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COMPARISONS OF SIDON AND I, SETS

BY

L. THOMAS RAMSEY (HONOLULU, HAWAII)

Introduction. Let I" be an arbitrary discrete abelian group. Sidon and
Iy subsets of I' are interpolation sets in different but quite similar senses.
In this paper we establish several similarities and one deeper connection:

(1) B4(E) and B(FE) are isometrically isomorphic for finite £ C I
B4(E) = (5 (FE) characterizes Iy sets E, and B(E) = (s (F) character-
izes Sidon sets E. [In general, Sidon sets are distinct from Iy sets. Within
the group of integers Z, the set {2"},, U{2" +n},, is helsonian (hence Sidon)
but not 1.

(2) Both are F, in 27" (as is also the class of finite unions of Iy sets).

(3) There is an analog for Ij sets of the sup-norm partition construction
used with Sidon sets.

(4) A set E is Sidon if and only if there is some r € Rt and positive
integer N such that, for all finite ' C E, there is some H C F with |H| >
r|F| and H is an Ij set of degree at most N. [Here |S| denotes the cardinality
of S; two different but comparable definitions of degree for Ij sets are given
below.]

(5) If all Sidon subsets of Z are finite unions of Iy sets, the number of
I sets required is bounded by some function of the Sidon constant. This is
also true in the category of all discrete abelian groups.

This paper leaves open this question: must Sidon sets be finite unions
of Iy sets?

Let G denote the (compact) dual group of I'. In general, unspecified
variables such as j and N denote positive integers. M (G) denotes the Ba-
nach algebra under convolution of bounded Borel measures on G; the norm
in M(G) is the total mass norm. My(G) denotes the Banach subalgebra of
M (G) consisting of discrete measures. bI" denotes the Bohr compactifica-
tion of I': bl = é\d, the dual of discretized GG. Naturally, I" is dense in bl
The almost periodic functions on I are exactly the functions which extend
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continuously to bI'; they are also the uniform limits of the Fourier trans-
forms of p € My(G) [18, p. 32]. For subsets E C I, this paper focuses on
the relations among several function algebras on E: B,(E), B(E), AP(E),
and ( (E). B4(E) is the space of restrictions to F of Fourier transforms pi
of p € My(G), with the following quotient norm:

1/l By = m{[|pll | € Ma(G) & il = [}
B(FE) is the space of restrictions to E of Fourier transforms ji of p € M(G),
with this quotient norm:

1By = inf{{lull [ n € M(G) & ple = [}
l+(E) is the space of all bounded functions on E with the supremum norm;
AP(E) is the closure in ¢ (FE) of B4(E), and retains the supremum norm
(cf. Lemma 1 of the Appendix). The following inclusions hold and are
norm-decreasing:

(1) B4(E) C AP(E) Cls(E) and By(E) C B(E) Clx(E).

In general, these inclusions are all strict. When I is infinite, equality is rare
among all the subsets of I' (measure zero in 2/") but has been extensively
studied. Condition (1) allows six possible equalities among the algebras
B4(E), AP(E), {~(E), and B(FE). Three of these equalities characterize
special sets: Sidon (B(E) = o (E); see [11]), Iy sets (AP(E) = loo(E); see
[6]), and helsonian (B4(E) = AP(FE) by Proposition 2 of the Appendix).
Kahane resolved one of the remaining possible equalities by proving that
Iy is equivalent to the formally stricter condition By(E) = lo (E) (see [7]);
Kalton’s proof of this is in the Appendix. It follows from Kahane’s theorem
that

Iy = helsonian and Iy = Sidon.
By Proposition 3 of the Appendix, helsonian implies Sidon; thus

(2) Iy = helsonian = Sidon.

Bourgain resolved another possible equality by showing that By(F) = B(FE)
implies that E is Iy (see [1]). By Proposition 4 of the Appendix, B(E) =
AP(FE) implies that E is Iy, thus disposing of the last possible equality.
Example 5 of the Appendix proves that helsonian (Sidon) does not imply
Iy. Tt is unknown whether helsonian (Sidon) sets must be a finite union of I
sets [5]. Also unknown is whether Sidon sets must be helsonian. Concerning
this last question, there is this theorem by Ramsey: if a Sidon subset of the
integers Z clusters at any member of Z in bZ, then there is a Sidon set which
is dense in bZ and hence clearly not helsonian [15].

Among the four algebras By(FE), B(E), AP(E) and ¢ (E), two inclusion
relations remain to be explored: B(E) C AP(F)and AP(E) C B(E). If I' is
an abelian group of bounded order, B(E) C AP(E) implies that F is I (see
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[17]). (In [17], a hypothesis which is formally weaker than B(E) C AP(FE)
is shown to be sufficient to make E be Iy.) No work has been reported on
AP(E) C B(E).

Sidon and I, sets are F, in 2!". David Grow proved that, for finite
subsets E of Z, B(E) = B4(E) isometrically [5]. As he rightly concludes,
“one cannot determine whether a Sidon set FE is a finite union of I, sets
merely by examining the norms of interpolating discrete measures”. This
theorem generalizes to I" (indeed to the dual object of any compact topo-
logical group).

THEOREM 1. The algebras By(E) and B(E) are isometric for finite
subsets E of a discrete abelian group I.

Proof. Let E be given and € € RT. Let f € B(E) and pu € M(G) such
that 1i|g = f and ||u|| < (14 ¢)|f|lp(E)- There exists a neighborhood U of
0 € G such that

€
g €U implies (Vx € F) (]a:(g) —1]<é = )
[l +1

Since G is compact and {g+ U | g € G} is an open covering of G, there
is a finite set G’ = {g1,...,9n} such that {g+ U | g € G’} covers G. Let
Ey = g1 +U;for j > 1set Ej = (g9; + U\(U;; E£i). Then G is the disjoint
union of the E;’s. Let v =377 | u(E;)dy,. Then

vl = Z (BN < [lull < U+ )| fllzm)-

Also, for z € E, with | ,u] denoting the total variation measure for p,

i) — 1) = [o(e) — @) = | 3 [uEB)e(-g5) ~ [ a(-9)du(o)]
B

|32 [ fol-g) — al-g) duts)]

=1 E;

3 .

<> f —9)ldlpl(9)

j:

<> [ lalg—g;) — 1l dlul(g <Z€|u| ) =¢llull <e.
Jj=1 E;

By the previous paragraph, there is a sequence of discrete measures v;
such that [lv;| < (1 + 1/j)l|fls(s and 7] — Floe < (1/). Thus 7|z
converges to f in ¢ (E). By [16, p. 222] any finite subset of I" is an Ij set.
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By Theorem 7 of the Appendix, the /. (E) and B;(E) norms are equivalent:
there is a constant K such that, for all g € ¢ (E),

191l BaE) < Kllglloo-
Thus 7;|g converges to f in Bg(E), and hence

1l Bace) = Jim, 1751 EllBa(ry < 1i£8£p il < (/13-

That proves isometry, since || f||z,(g) < ||f||B(r) always holds.

There is a more elementary way to see this, without using [16]. Since
E is finite, By(F) is a finite-dimensional vector subspace of (o (F). Due
to the finite-dimensionality of B4(E), B4(F) is a closed subspace of {(E)
and norm equivalence holds for g € By(E). Since v; is from By(E) and
converges to f € (. (F), the closedness of By(F) puts f in B4(E). By the
norm equivalence, ; converges to f in B4(E), and the rest of the proof is
valid. m

Sidon sets are “finitely describable” by norm comparisons. Following
[11], the Sidon constant of a set £ C I" is the minimum constant a(E) > 0
such that, for all f € lo(E), |fllBr) < (E)||flloo- As in [11], this is
the same minimum constant such that ||7||4(q) < a(E)||7|lc(e) for all T €
Trigp (G), the trigonometric polynomials on G with spectrum in E. This
is true because, viewing Trigp(G) as a closed subspace of C(G), one has
Trigp(G)* = B(FE) (isometrically) while A(G) is isometric to ¢;(I") and
hence A(G)* is isometric to lo(I").

It follows that

(3) FE, C Es implies Oé(El) < O[(EQ)
and that
(4) a(E) =sup{a(F) | F C E & F is finite}.

These observations lead to the next lemma:
LEMMA 2. Let S, = {E C I' | a(E) <r}. Then S, is closed in 2.

Proof. In this proof, we identify A C I' with x4 € 2I". Let Eg be a net
in S, which converges to 2 C I'. Let F be any finite subset of F. Because
the convergence in 2! is pointwise, there is some 3y for which 3 > 3, implies
F C Fs. By (3) above, a(F) < a(Fp) < r. Since this holds for all finite
F CE,a(E) <r by (4) above. m

PROPOSITION 3. For discrete abelian groups I', the class of Sidon sets
is an F, subset of 2': it is U,, Sn with S,, as in Lemma 2.

David Grow’s theorem makes clear that only making norm comparisons
will not extend Proposition 3 to Iy sets. The following definition provides
appropriate tools.
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DEFINITION. Let D(N) denote the set of discrete measures p on G for

which
N
w= Z Cj(stja
j=1

where |¢;| < 1and t; € G foreach j. For E C I'and § € R, let AP(E, N, )
be the set of f € {o(E) for which there exists u € D(N) such that
If = Hlelle < 6.

E is said to be I(NN,d) if the unit ball in ¢ (F) is a subset of AP(E, N, 0).
Further, N(F), the Iy degree of a set F, is the minimum m for which F
is I(m,1/2) if such an m exists, and oo otherwise. [By Theorem 7 of the
Appendix, E is Iy if and only N(E) < 00.]

The analog of condition (3) is immediate from the preceding definitions:
(3I) E, C E5 implies N(FE;) < N(Es).
The next lemma is the analog of condition (4).

LEMMA 4. For EC I,
(41) N(E) =sup{N(F) | F is a finite subset of E}.

Proof. Set J equal to the right-hand side of (4I). By condition (3I),
J < N(E). If J = o0, then N(E) = oo and hence J = N(E). So suppose
that J is finite. Let f € o (E) such that || f||o < 1. For each finite F' C E,
interpolate f|r within 1/2 by a discrete measure uf’ € D(J); write uf as

J
F _ F
1 —E ijsgf
i=1

with |c§[7 | < 1. The finite subsets of E form a net, ordered by increasing

inclusion. By the compactness of G (from which ng comes), and the com-
pactness of the unit disc in C, one may choose 2J subnets successively so
that, for the final net {F, }., one has

lim g/ = g; & limef* =¢; forall 1<j<J.

Necessarily, |c;| < 1. Set p = 23‘121 cjdq;. Let v € E. There is some ag in
the subnet such that v € F, for all a > ag. Also for a > «p,

() = P () < 1/2.

However, lim, 'y(gf“) = 7(g;) for 1 < j < N because v is a continuous
character on G. It follows that

J J
lim pe% () = hC{nZ ;o (—g;") = Z cjv(=g;) = H(v)-
Jj=1 J=1
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Thus |f(y) — u(y)| < 1/2. That establishes f € AP(E, J,1/2). So N(E)
<J. =

The proof of the next proposition is the same as that of Lemma 2 and
Proposition 3.

PROPOSITION 5. The Iy sets are an F, in 2" they are |J, {F C I' |
N(E) < n} where {E C I' | N(E) < n} is closed in 2.

The author first realized that Iy sets and Sidon sets are F,, in 27" when
studying A = A sets: those sets for which A(E) = B(E)Nco(E) [4, p. 364].
Whether A = A sets are F, in 27 is not known. Equally unknown is the
status of sets E such that A(F) = By(E), where

Bo(E) ={fle | f € B(I')Nco(I)}
Both of these properties, to a naive view, seem to “live at infinity” and
thus fail to be “finitely describable”. If it could be proved that they are
not F, in 21", then questions (1) and (1’) of [4, p. 369] would have negative
answers. An open question which is closer to the focus of this paper is this:
do helsonian sets constitute an F, class?

“Finitely described”, again. In [6], two other equivalent formulations
of being I are established. First, a set F is I if and only if every function
on FE taking values 0 and 1 can be extended to a continuous almost periodic
function over I' [6, p. 25]. Second, a set F is an Iy set if and only if, for
every subset F' C F, the sets F and E\F have disjoint closures in bl .
These formulations permit a weakening of the sufficient conditions listed in
Theorem 7 of the Appendix (a very similar and yet weaker condition is in
[12]).

DEFINITION. Let C7 and C3 be closed subsets of C. For £ C I', F is
said to be J(N, C1, Cy) if and only if, for all F* C E, there is some p € D(N)
such that p(F) C Cq and p(E\F) C Co. When C; = {2z | $(2) > d}, and
Cy ={z]S(z) < =8}, J(IV,C4,Cy) is abbreviated as J(N,d). S(E) is the
minimum m such that F is J(m, 1/2) if such an m exists, and oo otherwise.
[By Proposition 6 below, E is Ij if and only if S(E) < oo.]

PROPOSITION 6. The following are equivalent:

(1) E is an Iy set.
(2) E is J(N,C1,C5) for some N and some disjoint subsets Cy and Cs.
(3) For all 0 < 6 < 1, there is some N such that E is J(N,J).

Proof. (3)=(2) is immediate.

(2)=(1). Assume that E is J(N,C1,C5) for some disjoint C; and Cs
and some N. For F' C E, let up € D(N) satisfy condition (2) for F. By [18,
p. 32|, the group bI" is the maximal ideal space of M;(G) and the Gelfand
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transform is just the Fourier—Stieltjes transform. Because D(N) C M4(G),
fr is a continuous function on bI'. Because C] is a closed subset of C,
H, = up~1(C}) is a closed subset of bI" with I C H;. Likewise, Hy =
fr~H(Cy) is a closed subset of bI" with (E\F) C Hs. Because C; and Cs
are disjoint, H; and Hy are disjoint; thus F' and F\F have disjoint closures
in bI". Because this holds for all F' C E, E is an I set by [6].

(1)=-(3). Now suppose that E is an Iy set and consider any ¢ such that
0 < 0 < 1. By Theorem 7 of the Appendix, there is some N such that F
is I(N,1 —¢). Let F' C E; the function h which is ¢ on F' and —i on E\F
is in the unit ball of /o (E). By the definition of I(N,1 — §), there is some
u € D(N) such that

1Ale = hlleo <1—6.

For v € F, h() = ¢ and hence I(p(y)) > 1 — (1 —9) = 4. For v € (E\F),
h(y) = —i and hence J(iu(7)) < -1+ (1 —-9) < —0. =

The proof of Proposition 6 provides the following corollary.
COROLLARY 7. For EC I, S(E) < N(E).

Bounding N(E) by some function of S(F) is the purpose of the next
theorem.

THEOREM 8. There is a non-decreasing function ¢ with ¢(Z+) C Z+
such that, for all discrete abelian groups I' and all E C I'; N(E) < ¢(S(E)).

Some lemmas will help in proving Theorem 8. Lemma 9 follows imme-
diately from the definitions of N(E) and S(E).

LEMMA 9. For E C I' and v € I', N(E) = N(E + ) and S(E) =
S(E+ 7).

LEMMA 10. For any N, let S be a finite set which is 1/(8N) dense in
T and let E C I' with S(E) < N. Then, for all subsets F C E, there are
N points t; € G, integers r; € [0,8N], and s; € S such that

(Vy € B)[S(u(v) = 1/4]  and (Vv € E\F)[S(u(7)) < —1/4],

where
N
p= N sird,.
j=1

Proof. By the definition of S(E), E'is J(S(E),1/2)and hence J(N, 1/2).
Thus, for any F' C E, there is a discrete measure v € D(N) such that

(V€ F)[S(w(y)) 21/2] and  (YVy € EAF)[S(¥(y)) < -1/2,

where v = Zjvzl c;0¢, for some ¢;’s in G' and ¢;’s in the unit disc of C. Write
¢; as dj|cj| with |d;| = 1. Since S is 1/(8N) dense in T, one may choose
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sj € S such that |d; —s;| < 1/(8N). Let r; = |8N|c;||. Then, if

N
B = (SN)_l Z Sjrjétja
j=1

it follows that

M=

lv = pllame) <) lej —siri/(8N)|

1

<.
Il

N

N

< ey = leslsil+ ) lsjlesl — sim5/(8N))]
j=1 j=1
N N

= lejlld; — 551+ sl - llej| = 3/ (8N))]
j=1 j=1

N
ld; = sil+ > lles| =73/ (8N

j=1
/(8N)+ N/(8N) =1/4.
It next follows that, for v € F,
(@) =Sl@() —{v(v) = w3 =2 SE] = v = e = 1/4
Likewise, for v € (E\F), S(u(y)) < —1/4. =

LEMMA 11. For any N, let S be a finite set which is 1/(8N) dense in T.
Assume that S(E) < N and E C{1} xI' CZyxI'. For F C E and s € S
there are 8N? points of G, here labeled as ts ;, such that

(v € F)[S(7(v)) 2 1/8] and (vy € (E\F))[S(T(7)) < —1/8],

where

] =

<.
Il
—

<

=

8N?
T=BN)TY s b,
seS j=1
Proof. Let p = (1,0) € Zy x G. Then, for all v € E, 5;)(7) = 1 while
6,(7) = —1. Thus for y € E, So(7) + 5,(v) = 0.
Let F C E and p be a measure provided for F' by Lemma 10. Rearrange

1 as follows:
N Tj
n = (8N)71 Z Sj Z (Stqu,
j=1 q=1
where t; , =t; for all ¢ € [1,r;]. Set
W — 278N —1;)(do + 6,) for r; even,
T 60+ 278N —r; — 1)(dp + 6,) for r; odd.
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Let ¢ = pu+ (8]\7)’1 Zjvzl s;W;. Then one may write ¢ as

gb— Zsjzéth

j=1 g¢=1

Note that I/I//\]h) € {0,1} for v € E and therefore

[6(7) = B(V)| < (8N)~ ZIW )| <1/8.

Thus, for v € F,

S(6(7) = ${AM) = (A() = 6(N)} = 1/4 = [fly) — ¢()] = 1/8,
Likewise, for v € (E\F),

(6(7)) = S{Ay) — (@) — 6()} < ~1/4+ |ly) — o(7)] < —1/8.

Next, rewrite ¢ as follows:

)Y s > Zat” BN)™Y sV

s€S j€[1,N] q=1 seS
& s;=s
The number of point masses in V; is 8N f, for some integer f; € [0, N] (fs
is the number of j’s such that s; = s). Let

Zs = (N — [5)(4N)(do + 6p)
and set

T=¢+ (8N)~ ZSZ

sES
Note that Z(az) =0forallz € B, T|gp = alE, and 7 may be written as

8N?

71282(5%&. n

seS gq=1

Proof of Theorem 8. Set ¢(c0) = oo and let ¢(N) = sup{N(F) |
S(E) < N}. If ¢(N) < oo for all N, the theorem is proved. Suppose
that ¢(N) = oo for a particular N. That is, there is a sequence of discrete
abelian groups {2; (with dual group H;) and subsets W; C (2; such that
S(W;) < N and N(W;) > i. Let E; = {1} x W; C I;, where I; = Zy x §;
and G; = Zo x H; is the group dual to I';. By Lemma 9, S(E;) = S(W;) < N
and N(E;) = N(W;). Let I' be the direct sum of the I}, which is the set of
all sequences {v;}; with 7; € I; and at most finitely many ~; # 0 [assume
that the I3’s are presented additively]. The dual group of I" is the following
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direct product:
G =]]¢G:

If v ={vi}i € I"and g = {gi}; € G, then (v,g9) = [[,(7i,gi), where the
latter infinite product has at most finitely many factors that differ from 1.
I; may be viewed as a subset of I' in the natural way, as the set of v € I
such that v; = 0 for j # 7. Denote this canonical copy of I; by I';". For
yelI; CIl'and g€ G,

64(7) = (vir —9i) = 04, (Vi)
where g; and ~y; are the respective ith components of g and . Thus, N(E;) =
N(E}) and S(E;) = S(E}) for each E; C I and its canonical image E}
in ;.

It will be proved that E* = |J, E} is an I set and thus N(E*) < oo by
Theorem 7 of the Appendix. That will contradict equation (3I), which says
that N(E*) > N(E}), and thus

N(E*) > N(E]) = N(E;) = N(W;) > for all .

This contradiction will prove that ¢(N) < oco for all N.

To see that E* is I, let S be a finite set which is 1/(8N) dense in T of
cardinality M. It will be shown that E* is J(8M N?2,1/8) and hence an I
set by Proposition 6.

Let F'* C E*, and set F;" = F*NE}. Let F; be the pre-image of F;* under
the canonical embedding of I; into I'. Because S(E;) < N and F; C E;,
Lemma 11 provides a discrete measure p; on G; of the form

8N?

pi = (8N)~! ZSZ@;J

seS j=1
such that
(Vy € F)[S(fi(7)) =2 1/8] and  (vy € E\F)[3(1i(7)) < —1/8].
Let t5; € G be defined to be t;j in the ith coordinate, and set

8N?

p=(8N)"* ZSZ%J--

seS j=1

Because any v € E; has coordinates equal to 0 apart from the ith coordinate,
and v; € E;, one has

5ts,j (7) = <_t8,j77> = <_ti,j77i> = tiy]. (’7@)

For v € EY, it follows that fi(y) = f;(7;) with ; € E;. Note that ~; € F; if
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and only if v € F;*. Thus, for all 7,

(Vv € F)[S(u(v)) = 1/8] while  (vy € (E/\F}))[S(u(7)) < —1/8].
Since F* = |J, F;", the imaginary part of [i is at least 1/8 on F* and at most
—1/8 on E*\F*. This holds for an arbitrary F* C E*, with a measure in
D(SMN?). Thus E* is J(SMN?2,1/8). m

A more direct proof of Theorem 8 can be adapted from [9], in which the
following theorem is proved. Consider a Banach algebra B of continuous
functions on a compact Hausdorff space 9. Assume that for every closed
subset F' of 9, there exists a positive number € = ¢(F’) such that whenever
N is both open and closed in F', B contains an element h of norm one
satisfying R(h(M)) < 0 for M € N, R(h(M)) > € for M € F\N. Then
B = C(M). In [9] a polynomial P is fixed, depending only on ¢ and some
g’ > 0, such that for F'; N and the corresponding h of the hypotheses, P(h)
satisfies |P(h)(M)| < &’ for M € F\N while |P(h)(M)—1| <&’ for M € N.
Thus xn is approximated by P(h) within &’ in ¢°°(F'). With appropriate
scalings (¢ = 1/(2S(F))), this could be applied to h = v where v = —ip,
p € D(S(E)) with (i) > 1/2 on some F' C E while $(i1) < —1/2 on E\F.
It is clear that P(v) is in D(n) for some n which is determined by S(FE) and
¢’ (and P, which is in turn specified to depend only on ¢ = 1/(2S(F)) and
g’). If €' is set equal to 1/144, one can proceed as in the next paragraphs to
get N(E) < 36n.

Following [12], one could define another degree for Iy sets. For £ =
(91,---,9n) € G" and y € I', let £(7) = (v(91),---,7(gn)). For £ € G" and
real ¢ > 0, let U(&,e) = {\ € I' | sup; |\(g;) — 1| < €}. A basis for the
topology of bl consists of v+ U (&, ), where v ranges over I, £ ranges over
U,, G™ and ¢ ranges over RT. By [6] and [12, Theorem 1, p. 172], E C I is
Iy if and only if there are some k and real € > 0 such that, for all F C F,
there is some ¢ € G* for which F+U(¢,¢) and (E\F)+U(€, ¢) are disjoint.
Such sets are said to have order k (regardless of €) [12]. Define M(E) as
the least k for which this result holds for k£ and ¢ = 1/k. By following the
proof in [12, pp. 175-176], one can prove that N(E) < ¢(M(E)) for some
non-decreasing function ¢ such that ¢(Z*) C Z*. Also, M(FE) < 4AN(E).

Here’s how one could specify ¥. Given f in the unit ball of (. (F)
and M(E) < k, one can approximate f within 1/4 with a linear sum of
characteristic functions:

36

ZCjXFj with |¢;| < 1.

j=1
Each xr; can be approximated within 1/144 by the transform of a measure
in D(n) where n is chosen as follows. In [12, p. 175] there is a function
X € A(T*) chosen in a manner which depends only on k. Based upon it,
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choose N so that

(n1,...,nx)E€LF
& a4t > N

Set

n= > [R(n1, ... ni)]].

(n1,...,nk)ELF

In [12, p. 175], given an idempotent e € ¢ (F) and a particular £ =
(g1,---,9k) which separates the support of e from its complement with
U(&,1/k), there is some @, such that e = @, o | and \@(nl,,nk)\ <
IX(n1,...,nk)|. Then, if

n = Z Qse(nlv'"7nk)6*n191*~-*nk9k7
(N1, mp ) EZF
& ||+t Ik | <N

p € D(n) and [ interpolates e within 1/144. By doing this to each Fj for f,
one interpolates f within 1/2 by the transform of a measure in D(36n) and
hence N(E) < 36n. If (k) = sup{N(E) | M(E) < k}, then ¢(k) < oo, 9
is non-decreasing and N (F) < (M (E)).

To see that M(F) < AN(E), let n = N(E) < o0 and F C E. Let
f=1on F and —1 on E\F. Let p € D(n) interpolate f within 1/2. If
W= 2?11 cidg;, let & = (g1,...,9n). X € U(£,1/(4n)), then for all v,

iy +A) —p(y)] < 1/4.
Thus for v € F,
R((y+ ) > 1/2—1/4=1/4,
while for v € E\F,
R(pu(y+A) <-1/2+1/4=-1/4.

It is evident that F'+ U(§,1/(4n)) and (E\F) + U(§,1/(4n)) are disjoint.
Thus M(E) < 4n.

The proof of Theorem 8 provides an analog for Iy sets of “sup-norm
partitions” used among Sidon sets [4, p. 370]. What is different about this
construction is the “DC-offset” (an electrical engineering term): shifting the
Wi’s into “odd” cosets before unioning them. This is not required in the
usual sup-norm partition constructions.

PROPOSITION 12. Let W; be a sequence of Iy sets, with W; a subset of

an abelian group 2; and S(W;) < N for some N. If I; = Zo x £2; and
E; = {1} x W;, then E = J; E; is an Iy set in the direct sum of the I}’s
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with S(E) < 32MN? (where M is the cardinality of a finite set which is
1/(8N) dense in T).

Proof. In the proof of Theorem 8, E is J(8M N?,1/8). By repeating
the interpolating measures 4 times, one sees that E is J(32M N?2,1/2) and
hence S(E) < 32MN?. u

Proposition 12 is proved in the category of discrete abelian groups, where
there is plenty of room to fit diverse groups together. The analog of Propo-
sition 12 is proved within Z in the next proposition. Some care must be
taken with this new construction of I sets, but its basic ideas are simple:
rapidly dilate successive sets of the given sequence of I sets and provide a
“DC-offset”.

PROPOSITION 13. Let {W,},, be a sequence of finite 1y subsets of Z with
S(Wy,) < N for all n. There is a sequence of integers {k,} with k, # 0 for
all n such that

E =@k W,y + k)

is an Iy set with (2k, Wy, + ky) N (2k; W, + kj) = 0 for n # j.

LEMMA 14. Let E C Z. For any N, let S be a finite set which is
1/(8N) dense in T. Assume that S(E) < N and that E C k + 2kZ for
some non-zero integer k. Let F C E. Then for each s € S there are SN?
points of T, here labeled as t, j, such that

(Vy € F)[S(F(v) = 1/8] and (Vv € (E'\F))[S(7(7)) < ~1/8],

where
8N?
T=BN)TY s b,
seS j=1
Proof. Let T, the dual group of Z, be presented as the interval (—, 7]
with operations modulo 27. An integer n acts on t € T as follows:

n(t) = (n,t) = ™,
For all z € E, 5A0(a:) = 1 while
m(x) — plan/k _ gilk+2kj)m/k _ i _
Thus, for x € E, (%(:L“) + m(x) = 0. From this point, the proof is identical
to that of Lemma 11, with d, , replacing ¢, in that proof. m

Proof of Proposition 13. Without loss of generality, we may as-
sume that W,, # 0 for all n. The integers k,, shall be chosen inductively.
Let ki = 1; given k; for j < n, let D,, be the maximum absolute value of
any element of | J,,, (2k;W; + k;). Fix some finite subset S which is 1/(8N)
dense in T and of cardinality ). For n > 1 choose k, > 32NQ@QD,,_1 and
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let £, = k, + 2k, W,. Since every element of F,, is an odd multiple of k,,
|z| > k,, for all x € E,; since E,, # 0, D,, > ky,. Since F} # 0, D,, > k; > 0.
Thus, for n > 1, k, > 32NQD,_1 > D, _1, which guarantees that F,, is
disjoint from Ej; for j < n. Finally, for j <n and z € E},
kn > (32NQ)" 7 D; > (32NQ)" 7 |x|.

In particular, k, > (32NQ)""'D; > (32NQ)"! for n > 1. [Of course,
k1 =12>(32NQ)° as well.]

Let FF C FE and F; = FFN F;. Lemma 14 provides a discrete measure

on T of the form
8N2

u1 = (SN)_l Z S Z 5@,]_

seS  j=1
such that
(Vy € F)[S(pi(v)) 2 1/8] and  (Vy € Ex\F1)[S(pa(y)) < —1/8].
Proceed inductively. Suppose that for j < n one has u; such that
(Vv € F5)[S(1; (7)) = 1/8] and  (Vy € E;\F;)[S(1;(7)) < —1/8],

where
8N?
j = (8N)™* Zsz%q

seS q=1
and [t]  —tI 1 < w/k; for j € (1,n), s € S, and ¢ € [1,8N?]. Because
E, =k, + 2k, W,, with k,, # 0, one has S(E,) = S(W,,) < N. By Lemma
14, there is some p such that

(Vy € Fp)[S(i(v) = 1/8] and  (Vy € Ex\Fy)[S((y)) < —1/8],

where
8N?
'LL = (SN)_l Z S Z 62?7‘1.
seS q=1
However, since every x € E,, is a multiple of k,,, for any integers p, ,

(511:;3,(1(37) = (5/23\(1(33) for w = 27py s /kn.-

Thus p|g, = X\En when
8N2
-1
)\ = (8N) Z S Z 6Z:',q+pq,s27r/kn :
seS g¢=1

Choose pg s so that

|28 + Pgs2 [kin — 05" < /i

Let g, = A with this choice of the p, s. That is, t7 , = 28, + pg,s27/kn.

1 Us,q T
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It follows that, for each s € S and 1 < ¢ < 8N?, t5, = lim; o tqu exists
because
o0
S, —t \<Zn/k <7TZ 32NQ) 77! < .
j=2 j=2
Moreover, for z € E; and n > j,
Bez, (@) = by ()] = e — 70
n
_ ‘ Z oIt _ o—imti !
w=7+1
n
< Z ‘e—ia;tg{q . e—mt;ﬁ;l‘
w=j+1
n n
< Y ey, -t DI < 2l Y (k)
w=j5+1 w=j5+1
n
<wlrl Y Ja|THB2NQ) Y
w=j+1

< (7/(32NQ))(1 - 1/(32NQ))~"
= 1/(32NQ — 1) < 1/(31NQ).

If one fixes j and lets n — oo, then for z € Ej,

01,.,(2) = b, ()] < 7/(BINQ).

Set
8N?2

0= (SN)_l Zszéts,q'

s€S g=1
Then, for all z € Ej,

8N?

(@) = 8@)| = | 8N Y5 D0y (@) — &, (@)

se€S g¢=1
8N?

3 s> (/81N Q)) = /31,

ses g=1
Thus for all 7,

(Vv € F5)[S(e(v)) >
IS

1/8 —m/31] and
(vy € (E:\F))[S(e(y)) <

—1/8 +7/31].
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Since F' = |, F;, the imaginary part of pis at least .02 on F' and at most —.02
on F\F. Because this holds for any F' C E with a measure in D(8QN?), E
is J(8QN?Z,.02) and hence I. =

Proportions of Sidon sets are I sets. The following theorem origi-
nated in conversations with Gilles Pisier.

THEOREM 15. Let I' be a discrete abelian group. Then E C I is Sidon

if and only if there are N and some real r > 0 such that, for all finite
F C E, there is some H C F for which |H| > r|F| and S(E) < N.

A key ingredient of the proof of Theorem 15 is a theorem of Pisier’s [14,
p. 941]. Other critical ingredients are recycled from [3, 13].

Proof of Theorem 15. To prove sufficiency, suppose that £ C I’
has some N and real r > 0 such that, for every finite subset ' C F,

(3H C F)(|H| > r|F| and S(H) < N).
Then H is I(¢(N),1/2) by Theorem 8. By the proof of Theorem 7 of the Ap-
pendix, condition (3) of that theorem holds with M = 2 and § = (1/2)/¢(N),
It follows that, for every f in the unit ball of ¢, (H), there is some u €
My(G) such that fily = f and [|pllage < L = 23272, 277/9(N) < 0.
Thus, there is a constant L which depends only on N and satisfies || f|| g, () <

L\f lleos iy for all f € £oo(H). Since || f|| gy < |If]lBacr), one has || fll ) <
L||flle..zry- Thus H is a Sidon set with Sidon constant at most L. That
suffices to make E be Sidon by Corollary 2.3 of [14, p. 924].

Now suppose that F is Sidon. By [14, p. 941] there is some ¢ > 0 such
that, for all finite F C E, there are at least 2°/¥! points g; of G such that,

for i # j,

(5) sup 17(g5) —(gi)] = 0.

Necessarily, § < 2.

Let F' C E with |F| = n. Enumerate F as 7,...,7,. Choose p so that
T=2m/p<d/2 (e.g., let p=1+[4n/d]). Partition T into disjoint arcs, T},
0 <k < p, of the form

Tp = { | kr <0 < (k+ 1)1}

Let Q = [(1 —279/2)71] and set 7/ = 7/Q. Partition each T}, into Q

arcs Uy, of the form
Upom = {0 | kr +m7’ <0 < kr + (m + 1)7'},

for 0 < m < Q. Finally, let Sy denote a set of at least 2°/F| points of G
which satisfy inequality (5).
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Define §; inductively. Let
Si={9€Si—1|lg) €Tk} and S}, =1{9€Si1|%(9) € Upm}
Then S;_; = Ui;é S} and S} = Ug;é S} - There is some m/(i, k) such that
[Shm(iny] < QIS

So,
p—1
U Shn| < @7USil
k=0
Let
p—1
Si =81\ U Skm(ik)"
k=0

Then |S;| > (1 — Q71)|S;_1]. By induction one has |S,| > (1 — Q~1)"|So|.
Note that @ > (1 — 279/2)~1; consequently, (1 — Q~!) > 27%/2, Therefore,

‘Sn‘ > (1 _ Qfl)n’SO‘ > (275/2)712611 — 2n5/2_

For 1 <i<mnand1<k<p,let I be the arc between Uy_1 p(i,k—1)
and Uy m(ik)- For k = 0, let I; o be the arc between Up,_1 1(i,p—1) and
Uo,m(i,0)- Necessarily,

(6) LipC{e? | (k—Dr+7 <0< (k+1)7 -7}

The length (and hence the diameter) of each of these arcs is at most (2 —
2/Q)T < 2-(8/2) = 9. For j # k there are arcs of length 7/ separating I; j,
from €7 within T, namely Uk—1,m(i,k—1) and Uy m(i,k) when 1 < k < p, and
Upfl’m(i’pfl) and UO,m(i,O) for k= 0.

Each sequence {k;}"_ ,, with 0 < k; < p, defines a cylinder in ¢+, (F') of
the following form:

WikiYisi] = {f € loo(F) | (i) € Lik; }-

For g € G, let fo(v) = 7v(g) for v € F. Because these cylinders are disjoint,
each f, is in at most one of them. g € S,, was specified to guarantee that f,
would be in at least one of these cylinders. For g € S,,, define h(g) € loo (F)
by h(g)(v:) = ki where fy(vi) € I, and thus f, € W[{k;}I'_,]. Because
each cylinder has diameter less than d, each cylinder contains at most one
fy for g € S,,. Hence |h(S,,)| = |Sn| > 2™%/2. For any subset H C F, let ITH
be this projection: for f € (o (F), I (f) = f|g. By Corollary 2 of [13,
p. 742], there is a constant ¢’ > 0 which depends only on §/2 and p (which
themselves depend only on ¢) such that there are some H C F' and integers
a < b from [1,p] such that

|H| > ¢"|F| and {a,b} c T7(W(S,)).
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Ifb—a<p/2,leta’ =aandd =b. Ifb—a >p/2,let '’ =band ¥/ = a+p.
In either case, let @’/ = a’ mod p and v =¥’ mod p. Then {a”,0"} = {a,b}
with @’ < b and V' — o’ < p/2.

Case 1: ' —d >2. Letc=(a'+0b)/2. Thenb —c>1,c—d > 1,
b —c<p/dand c—a <p/4. If 2o € I, v, then 29 = € with

e+ <O -)r+7 <0<+ 1)1 -7 <er+pr/i+1,
because 7 = 27w /p < /2 and 0 < 2 (see condition (6)). Hence
e 20 = /0T with 7/ <0 —cr < /2 + 1.
Thus e %"z is in the upper half-plane, with
J(e T 2y) > 7" = min{sin(7’), sin(7/2 + 1)} > 0.
Likewise, if 21 € I; 47, then then 2z, = e’ with
er—pr/i—-1<(d-)r+7 <0< (@+DO)7—7 <er—7.
Hence
ez =0 with —n/2—1<60—cr < —7'.
Thus e™"“7 z; is in the lower half-plane, with
J(e "T2) < —7" < 0.

Because {a,b}? c IT"(h(S,)) and {a,b} = {a”,b"}, for any A C H
there is some g € S,, such that h(g)(vy) =" for v € A and h(g)(7) = a” for
v € H\A. Let p=e"""6_g4; p € D(1). For v € A we have

S(ei7d_4(7)) = S(e7y(g) > 7.
Likewise, for v; € H\A,

S(e73-y(7)) = S(eTT(g)) < =7
This proves that H is J(1,7").

Case 2: b = a' + 1. Because {a,b} C ITH(h(S,)) and {a,b} =
{a”,V"}, for every A C H there are g; and go such that

(Vv € A)(h(g1)(7) =b" and h(g2)(7) = a”),

while

(Vy € H\A)(h(g2)(v) = a” and h(g2)(y) = b").
The arc U; (.0 equals {e? | <0 <2+ 7'} with o/ <z <a+7 < V7.
If 2o € Iy, then 2o = € withz + 7/ <0 < (W + 1)1 — 7. If 21 € I or,
then z; = € with (¢’ — 1)7 + 7' < 0 < 2. Thus, for v; € 4, (g1 — g2) =
i(91)/7i(g2) = € with

YOO -2 = (3-2/Q)r <3
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Thus, when v € A, v(g91 — g2) is in the upper half-plane and
S(v(g1 — g2)) = 7" = min{sin(7’), sin(3) }
For v; € H\A,
Yilg1 — 92) = 7i(91)/7i(g2) = €”
with —3 < (=3+2/Q)r<f<d -V =—-7".
Thus, when v € H\A, 7;(g1 — g2) in the lower half-plane with

S(v(g1 — g2)) < =7
This makes H a J(1,7") set. m

The proof of Theorem 15 produces “proportional” subsets of Sidon sets
(and therefore Iy sets) which are of order 1 according to [12, pp. 182-186].
In [12] this unresolved question was posed: must I sets be finite unions of
order 1 sets?

Are Sidon sets finite unions of Iy sets? David Grow asked in [5]
whether Sidon sets had to be finite unions of I sets. Theorem 15 provides
some evidence that they could be, but that question is not resolved here.
The next two theorems provide a necessary condition: one for Z and one for
the category of abelian groups.

DEFINITION. For discrete abelian groups I" and E C I, let v(E,m) be
the minimum number of Iy sets of degree at most m of which F is the union
and let v(E, m) = oo when no such finite union exists.

THEOREM 16. If every Sidon subset of 7Z is a finite union of Iy sets,
then there is some m € Z* and a non-decreasing function ¢ : [1,00) — Z*
such that

v(E,¢(r)) < o(r) if a(E) <.
THEOREM 17. Suppose that, for all abelian groups I' and Sidon subsets

E of I', E is the finite union of Iy sets. Then there is a mon-decreasing
function ¢ : [0,00) — Z* such that

a(E) <r implies v(E,¢(r)) < o(r).
These lemmas will be helpful. Their proofs are close to the definitions.

LEMMA 18. For discrete abelian groups I’ and subsets E and F of I,
if ECF then v(E,m)<v(F,m). If m <n, then v(E,m) > v(E,n).

LEMMA 19. For E C Z and integers k # 0 and q, a(kE + q) = a(E),
N(kE+q) = N(E), and v(kE 4+ ¢,m) = v(E,m).

LEMMA 20. For discrete abelian groups I' and E C I,
(4F) v(E,m) =sup{v(F,m) | F C E & F is finite}.
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The proof of Lemma 20 is postponed until after the proof of Theorem 16.

Proof of Theorem 16. Suppose that, for all real » > 1, there is
some m such that

(7) a(E) <r implies v(E,m)<m.

If ¢(r) is defined to be the minimum m such that condition (7) holds, then
¢ is non-decreasing with r and meets the requirements of the theorem.

So, for some real » > 1, suppose that for all m there is some E,, C Z
for which «(E,,) < r and v(E,,,m) > m. By Lemma 20, there is a finite
subset F),, of E,, with a(F,,) <r and v(F,,,m) > m. Let

F= U Ky o

By Lemmas 18 and 19, v(F,m) > v(kpFp,, m) = v(EF,,,m) > m for all m.
Thus F' is not a finite union of Iy sets. If we choose k,, to increase rapidly,
F will be a Sidon set; this will contradict the hypotheses.

To make F be Sidon let k; = 1 and, for m > 1, let k,,, > ©22™M,,_1,
where M, is the maximum absolute value of an element of | J, <t ksFs. Then,
just as in the proof of Proposition 12.2.4, pages 371-372 of [4], {kmFn}m
is a sup-norm partition for F: if p,, is a k,, F,,-polynomial (on T) and is
non-zero for at most finitely many m, then

o) o0
m=1 m=1 &

Recall that B(F') (the restrictions to F' of Fourier transforms of bounded
Borel measures on T) is the Banach space dual of Trigy(T) (the trigono-
metric polynomials with spectrum in F'). For p € Trigp(T), let p,, de-

note its summand in Trig;  (T) under the natural decomposition. Then
f € B(F), and

=] D )] < 0 K fopm)
m=1 m=1
= D T P [

3
Il

o0
< (SUD | f 1k P | B ) D 1Pl oo
meZ+

m=1

< (1 sup |[|flkFn lloc) 27 [|Plloo) < 27| flloc) 1Pl oo -
meZ+t

Thus, || f|gr) < 277|| f]|oo. By the definition of Sidon constant, a(F) < 27r
and thus F' is Sidon. =
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Proof of Theorem 17. Asin the proof of Theorem 8, suppose that
there is some r € [1,00) such that, for all m, there is an abelian group I3,
and F,, C I, for which a(F,,) < r and pu(F,,,m) > m. Let I' be the
direct sum of the I,,’s. Embed I, into I' canonically: x — ~,, where
vz(m) =z and v, (j) = 0 for j # m. Under this embedding, neither a(F,,)
nor v(F,,,m) changes. Let

o0
F= U F,.
m=1

Then for all m, v(F,m) > v(F,,,m) > m. Evidently, F' is not the finite
union of I sets.

To see that F' is a Sidon set, set £ = F\{0} and F,, = F,,\{0}. Then
{Emn}oo_ is a sup-norm partition of E. Specifically, let G be the compact
group dual to I" (I" is given the discrete topology). For p € Trigg(G), if p;
denotes its natural summand in Trigp (I"), then

oo
Y lIpilloe < llplloo,
j=1

by Lemma 12.2.2 of page 370 of [4]. To apply that lemma two things are
required. First, no E; may contain 0, which is true here. Second, in the
language of [4], the ranges of {p;}32, are 0-additive: given {g;}32, from G,
there is some g € G for which

®) o)~ 3 ms(a)] =0

Here’s a proof of equation (8). G is the infinite direct product of G, = f;z
That is, g € G if and only if

g: 7" — UGm, with g(m) € G,.

Let g € G satisfy g(j) = g;(j). Note that for any character v used in p;,
(7, 9) is determined by g(j) (because 7 is 0 in every other coordinate):

(v9) = [[(r(9), 9(5)) = (v(3),95)) = (v(5), 95 (4)) = (. 95)-

Thus p(g) = 52, pi(9) = 22,2 pj(g;). Once it is known that E is sup-
norm partitioned by the F;’s, then just as in the proof of Theorem 16 one
has

a(E) < msupa(Ey) < mr.
t

That proves that E is Sidon. Since {0} is a Sidon set, and the union of two
Sidon sets is Sidon [11], EU {0} is Sidon. Because F' C EU{0}, that makes
F be Sidon as well. m
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Proof of Lemma 20. Let ¢t equal the right-hand side of (4F). By
Lemma 18, t < v(E,m). Consider next the reversed inequality. For finite
F C E there are I sets I, p (possibly equal to () with Ip-degree no more
than m such that

t
F=|JIr
qg=1

Without loss of generality, it may be assumed that the I, r’s are disjoint
for distinct ¢’s. Hence

t
(9) XF = ZXIq,F-
q=1

By using Alaoglu’s theorem in (. (") = ¢1(I")* with successive subnets ¢
times, there is a subnet Fj of the net of all finite subsets of E (ordered by
increasing inclusion) such that

lim x7, . =f; weak-*in ((I"), forl<g<t.
Bvoo

This convergence implies pointwise convergence on I.
Necessarily, f, = x1, for some set I, C I'. By equation (9),

t t
foq = lim ZXI«;,F = lim XF; = XE-
— B—00 <= B B—o00
qg=1 qg=1
Thus, E is the disjoint union of the I,’s. Because each I, is the limit of
I4.r, with N(I, p,) < m, we have N(I;) < m by Proposition 5. =

We conclude this section by observing that the class of finite unions of
Iy sets is F,, in 2.

PROPOSITION 21. The class of subsets of I' which are finite unions of
Iy sets is F, in 2': they are J,{E C I' | v(E,i) < i}, where {E C I |
v(E,i) < i} is closed in 27 .

Proof. E is in the class if and only if there are m and n such that
v(E,m) <n. Since v(E, m) < n implies v(E, i) < i for i = max{m,n}, this
class is equal to |J, U;, where

Ui ={ECT|v(E,i<i}.

As in the proof of Lemma 2, equation (4F) and Lemma 18 imply that U; is
closed in 2. m

Appendix
LEMMA 1. For EC T,
AP(B) = C(bT")|p = C(E)|s = AP(I') .
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Proof. Let us adopt as the definition of AP(E) that it is the closure in
U (E) of B4(E). First consider AP(E) = C(bI')|g. Let g € C(bI"). By [18,
p. 32], there is a sequence p; € My(G) such that i; converges uniformly on
I' to g. Necessarily, since £ C I,

Wile € Ba(E) and JlggoﬁﬂE =g|lp in loo(E).

That puts g|g in AP(E). Conversely, suppose that w € AP(E). There is
a sequence of p; € My(G) such that fij|g converges uniformly on E to w.
Because E is dense in E and this convergence is uniform on F, it follows
that

lim 71j|5 = f

j—o0
for some f which is a continuous function on £ and f|g = w. Because
bI" is compact and Hausdorff, it is normal; thus Tietze’s extension theorem
applies to f and there is some g € C(bI") such that g|z = f (see [2]). Since
ECE,

w= f|lgp = 9g|e.
Thus, w € C(bI)|E.
Next, consider C'(bI')|g = C(E)|g. Let f € C(E). As happened in the
previous paragraph, Tietze’s extension theorem provides some g € C(bI")

such that g|z = f. Since E C Ez, one has f|g = g|g. Conversely, suppose
that g € C(bI'). Then g|z € C(E). Necessarily, since £ C F,

9le = (9lp)le-

Finally, consider C(bI')|g = AP(I")|g. Let f € AP(I"). By [18, p. 32],
f extends to a continuous function g € C'(bI"). Since E C I', f|lp = g|p.
Conversely, let g € C(bI'); by [18, p. 32], g|r € AP(I"). Since E C I,

gle = (9lr)|e. =

DEFINITION. E C I is called helsonian if and only if E C bl is a Helson
set in bl

PROPOSITION 2. E C I' is helsonian if and only if B4(E) = AP(E).

Proof. Suppose that E C I' is helsonian. Let f € AP(E). By
Lemma 1, there is some g € C(E) such that g|g = f. By hypothesis,
E C bI is Helson; the definition of Helson is that, for every continuous
function g on E, there is some pu € Li(G4) = My(G) such that fi|z = g.

Because ¥ C E,

e =gle =1
Thus, AP(E) C By4(E); by condition (1) of the first section, AP(E) =
Ba(E).
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Next, suppose that AP(F) = B4(E) and let f € C(E). By Lemma 1,
fle € AP(E); since AP(E) = By(E),

fle =nlg  for some p € My(G).

Since fi is continuous on bI” and E C bI', [i| 5 is continuous on E. Because
both i|z and f are continuous on F, E is dense in F, and f|g = [i|g, one
has

f=1llg.
This makes F be a Helson subset of bI" and hence E helsonian. m

PRrROPOSITION 3. Helsonian implies Sidon.

Proof. By [18, p. 115, Thm. 5.6.3], E C bI" is Helson if and only if
there is some K € R such that, for all bounded Borel measures j supported
on F,

ull < Kl[itllen (G-
This applies to the discrete measures supported on E, u € My(FE). Because
E C I, for p € My(FE) one has i continuous on G with respect to the
original compact topology on G. Thus, for u € ¢1(E) = My(FE),

(A-1) el < KllElle)-

—

Let W(QG) be the space ¢1(FE), with the supremum norm. By (A-1) it is a
closed subspace of C'(G) and equivalent under ¢ =" to ¢1(E). Therefore,
using Banach space dualities, ¢* is an equivalence between W(G)* and
l5(E). Since W(G) is a closed subspace of C(G), W(G)* is a quotient
Banach space of C(G)* = M(G): w € W(G)* if and only if there is some
v € M(G) such that w = v + W(G)+, where

W(G)* = {ne M(G) | (W(G)) = {0}}.

Thus, for w € W(G)* and f € ¢1(E), if w = v+ W(G)*, then

(@"(w), f) = (w, o(f)) = (v, f).
However, because f = >_ g cydy with 3
theorem in the following calculation:

W)= [ F@yav) = [ (3 (=a,9)e, )dv(a)
G

G yeklE

= Z Cy f (—z,y)dv(x) = Z Cy/y\(y) = (U, f).
G

yekr yerR

-~
yek |Cy| < 00, we may use Fubini’s

Since this holds for all f € ¢1(F), ¢*(w) = V|g in £o(F). Thus, since ¢* is
onto £oo(E), B(E) = {5 (F) and hence E is Sidon. m

PROPOSITION 4. B(E) = AP(E) implies that E is Iy.
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Proof. Since

I fllBE) = [1fllso;

the two Banach spaces have equivalent norms: there is some K € RT such
that

1 fllBE) < K flloo-
As in [11], this is equivalent to the Sidonicity of E: (. (E) = B(F). Since
AP(E) = B(E), one therefore has AP(E) = ((E) and thus E is an I
set. m

ExAMPLE 5. Helsonian does not imply 1.

Proof. In general, the union of two helsonian sets £ and F’ is helsonian,
because the union of two Helson sets is Helson [4, pp. 48-67] and

EUF=FEUF.

Apply this to the sets {2"},, and {2" + n},, which are sufficiently lacunary
to be Iy sets and hence helsonian [19]. However, the two sets have some
cluster points in common in bZ and hence the function which is 1 on one of
them and 0 on the other cannot be extended almost periodically to all of Z.
To see that they have a cluster point in common, note that there is a net
{ng} C Z* such that ng — 0 in bZ. By the compactness of bZ, there is a
subnet G; for which 2"#: is convergent in bZ. By the continuity of the group
operations in bZ,

lil{n M8 = li%n(Q”ﬂt +ng,). =

Kalton’s Theorem revisited. This result of Kalton’s is close to previous
work by Kahane, J.-F. Méla, Ramsey and Wells [7, 12, 17].

DEFINITION. Let D(N) denote the set of discrete measures p on G for
which

N
= Z it
j=1

where |cj| < 1landt; € Gforeachj. For E C I"and § € RT, let AP(E, N, )
be the set of f € lo(FE) for which there exists u € D(N) such that

If = Hlellec < 6.
E is said to be I(N,¢) if the unit ball in £, (F) is a subset of AP(E, N, J).

LEMMA 6. For E C I' and § € R", the set AP(FE,N,0d) is closed in
C¥ (the space of all complex functions on E with the topology of pointwise
convergence).
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Proof. Let f, be a net of functions from AP(E, N,§) which converge
to some f € CF. Let o, € D(N) satisfy
[fo = HalElleo < 6.

Write p, as
N

Ha = E Ci,a5ti7a’

i=1
with |¢; o] < 1 and t; € G for all i. Because G and the unit disc of C are
compact, one may choose successive subnets of the a’s so that, if one labels
the final net with 3, then

liénciﬁ =c¢; €C and liéntiﬂ =t; € G, foralli.

Of course, |¢;| < 1. Let p = Zivzl ¢idt,. Since the topology on G is that
given by uniform convergence on compact subsets of I, we have, for all
x € I' and each 1,

néné;(x) = lim(—a, ti.5) = () = 5, (z).

It follows that, for all x € E C I,

N N
lin 73(@) = lim > cipbr., () = 3 cidr, (1) = fie).
i=1 i=1
Therefore, for all z € F,
|f(2) = fiz)] = lim | fa(2) — fi5(2)] < 0.
Thus f € AP(E,N,)). m
THEOREM 7. For any discrete abelian group I' and E C I', the following

are equivalent:

(1) E is an Iy set.
(2) There is some 6 € (0,1) and some N for which E is I(N,J).
(3) There is some 6 € (0,1) and some M € RT such that, for all f in

the unit ball of o (E), there are points g; € G and complex numbers c;
with |c;j| < M&7 for which

f=Hlg,  where p =" c;d,.
j=1
(4) For all 6 € (0,1) there is some N for which E is I(N,J).
(5) Bd(E) - EOO(‘E)

Proof. (1)=(2). Assume (1) above, and consider (2) with 6 = 1/2. Let
T denote the complex numbers of modulus 1 and T the set of all functions
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on E with values in T. Condition (1) implies that
(A-2) T c | JAP(E,n,1/5).

Since AP(E,n,1/5) is closed in C¥ as is T¥ (under the topology of pointwise
convergence), AP(E,n,1/5)NT¥ is a closed subset of T¥ and hence measur-
able. Because condition (A-2) involves the union of sets which increase with
n, there is some N for which the measure of AP(E, N,1/5)NTF is at least
1/2 for the Haar measure on T¥. Since T¥ is a connected topological group,
a theorem of Kemperman’s implies that AP(E,N,1/5)- AP(E,N,1/5) =
TE (see [10]). So, for any f € TF, there are functions f; and f» in
AP(E,N,1/5) N TF such that f = fifo. There are discrete measures i
and po in D(N) such that fi7 approximates f; within 1/5 on E and ps
approximates fo within 1/5 on E. It follows that, for z € FE,

f (@) — prxpa(z)| = [(fi - f2)(2) — (@) B2 (2)]
< |fi(@)[fa(x) — B2 (@)]] + [R2(z)[f1(z) — p1(@)]]
<1/54(1/5) - (If2(x)| +1/5) = (1/5) - (11/5) < 1/2.
Note that g, * s can be represented as a sum of N2 point masses with
complex coeflicients bounded by 1 in absolute value:

[y * g = (ici%) * (iv:djéyJ = Z(cidj)éwﬁyj.
= —

i= i,J

Finally, note that g on E with ||g||oc < 1 is an average of two functions in
TE: there exist g1 and go in TZ such that g = (g1 + g2)/2. [In C, project
g(x) to two points of modulus one for which the line segment joining them
is perpendicular to the radial segment from 0 to g(z). If g(x) = 0, let
g1(z) = 1 while go(z) = —1.] If u; € D(N?) approximates g; within 1/2,
then

lg = (1/2) (i1 + p2|8) oo < (1/2)(Ilgr — 1l 2o + ll92 — F2lEl0)
< (1/2)(1/2+1/2) =1/2.

This puts g in AP(E,2N?,1/2).
(2)=(3). Condition (2) will be applied inductively. Let f € {o(E) with
I flloc < 1. There is some uy € D(N) such that

If = lelle < 6.
Next, suppose p; € D(N) have been selected for ¢ < J, such that

J
I 5t <0
=1
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Apply condition (2) to
J

g:(st(f_Z(;z‘A[mE)

i=1
to obtain py41 € D(IN) such that

lg — mrsilBllee < 0.
Then

=0")lg — el < 67T

J+1 ‘
S,
i=1

By the induction principle, there is a sequence p; € D(N) such that

e .
F=Y 6" iils.
=1

One may enumerate the point masses used in p,; consecutively for each ¢, say
as 0, , so that the coefficient of ¢, is bounded by §1for (i—1)N < j <iN.
Let ¢; be this coefficient. Then, since ¢ € (0,1),

;] <671 = §II/MNI=1 < 5G/N)=1 — (1/6) (81N

This proves condition (3) with M = 1/ and 6'/% in the role of §.
(3)=-(4). Let condition (3) hold with M and some ¢’ € (0,1) and consider
any 0 € (0,1) for condition (4). Since ¢’ € (0, 1) there is some N’ such that

MO ()Y =M@ /1-8) <6
j=N'+1
Specifically, one needs
(N' +1)log(8") < log([0(1 — ¢")/M])
and hence
N’ > {log([6(1 — ") /M])/log(¢")} — 1.
For j < N’, set m; = [M(d8")7].
Let f be in the unit ball of £+ (E). By condition (3), there are coefficients
¢; and elements t; of G such that |c;| < M (') and

o
f=nlg, wherep= chétj.

j=1

Let p; = [|e;|]; necessarily, p; < m;. Set ¢; = |cjle® for some real ;.

Then
m;
cjdtj = E cj,iétﬁ”
i=1
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where t;; = t; for all 7 and

el for 1 <i < pj,
cji=q €% (lejl —p; +1) fori=p;,
0 for i > p;.

It follows that

If = VIEle.(z) <6,

where

N’ N’ m;
v=>2 ¢, =) cijdu,
j=1 j=1i=1

is a sum of N = Z;VZII m; point masses with coefficients bounded by 1 in
absolute value. Thus f € AP(E,N",§) and E is an I(N",0) set.

(4)=-(5). (4) implies (2), which has been shown to imply (3). Let f €

(®(E). If f=0, f € Bg(F) trivially. If f # 0, apply (3) to g = f/||f]leo to
obtain a discrete measure p such that pi|p = g. Clearly,

1 Flloottl s = I-

(5)=(1). By equation (1) of the introduction, B4(FE)C AP(E) C/l(E).

If Bi(F) ={lo(E), then AP(F) = {o(E) and hence E is an Ij set. m
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