1 ◦ h ◦ f = f is Baire 2.)

It follows from Theorem 5 that for every fixed y, the function

x 7→
y∫

0

fx dt (x ∈ R)

is Baire 1.
This implies that the function

F (x, y) =
y∫

0

fx dt

is Baire 1, since F y is Baire 1 and the family {Fx : x ∈ R} is uniformly
continuous (in fact, uniformly Lipschitz). The proof is this. Let Fn : R2 →
R be the function such that Fn(x, i/n) = F (x, i/n) for every x ∈ R and
every integer i, and let Fn(x0, y) be linear in y ∈ [(i − 1)/n, i/n] for every
integer i and every fixed x0. Then Fn is Baire 1. Indeed, let F (x, i/n) =
limj→∞ gi,j(x), where gi,j : R → R is continuous. Let Gj(x, i/n) = gi,j(x),
let Gj be continuous in y and linear for y ∈ [(i−1)/n, i/n] for every fixed x.
Then Gj is continuous and Gj → Fn, so that Fn is Baire 1. Finally, Fn → F
uniformly, so that F is Baire 1 (see Kuratowski [14], p. 386).

Finally, since

f(x, y) = lim
n→∞

F (x, y + 1/n)− F (x, y)
1/n

,

it follows that f is Baire 2.

P r o o f o f T h e o r e m 2. This is the same as the proof of Theorem 1
except that we use the following generalization of the Bourgain–Fremlin–
Talagrand Theorem 5:

Lemma 6. Let (X, Σ, µ) be a probability space such that every subset of
X is in Σ and let f : X × R → R be bounded. For α < ω1, if fx is Baire α
for every x ∈ X, then the function

F (y) =
∫

X

fy dµ(x) for y ∈ R

is Baire α.

P r o o f. This is proved by induction on α. If α = 0, that is, if fx is
continuous for every x, then the continuity of F follows from the dominated
convergence theorem. For α > 0, let βn be a nondecreasing sequence of
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ordinals such that supn∈ω(βn + 1) = α. Let 〈fn : n ∈ ω〉 be a sequence of
uniformly bounded functions such that (fn)x is Baire βn for each n and

lim
n→∞

fn(x, y) = f(x, y).

Then by induction the function

Fn(y) =
∫

X

fy
n dµ(x)

is Baire βn. By the dominated convergence theorem

lim
n→∞

Fn(y) = F (y)

is Baire α.

Since there is a real-valued measurable cardinal we can find an extension
µ of Lebesgue measure λ which makes every set of reals measurable. The
rest of the proof is the same as in Theorem 1.

P r o o f o f T h e o r e m 3. Let R =
⋃

α<ω1
Cα, where Cα is a closed set

of measure zero for every α < ω1.

By a lemma of Zahorski [23] (see also Bruckner [3], p. 28) for any
Gδ measure zero set G ⊆ R there exists an approximately continuous g :
R → [0, 1] such that g−1{0} = G. So for each α let gα : R → [0, 1] be
an approximately continuous function such that g−1

α {0} is a measure zero
set covering

⋃
β<α Cβ . We define f(x, y) = gα(y), where α is the smallest

ordinal such that x ∈ Cα.

Obviously, fx is approximately continuous for every x. For any fixed y,
let α be such that y ∈ Cα. If x 6∈

⋃
β<α Cα, then f(x, y) = 0. It is also clear

that fy is constant on each of the Gδ sets Cβ \
⋃

γ<β Cγ . It follows that fy

is Baire 2, since the range of fy is countable and the preimage of any set is
a countable union of Gδ sets. Finally, f is not measurable, since∫

R

( ∫
R

fx dy
)
dx > 0 =

∫
R

( ∫
R

fy dx
)
dy.

For the second part, let R =
⋃

α<ω1
Cα, where λ(Cα) = 0 for every

α < ω1. We may assume that each Cα is a Gδ set. Following the proof of
(i), we obtain a nonmeasurable function f such that fx is approximately
continuous for every x. Also, for every y, the preimage of any set by fy is a
countable union of Fσδ sets, and thus fy is Baire 3.

P r o o f o f T h e o r e m 4. We will use the following lemmas. For a set
H ⊆ R× R in the plane and x, y ∈ R let

Hx = {y ∈ R : (x, y) ∈ H} and Hy = {x ∈ R : (x, y) ∈ H}.
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Lemma 7. The following statements are equivalent :

(i) There exists a nonmeasurable function f : R2 → R such that fx is
approximately continuous and fy is measurable for every x, y ∈ R.

(ii) There exists a set H ⊆ R2 such that λ(Hy) = 0 for every y ∈ R, but
the set {x : λ(R \Hx) = 0} has positive outer measure.

P r o o f. (ii)⇒(i). Suppose (ii) and let A = {x : λ(R \ Hx) = 0}.
For every x ∈ A there is a Gδ null set Bx ⊆ R such that R \ Hx ⊆ Bx.
This implies by Zahorski’s lemma that for every x ∈ A there exists an
approximately continuous function gx : R → R such that gx(y) = 0 if
y ∈ Bx and 0 < gx(y) ≤ 1 if y 6∈ Bx.

For every y ∈ R we define f(x, y) = gx(y) if x ∈ A, and f(x, y) = 0
if x 6∈ A. Then fx is approximately continuous for every x. Also, fy is
measurable for every y, since fy(x) = 0 for a.e. x. Indeed,

fy(x) 6= 0 ⇒ x ∈ A, y 6∈ Bx ⇒ y ∈ Hx ⇒ x ∈ Hy

and hence
λ({x : fy(x) 6= 0}) ≤ λ(Hy) = 0.

This implies that ∫
R

( ∫
R

fy dx
)
dy = 0.

On the other hand, ∫
R

( ∫
R

fx dy
)
dx > 0,

since
∫

R fx dy > 0 for every x ∈ A and A has positive outer measure. There-
fore f cannot be measurable.

(i)⇒(ii). Suppose (i); we may also assume that f is bounded.
Since every approximately continuous function is Baire 1, it follows as

in the proof of Theorem 1 that the function

F (x, y) =
x∫

0

fy dt

is Baire 1. Let

g(x, y) =
{

limn→∞ n(F (x + (1/n), y)− F (x, y)) if this limit exists,
0 if it does not.

Then g is Borel measurable, and for every fixed y, we have g(x, y) = f(x, y)
for a.e. x by Lebesgue’s classical theorem.

Claim. For any g : R2 → R measurable, there exists a Borel set B ⊆ R2

such that λ2(B) = 0 and for every (x, y) 6∈ B the function gx is approxi-
mately continuous at y.



304 M. LACZKOVICH AND A. W. MILLER

P r o o f. This easily follows from the fact that if E ⊆ R2 is measurable
then there is a Borel set B ⊆ R2 such that λ2(B) = 0 and y is a density
point of Ex for every (x, y) ∈ E\B; see the argument on pp. 130–131 of Saks
[19]. For the convenience of the reader we sketch the proof here. Without
loss of generality, we may assume E is compact. Fix ε > 0 and define

Aε
n = {(x, y) ∈ E : λ(Ex ∩ I) ≥ (1− ε)λ(I) whenever y ∈ I and |I| < 1/n}.

(We use I to range over nondegenerate closed intervals.) Then it can be
shown that Aε

n is closed since E is. Therefore

Nε = E \
⋃
n∈ω

Aε
n

is measurable. By the Lebesgue density theorem, (Nε)x has measure zero
for every x and hence by Fubini’s theorem Nε has planar measure zero. Let

B =
⋃
ε>0

Nε.

Then λ2(B) = 0 and y is a density point of Ex for every (x, y) ∈ E \B. To
obtain the result for g, let B be a measure zero subset of the plane such that
for every U in some countable basis for R, if (x, y) ∈ g−1(U) \ B, then y is
a density point of (g−1(U))x = g−1

x (U). It follows that gx is approximately
continuous at y for every (x, y) ∈ R \B. This proves the claim.

Let

K = {(x, y) : g(x, y) 6= f(x, y)};
then λ(Ky) = 0 for every y. Let x be fixed. Then, for y 6∈ Bx, the functions
fx and gx are both approximately continuous at y. Therefore, if (x, y) ∈ K
then the set

Kx = {y : fx(y) 6= gx(y)}
is measurable and of positive measure. (This is because if two functions
are approximately continuous at a point x and take on different values
there, then there exists a measurable set with density one at x where they
differ.)

Hence for any x, Kx is measurable, and either Kx ⊆ Bx or Kx has
positive measure. Let A = {x : λ(Kx) > 0}; then K ⊆ B ∪ (A × R).
If λ(A) = 0 then λ2(K) = 0 and f = g almost everywhere, contradicting
our assumption that f is not measurable. Thus A has positive outer mea-
sure.

Now, putting H = {(x, y + r) : (x, y) ∈ K, r ∈ Q}, we obtain a set such
that λ(Hy) = 0 for every y and λ(R \ Hx) = 0 for x ∈ A; and hence (ii)
holds.



MEASURABILITY OF FUNCTIONS 305

By the random real model we refer to any model of set theory which is
a generic extension of a countable transitive ground model of CH by adding
ω2 random reals, i.e., forcing with the measure algebra on 2ω2 .

Lemma 8. In the random real model the following two facts hold :

(1) R is not the union of ω1 measure zero sets.
(2) Any Y ⊆ R with positive outer measure contains a subset Z ⊆ Y of

cardinality ω1 with positive outer measure.

P r o o f. Lemma 8(1) is due to Solovay [21] and is also proved in Kunen
[13], 3.18, and probably Jech [11]. Lemma 8(2) is probably due to Kunen
(see a remark in Tall [22], p. 283), but we do not know of a published proof,
so we include one here. The category version of Lemma 8(2) appears in
Komjáth [12].

Since 2ω and [0, 1] are measure isomorphic, we may work in 2ω. For
any set Σ let 2Σ be the product space of the two-point set 2 = {0, 1} with
the usual product measure and topology. Let B(Σ) denote the measure
algebra, i.e., the Borel subsets of 2Σ modulo the measure zero sets. This is
a complete boolean algebra which satisfies the countable chain condition.

Let M be a countable standard model of ZFC+CH. For any set Σ in
M let B(Σ)M denote the measure algebra in M . A generic filter may be
regarded as a map G : Σ → 2.

We use the following facts which are probably all due to Solovay:

(1) (see Kunen [13], 3.13) For any two disjoint sets Σ and Γ in a count-
standard model M ,

(a) G is B(Σ ∪ Γ )-generic over M iff
(b) G�Σ is B(Σ)M -generic over M and G�Γ is B(Γ )M [G�Σ]-generic

over M [G�Σ].

(2) (Kunen [13], 3.22) Suppose G : Σ → 2 is B(Σ)-generic over M and
Y ∈ M is such that

M � Y ⊆ 2ω has positive outer measure.

Then

M [G] � Y ⊆ 2ω has positive outer measure.

(3) (Well known) Suppose G : ω2 → 2 is B(ω2)-generic over M and

M [G] � Y has positive outer measure.

Then there exists a set Σ ⊆ ω2 in M of cardinality ω1 in M such that if
Z = M [G�Σ] ∩ Y , then

M [G�Σ] ` Z has positive outer measure.
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Fact (3) is proved with a Löwenheim–Skolem argument as follows. Let
f : 2ω → 2× 2ω be a map with the following property: If f(x) = (i, z), then

(a) i = 1 iff x ∈ Y and
(b) if x is a code for a measure zero Borel set Z(x), then z ∈ Y \ Z(x).

Since there is a recursive pairing function taking 2× 2ω to 2ω it suffices to
show that for any function f : 2ω → 2ω in M [G] there exists a set Σ ⊆ ω2

in M of size ω1 in M such that 2ω ∩M [G�Σ] is closed under f and

f�(M [G�Σ]) ∈ M [G�Σ].

For any x ∈ 2ω ∩ M [G] there exists a sequence (Bn : n ∈ ω) of Borel sets
in M with countable support such that for any n ∈ ω we have x(n) = 1 iff
G ∈ Bn (the equivalence class of Bn is the boolean value of the statement
“x(n) = 1”). Any such sequence (Bn : n ∈ ω) is called a canonical name
for an element of 2ω (see Kunen [13], 3.17). Working in the ground model
M with a name for the function f , we can define a map F from canonical
names to canonical names such that for any canonical name τ , F (τ) will be
a canonical name for f(τG). Since canonical names have countable support
and M satisfies the GCH there exists a set Σ ⊆ ω2 of cardinality ω1 in M
such that for any canonical name τ with support from Σ, the support of
F (τ) is a subset of Σ. This proves Fact (3).

To prove Lemma 8(2), suppose Y ⊆ R has positive outer measure. By
Fact (3) above there exists a set Σ ⊆ ω2 in M of cardinality ω1 in M such
that if Z = M [G] ∩ Y , then

M [G�Σ] � Z has positive outer measure.

Now since M is a model of CH we infer that M [G�Σ] is a model of CH (see
Kunen [13], 3.14). Hence Z has cardinality ω1. By Facts (1) and (2), it
follows that Z has positive outer measure in M [G].

Finally, we prove Theorem 4. By Lemma 7 if there were such a nonmea-
surable function, then there would be a set H ⊆ R2 such that λ(Hy) = 0
for every y ∈ R, and Y = {x : λ(R \Hx) = 0} has positive outer measure.
By applying Lemma 8(2) we get Z ⊆ Y with positive outer measure and
cardinality ω1. By Lemma 8(1) we know that the reals are not covered by
the ω1 measure zero sets {R\Hx : x ∈ Z}. Suppose y 6∈

⋃
{R\Hx : x ∈ Z}.

Then y ∈
⋂
{Hx : x ∈ Z}, which implies Z ⊆ Hy, contradicting the fact

that Hy has zero measure.

R e m a r k s. The next statement is implicit in Freiling [8] (see the proof
of the Theorem on p. 198). The following are equivalent:
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(i) there is a function f : [0, 1] × [0, 1] → [0, 1] such that fx and fy are
measurable for every x and y, and

∫
(
∫

fx dy) dx 6=
∫

(
∫

fy dx) dy;
(ii) there exists a set H ⊂ [0, 1]× [0, 1] such that Hy is a null set for every

y and [0, 1] \Hx is a null set for every x.

This is similar to our Lemma 7; also, it implies that if Fubini’s theorem
is not true for arbitrary bounded functions, then there is a nonmeasurable
function f such that fx is approximately continuous and fy is measurable
for every x, y.
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[10] Z. Grande, La mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 22 (1974), 657–661.

[11] T. Jech, Set Theory , Academic Press, 1978.
[12] P. Komj á th, Some remarks on second category sets, Colloq. Math. 66 (1993),

57–62.
[13] K. Kunen, Random and Cohen reals, in: Handbook of Set-Theoretic Topology,

North-Holland, 1984, 887–911.
[14] K. Kuratowsk i, Topology , Vol. 1, Academic Press, 1966.
[15] M. Laczkov ich and G. Petruska, Sectionwise properties and measurability of

functions of two variables, Acta Math. Acad. Sci. Hungar. 40 (1982), 169–178.
[16] H. Lebesgue, Sur l’approximation des fonctions, Bull. Sci. Math. 22 (1898),

278–287.
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