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NONNEGATIVE LINEARIZATION OF
ORTHOGONAL POLYNOMIALS
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RYSZARD S Z W A R C (WROC LAW)

1. Introduction. We will deal with polynomials pn orthogonal with
respect to a probability measure on the real line. The product of two of
these polynomials can be written as a sum of these polynomials:

(1) pn(x)pm(x) =
n+m∑

k=|n−m|

c(n, m, k)pk(x).

The constants c(n, m, k) of this expansion are called the linearization coef-
ficients. The nonnegativity of these coefficients leads to a Banach algebra
structure associated with the polynomials which is analogous to the algebra
of absolutely convergent Fourier series on a torus (see Askey [1], Askey–
Wainger [2] and Igari–Uno [8] for examples).

In 1970 Richard Askey found a set of conditions that imply nonnegative
linearization, i.e. c(n, m, k) ≥ 0 for all n, m and k. His theorem was strong
enough to include most of the classical orthogonal polynomials. However,
for Jacobi polynomials his assumptions were satisfied only when α ≥ β and
α + β ≥ 1, despite the fact that by Gasper’s result [6] the conditions α ≥ β
and α + β ≥ −1 were sufficient.

In 1992 in the two papers [12, 13] more general theorems were found.
They imply nonnegative linearization for Jacobi polynomials with α ≥ β,
α + β ≥ −1 as well as their associated polynomials. Assumed are certain
monotonicity properties of the coefficients in the three-term recurrence re-
lation. These assumptions are not always satisfied when we deal with basic
orthogonal polynomials. In particular, the coefficients in the three-term
recurrence relation for the continuous q-ultraspherical polynomials are os-
cillating about 1/2 when q is negative. However, it is known from explicit
formulas (see [3, (4.8)]) that the linearization coefficients are nonnegative in
this case.

In this paper we will indicate new conditions which are sufficient for
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nonnegative linearization. These conditions admit coefficients oscillating
about a certain value. In the proof we will always consider the polynomials
normalized at the right endpoint of the support of the measure. We will
show that this choice of normalization is in fact optimal. Examples are
provided at the end of the paper.

Acknowledgments. I wish to express my gratitude to Gosia Domańska-
Raczyńska for testing Theorem 3 on q-ultraspherical polynomials with Math-
ematika.

2. Normalization at the endpoint of the support. Let pn be
polynomials orthogonal with respect to a measure µ symmetric about the
origin. Then they satisfy the three-term formula

(2) xpn = γnpn+1 + αnpn−1

for n = 0, 1, . . . , where γn and αn are positive coefficients, except for α0 = 0.
When the polynomials pn are orthonormal then the sequences γn and αn

are related by αn+1 = γn.

For the sake of this paper we say that the polynomials pn have property
(A) if

(A)


αn is nondecreasing,
αn + γn is nondecreasing,
∀n αn ≤ γn.

By [12, Theorem 1] property (A) implies that the pn admit nonnegative
linearization, i.e. the coefficients in (1) satisfy c(n, m, k) ≥ 0. This property
is independent of the choice of normalization of the polynomials pn. In con-
trast, property (A) can fail if we change the normalization. For example,
let us consider the symmetric Jacobi polynomials for −1/2 ≤ α < 1/2. The
orthonormalized polynomials do not satisfy (A); however, if we normalize
the polynomials at x = 1, they do (see [12, Example]). It seems that the
normalization at the rightmost end of the support of the corresponding mea-
sure is better than other normalizations. We are going to show that this is
not a coincidence.

Lemma 1. Let polynomials pn satisfy (2) and pn(x0) > 0 for n ≥ 0. If
the pn have property (A) and either γ0 ≥ x0 or pn are orthonormal then the
sequence pn+1(x0)/pn(x0) is nonincreasing.

P r o o f. Without loss of generality we may set x0 = 1. For a contra-
diction assume that the sequence cn = pn+1(0)/pn(0) does not satisfy the
conclusion. Let n be the first index where cn+1 > cn. Then since cn ≤ cn−1



LINEARIZATION OF ORTHOGONAL POLYNOMIALS 311

(if m = 0 set c−1 = c0), we get by (2),

1 = γncn +
αn

cn−1
≤ γncn +

αn

cn
,

1 = γn+1cn+1 +
αn+1

cn
> γn+1cn +

αn+1

cn

Thus

0 <

(
γncn +

αn

cn

)
−

(
γn+1cn +

αn+1

cn

)
(3)

= (γn − γn+1)cn − (αn+1 − αn)
1
cn

.

If γ0 ≥ 0 then c0 = p1(1)/p0(1) = 1/γ0 ≤ 1 and so cn ≤ 1. Thus (3) implies

0 < (γn − γn+1)cn − (αn+1 − αn)cn = [αn + γn − (αn+1 + γn+1)]cn ≤ 0.

On the other hand, when pn are orthonormal and satisfy (A) then γn =
αn+1 and both sequences are nondecreasing. Hence we get a contradiction
in (3).

Theorem 1. Assume that pn are orthogonal polynomials with respect to
a symmetric probability measure µ whose support is contained in the interval
[−x0, x0] and ±x0 ∈ suppµ. If the pn have property (A) and either γ0 ≥ x0

or pn are orthonormal , then the polynomials Rn = pn/pn(x0) also have
property (A).

P r o o f. We may assume that x0 = 1. Observe that by (2) we have

(4)
xRn = γ̃nRn+1 + α̃nRn−1

α̃n = αn
pn−1(1)
pn(1)

, γ̃n = γn
pn+1(1)
pn(1)

.

Since suppµ ⊂ [−1, 1], the polynomials pn have constant sign in [1,+∞)
(see [11, Theorem 3.3.1]). As they have positive leading coefficients we get
pn(1) > 0. Thus Lemma 1 implies α̃n is nondecreasing. Evaluating (4) at
x = 1 gives α̃n + γ̃n = 1. It remains to show that α̃n ≤ γ̃n.

As α̃n is nondecreasing it has a limit α̃. Thus γ̃n is nonincreasing and
converges to γ̃ = 1 − α̃. In that case by Blumenthal’s theorem (see [4,
p. 121]) the support of µ consists of the interval I = [−2

√
α̃γ̃, 2

√
α̃γ̃] and

a denumerable set of points that can accumulate at the endpoints of this
interval. We are going to show that α̃ = γ̃ = 1/2. Assume the opposite.
Then the interval I is strictly contained in [−1, 1]. As 1 belongs to suppµ
it has to be a mass point of µ. On the other hand, since the polynomials pn

satisfy (A) they have nonnegative linearization. Therefore by [10, Theorem
6(iii)] the measure µ cannot have an atom at the rightmost end point of
suppµ. This gives a contradiction. In this way we have proved that α̃ =



312 R. SZWARC

γ̃ = 1/2. This implies
α̃n ≤ α̃ = γ̃ ≤ γ̃n.

R e m a r k. We do not know if the assumption γ0 ≥ x0 is essential for
the theorem to hold. However, we think it is not unnatural. For example
if suppµ ⊂ [−x0, x0] and the polynomials pn are normalized at a point
x1 ≥ x0, then γ0 = x1 ≥ x0. Also if suppµ ⊂ [−1, 1] and pn are monic, i.e.
normalized so that the leading coefficient of pn is 1, then γ0 = 1.

On the other hand, when the polynomials pn are orthonormal and suppµ
⊂ [−x0, x0] then

γ2
0 =

x0∫
−x0

x2 dµ(x) ≤ x2
0.

That is why we treated this case separately.

3. Chain sequences. From now on we will consider polynomials or-
thogonal with respect to a symmetric probability measure whose support
is contained in the interval [−1, 1]. The polynomials are usually given by a
three-term recurrence formula and the measure µ is not shown explicitly. It
can be very cumbersome to determine when suppµ ⊂ [−1, 1]. We will discuss
conditions on the three-term recurrence formula that imply suppµ ⊂ [−1, 1].

Let pn be polynomials orthonormal with respect to µ. Then they satisfy
a three-term recurrence relation of the form

xpn = λn+1pn+1 + λnpn−1,

where λn are positive coefficients for n ≥ 0 and λ0 = 0. The condition
suppµ ⊂ [−1, 1] is equivalent to the fact that the polynomials pn take
positive values at x = 1. Therefore we can normalize them at x = 1 and get
the polynomials Rn = pn/pn(1), which satisfy

(5)
xRn = γnRn+1 + αnRn−1,

αn = λn
pn−1(1)
pn(1)

, γn = λn+1
pn+1(1)
pn(1)

.

We also have αn + γn = 1 and

(6) α0 = 0, αn(1− αn−1) = λ2
n, n ≥ 1.

By [4, Defs. 5.1,5.2, pp. 92–93] this means that λ2
n is a chain sequence with

αn as its minimal parameter sequence. By the reasoning above or by [4,
Theorem 2.1, p. 108] the converse is also true, i.e. if λ2

n is a chain sequence
then suppµ ⊂ [−1, 1] and pn(1) > 0 for n ≥ 0. There are few criteria for
being a chain sequence that proved useful. One of them states (see [7] or
[4, Exercise 6.5, p. 106]) that if λn + λn+1 ≤ 1 for n ≥ 1, then λ2

n is a chain
sequence. For our purposes we will need another result.
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Theorem 2. Let λn satisfy at least one of the following two conditions.

(a) λ2
2n−1 + λ2

2n ≤ 1/2 for n ≥ 1.
(b) λ2

2n + λ2
2n+1 ≤ 1/2 for n ≥ 0.

Then λ2
n is a chain sequence.

P r o o f. We will show part (a) only. Let α0 = 0 and αn = λ2
n(1−αn−1)−1

for n ≥ 1. We have to show that 0 < αn < 1. Instead we will prove by
induction that 0 < α2n < 1/2 and 0 < α2n+1 < 1. Assume the latter holds.
Then

α2n+2 = λ2
2n+2(1− α2n+1)−1 = λ2

2n+2

(
1−

λ2
2n+1

1− α2n

)−1

< λ2
2n+2(1− 2λ2

2n+1)
−1 ≤ 1

2
.

Consequently,

0 < α2n+3 = λ2
2n+3(1− α2n+2)−1 < 2λ2

2n+3 ≤ 1.

4. Criteria for nonnegative linearization. We say that the polyno-
mials pn satisfying (2) have property (B) if

(B)

{
α2n and α2n+1 are nondecreasing,
α2n + γ2n and α2n+1 + γ2n+1 are nondecreasing,
∀n αn ≤ γn.

Property (B) is weaker than (A). Nonetheless, by [13, Theorem 1] it
implies that the pn have nonnegative linearization. We are going to derive
new criteria for nonnegative linearization basing on (B).

Let pn be polynomials orthonormal with respect to a symmetric measure
µ. Then they satisfy a three-term recurrence relation of the form

(7) xpn = λn+1pn+1 + λnpn−1, n ≥ 0,

with positive coefficients λn, n ≥ 0. For n ≥ 0 let

∆n = (1 + λn + λn+1)(1 + λn − λn+1)(1− λn + λn+1)(1− λn − λn+1),

rn =
1
2
(1− λ2

n + λ2
n+1 −

√
∆n).

Theorem 3. Let pn be polynomials orthonormal with respect to a mea-
sure µ and satisfy

xpn = λn+1pn+1 + λnpn−1.

Let λn converge to 1/2. Then the pn admit nonnegative linearization if one
of the following four conditions is satisfied.

(i) λn + λn+1 ≥ 1 for n ≥ 1, and suppµ ⊂ [−1, 1].
(ii) λn + λn+1 ≤ 1 for n ≥ 1, and rn ≤ rn+2 for n ≥ 0.
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(iii) λ2n + λ2n+1 ≤ 1, λ2n−1 + λ2n ≥ 1 for n ≥ 1, and r2n ≤ r2n+2 for
n ≥ 0.

(iv) λ2n +λ2n+1 ≥ 1, λ2n−1 +λ2n ≤ 1 for n ≥ 1, and r2n−1 ≤ r2n+1 for
n ≥ 1.

P r o o f. First we will show that λ2
n is a chain sequence whose minimal

parameter sequence αn satisfies

(8) αn+2 ≥ αn.

Let αn be defined by

(9) α0 = 0, αn(1− αn−1) = λ2
n.

It will also be convenient to define α−1 = λ0 = 0. Then (9) is also satisfied
for n = 0. We get

(10) αn+2 = fn(αn), fn(x) =
λ2

n+1(1− x)
1− λ2

n − x
.

It can be easily computed that if λn+λn+1 ≤ 1, then the equation fn(x) = x
has real roots, the smaller one being rn. Moreover, if 0 < x < min{rn, 1−λ2

n}
then fn(x) > x.

In case λn +λn+1 ≥ 1, the equation fn(x) = x has at most one real root.
Also if x < 1− λ2

n then fn(x) > x.
Consider (i). Since suppµ ⊂ [−1, 1], the sequence λ2

n is a chain sequence
(see Sec. 3). Since αn is the minimal parameter sequence we have 0 ≤ αn <
1 for n ≥ 0. Therefore αn+2 = fn(αn) > αn for n ≥ 0.

Let us turn to (iii). First observe that since λ2
2n + λ2

2n+1 ≤ 1 we have

r2n ≤
1 + λ2

2n+1 − λ2
2n

2
≤ 1− λ2

2n.

Now we will prove by induction that a2n ≤ r2n. We have α0 = 0 ≤ r0.
Assume that α2n ≤ r2n. Then since f2n is increasing in the interval [0, r2n]
we obtain

α2n+2 = f2n(α2n) ≤ f2n(r2n) = r2n ≤ r2n+2.

By the first part of the proof we get α2n ≤ α2n+2. We also get

0 < α2n ≤ r2n ≤ 1− λ2
2n < 1.

Hence

α2n+1 =
λ2

2n+1

1− α2n
> 0.

Thus αn ≥ 0 for n ≥ 0, and consequently λ2
n−1 is a chain sequence. As

λ2n−1 + λ2n ≥ 1, we can show exactly as in the proof of (i) that α2n−1 ≤
α2n+1. Finally, we get αn ≤ αn+2.

Much in the same way we can show that (ii) and (iv) each imply αn ≤
αn+2.
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Let

lim
n→∞

α2n = α, lim
n→∞

α2n = α′.

Then by (9),

α(1− α′) = α′(1− α) = 1
4 .

Thus α = α′ = 1/2. We also see that αn ≤ 1/2. By the first part of Sec. 3
we get

αn = λn
pn−1(1)
pn(1)

.

Thus pn(1) > 0 for n ≥ 0. Consider the renormalized polynomials Rn(x) =
pn(x)/pn(1). By (5) they satisfy

xRn = γnRn+1 + αnRn−1,

where γn = 1−αn. We have γn ≥ 1/2 ≥ αn. Thus the polynomials Rn have
property (B), which implies nonnegative linearization.

In the following examples the linearization coefficients are known explic-
itly from the papers by Rogers [9] and by Dougall [5](see [3, (4.8)] and [1,
(5.7)]). We will show the positivity of the linearization basing on Theorem 3.

Example 1. Consider the polynomials Cn satisfying

(11) 2xCn(x) = (1− qn+1)Cn+1(x) + Cn−1(x), n ≥ 0,

where C−1(x) = 0 and C1(x) = 1. According to [3, p. 20] these are contin-
uous q-ultraspherical polynomials with β = 0. Their orthonormal versions
Ĉn satisfy

xĈn(x) = λn+1Ĉn+1(x) + λnĈn−1(x),

where

λ2
n = 1

4 (1− qn).

For −1 < q < 0 it can be computed that assumption (iii) of Theorem 3 is
satisfied while for 0 ≤ q < 1 we can apply part (iv) or Askey’s criterion [1].

Example 2. The symmetric Jacobi polynomials p̂
(α,α)
n are orthonormal

with respect to the measure dµ(α,α)(x) = cα(1− x2)α
+dx and satisfy

xp̂ (α,α)
n (x) = λn+1p̂

(α,α)
n+1 (x) + λnp̂

(α,α)
n−1 (x),

where

λ2
n =

n(n + 2α)
(2n + 2α− 1)(2n + 2α + 1).

It can be easily verified that λn + λn+1 ≥ 1 for −1/2 ≤ α ≤ 1/2. Thus they
admit nonnegative linearization.



316 R. SZWARC

REFERENCES

[1] R. Askey, Linearization of the product of orthogonal polynomials, in: Problems
in Analysis (R. Gunning, ed.), Princeton University Press, Princeton, N.J., 1970,
223–228.

[2] R. Askey and S. Wainger, A dual convolution structure for Jacobi polynomials,
in: Proc. Conference on Orthogonal Expansions and their Continuous Analogues,
D. Haimo (ed.), Southern Illinois University Press, Carbondale, 1967, 25–36.

[3] R. Askey and J. A. Wi l son, Some basic hypergeometric orthogonal polynomials
that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985).

[4] T. Chihara, An Introduction to Orthogonal Polynomials, Math. Appl. 13, Gordon
and Breach, New York, 1978.

[5] J. Dougal l, A theorem of Sonine in Bessel functions, with two extensions to spher-
ical harmonics, Proc. Edinburgh Math. Soc. 37 (1919), 33–47.

[6] G. Gasper, Linearization of the product of Jacobi polynomials. I , II , Canad. J.
Math. 22 (1970), 171–175, 582–593.

[7] H. Haddad, Chain sequence preserving linear transformations, Ann. Scuola Norm.
Sup. Pisa (3) 24 (1970), 78–84.

[8] S. Igar i and Y. Uno, Banach algebras related to the Jacobi polynomials, Tôhoku
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