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COVERABLE RADON MEASURES IN TOPOLOGICAL
SPACES WITH COVERING PROPERTIES

BY

YOSHIHIRO KUBOKAWA (URAWA)

1. Introduction. Let X be a regular Hausdorff space and let S be the
σ-algebra generated by the collection G of all open sets in X. Let µ be a
Radon measure in X, i.e., for any E ∈ S,

µ(E) = sup{µ(K) : E ⊃ K, K is compact}.
We assume that each point of X has a neighbourhood of µ-finite measure.

We have introduced coverable measures in [Ku1]. A Radon measure µ
in X is said to be coverable if any subset of X has a measurable cover with
respect to µ. By “topological spaces with covering properties” we mean
generalized paracompact spaces. We shall assume fairly mild conditions
on X and study a not necessarily σ-finite Radon measure µ in X and the
support of µ. These measures are localizable and coverable, and play an
important role in statistical structures (see the opening of §6). Okada ([O],
Theorem 3.1, p. 226) proved that the support of a finite Borel measure in
a metacompact space is Lindelöf. We shall prove that the support of any
σ-finite Radon measure in a fairly wide class of topological spaces is Lindelöf
(Theorem 4.7).

The problem of when a Radon measure is µ∗-semifinite was raised by
Schwartz ([Sc], p. 17). Prinz [P] proved that a Radon measure in a meta-
compact space is µ∗-semifinite. A Radon measure is µ∗-semifinite if and only
if each locally negligible set is negligible ([P], Proposition 1, p. 442). We shall
generalize this result (Theorem 5.3). Gardner and Pfeffer [GaPf3] studied
Radon measures µ in a wide class of topological spaces and proved that µ is
localizable and locally determined. We shall prove in addition that µ is µ∗-
semifinite and coverable. Coverable Radon measures are localizable, locally
determined and µ∗-semifinite (Propositions 3.1, 3.2). Let {Xα : α ∈ A} be
a concassage of µ and X∗ =

⋃
α Xα. They proved that X∗ is a free union

of σ-compact subspaces under some conditions. We shall study the support
Y of µ instead of X∗, which seems to be natural (to the author), and prove
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that Y is often strongly paracompact and a free sum of Lindelöf subspaces
(Theorems 4.2, 4.3), but Y is not always so (Theorem 4.5, Example 4.6).
We shall prove that Radon measures in a wide class of topological spaces
are coverable (Theorem 5.2). The coverability of measures is essential in
applications because we need the Lebesgue decomposition in addition to
the Radon–Nikodym theorem.

2. Definitions. Let (X,S, µ) be a measure space, where S is a σ-algebra
and µ is a countably additive measure on S. Throughout the paper we
assume that µ is semifinite, i.e., µ(E) = sup{µ(F ) : E ⊃ F, µ(F ) < ∞} for
any E ∈ S.

Let D ⊂ X. If E ∈ S, E ⊃ D and µ(F ) = 0 for any set F ∈ S with
F ⊂ E −D, then E is said to be a measurable cover of D. µ is said to be
coverable if each subset of X has a measurable cover. If each subset D with
D∩F ∈ S for any set F of µ-finite measure is measurable, then µ is said to
be locally determined [Fr] or saturated .

Let µ∗ be the outer measure induced by µ. Then µ is said to be
µ∗-semifinite if µ∗(E) = sup{µ∗(F ) : E ⊃ F, µ∗(F ) < ∞} for any E ⊂ X.
Let Ẽ = {F ∈ S : µ(E MF ) = 0} for E ∈ S and S̃ = {Ẽ : E ∈ S}. We write
Ẽ ≤ F̃ if µ(E − F ) = 0. Then ≤ is a partial order in S̃, and µ is said to be
localizable if any subset of S̃ has a supremum. µ is localizable if and only if
its measure algebra is complete.

Let µ be a Radon measure in X. Let Y = {y ∈ X : µ(U) > 0 for any
neighbourhood U of y}. Then Y is a closed set satisfying µ(X − Y ) = 0; it
is called the support of µ.

A concassage of a Radon measure µ is a disjoint collection {Xα : α ∈ A}
of compact sets such that

(2.1) If O ∩Xα 6= ∅ for an open set O, then µ(O ∩Xα) > 0;

(2.2) µ(E) =
∑
α

µ(E ∩Xα) for any Borel set E.

(See [Sc], Theorem 13, p. 46; [GaPf1], Lemma 3.4, p. 71.)
We assume that the reader is familiar with basic notions of paracompact

spaces ([En], Chapter 5). We refer the reader to [Bu] for detailed covering
properties. We denote the cardinality of a set E by |E|. Let U be a collection
of open sets. We denote |{U ∈ U : x ∈ U}| by ord(x,U) for each x in X. We
shall consider only open covers and refinements in a Hausdorff space. We use
“metacompact” instead of “weakly paracompact”. A topological space X is
said to be σ-metacompact if for any cover U of X there exists a refinement
V =

⋃
n Vn of U such that each Vn (n < ω) is point-finite. X is said to be

meta-Lindelöf if for any cover U of X there exists a point-countable refine-
ment V of U . Here a collection O of open sets is said to be point-countable
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if ord(x,O) ≤ ω for any x in X. X is said to be weakly θ-refinable if for
any cover U of X there exists a refinement V =

⋃
n Vn of U such that there

exists n < ω with 1 ≤ ord(x,Vn) < ω for any x in X. A σ-metacompact
space is weakly θ-refinable. Many important examples (a semi-stratifiable
space, a strict p-space, a Moore space etc.) in generalized metric spaces are
weakly θ-refinable ([Gr1], [Gr2]). We note that these covering properties are
hereditary with respect to closed subspaces. Finally, X is said to satisfy the
countable chain condition (ccc) if each disjoint collection of open sets in X
is countable.

(2.3) Under Martin’s axiom and the negation of the continuum hypoth-
esis every point-countable cover of a compact space with the ccc is
countable ([GaPf4], Theorem 4.8, p. 971).

Martin’s axiom and the negation of the continuum hypothesis are denoted
by MA and nonCH respectively.

3. Coverable measures. Let (X,S, µ) be a measure space. In this
section we study coverable, localizable, locally determined and µ∗-semifinite
measures from a general point of view.

3.1. Proposition. If µ is coverable, then it is µ∗-semifinite and locally
determined.

P r o o f. Let {Xα : 0 < µ(Xα) < ∞ (α ∈ A), µ(Xα ∩Xβ) = 0 (α 6= β)}
be a maximal collection. Then for any set E ∈ S,

µ(E) =
∑
α

µ(E ∩Xα).

Now for any set D in X we have

(3.1.1) µ∗(D) =
∑
α

µ∗(D ∩Xα).

Indeed, if E is a measurable cover of D, then

µ∗(D) = µ(E) =
∑
α

µ(E ∩Xα) =
∑
α

µ∗(D ∩Xα),

since E ∩ Xα is a measurable cover of D ∩ Xα. If µ∗(D) > 0, then 0 <
µ∗(D ∩Xα) < ∞ for some α in A, which implies that µ is µ∗-semifinite.

Assume that D ∩ F ∈ S for any set F with µ(F ) < ∞. Let E be a
measurable cover of D. Then by (3.1.1),

µ∗(E −D) =
∑
α

µ∗(E ∩Xα −D ∩Xα) =
∑
α

µ(E ∩Xα −D ∩Xα) = 0,

since D ∩ Xα ∈ S. Therefore there exists a null set N with E − D ⊂ N ,
which implies that E −D = E ∩N −D ∩N ∈ S and hence D ∈ S.
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3.2. Proposition. Assume that there exists a disjoint collection {Xα :
α ∈ A} of sets of finite measure such that for any set E ∈ S we have

(3.2.1) µ(E) =
∑
α

µ(E ∩Xα).

Then µ is coverable if and only if it is localizable and µ∗-semifinite.

R e m a r k. In general µ is coverable if it is localizable and µ∗-semifinite.
The converse is not true if there exist two different measurable cardinals.

P r o o f o f P r o p o s i t i o n 3.2. Necessity . We first show that any
{Ẽα : Eα ⊂ Xα (α ∈ A)} has a supremum. Let E =

⋃
α Eα and let E∗ be a

measurable cover of E. Then E∗ ∩Xα is a measurable cover of Eα ∈ S and
therefore (E∗ ∩Xα)∼ = Ẽα. By (3.2.1), X̃ = supα X̃α. Hence

Ẽ∗ = Ẽ∗ ∩ (sup X̃α) = sup
α

(Ẽ∗ ∩ X̃α) = sup
α

Ẽα.

If now {D̃β : β ∈ B} is a collection, then for each α ∈ A, Ẽα = sup{(Dβ∩
Xα)∼ : β ∈ B} exists, because µ(Xα) < ∞. Hence Ẽ∗ = supα Ẽα exists
and is equal to supβ D̃β . Together with Proposition 3.1 we get necessity.

Sufficiency . For any set D we have

(3.2.2) µ∗(D) =
∑
α

µ∗(D ∩Xα).

Indeed, if µ∗(D) < ∞, then there exists a measurable cover of D, and by
assumption (3.2.1) we get (3.2.2). Since µ is µ∗-semifinite, we get (3.2.2) in
general.

If X∗ =
⋃

α Xα, then by (3.2.2), µ∗(X −X∗) =
∑

α µ∗(Xα −Xα) = 0.
Therefore there exists a null set N with X −X∗ ⊂ N .

Let now D ⊂ X. Let Eα ⊂ Xα be a measurable cover of Dα = D ∩Xα

for each α in A. We put E =
⋃

α Eα and Ẽ∗ = supα Ẽα. Then µ∗(EME∗) =∑
α µ∗(Eα M (E∗ ∩ Xα)) = 0, since (E∗ ∩ Xα)∼ = Ẽα, which implies that

E belongs to the completion of µ. Therefore there exists a set E0 ∈ S with
E ⊂ E0 and µ(E0 − E) = 0.

Now E0 ∪ N is a measurable cover of D. Indeed, we have E0 ∪ N ⊃
E ∪ N ⊃ (D ∩ X∗) ∪ (D − X∗) = D. If F ⊂ (E0 ∪ N) − D and F ∈
S, then E0 − D ⊃ F − N . We put F ′ = F − N and E0

α = E0 ∩ Xα,
F ′

α = F ′ ∩ Xα for each α in A. Then F ′
α ⊂ (E0

α − Eα) ∪ (Eα − Dα) and
therefore F ′

α−(E0
α−Eα) ⊂ Eα−Dα. Since Eα is a measurable cover of Dα,

µ(F ′
α − (E0

α − Eα)) = 0, which implies µ(F ′
α) = 0. Hence µ(F ′) = 0 by

(3.2.1), which implies µ(F ) = 0.

4. Supports of Radon measures. We prove that the support of
a Radon measure in a σ-metacompact space or in a meta-Lindelöf space
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under MA + nonCH is strongly paracompact and a free sum of Lindelöf
spaces. This is not true in general for a weakly θ-refinable space.

4.1. Proposition. The support Y of a Radon measure µ in a strongly
paracompact space X is a free sum of Lindelöf spaces Yβ (β ∈ B), i.e., there
exists a disjoint collection {Yβ : β ∈ B} of open Lindelöf subspaces of Y
such that Y =

⋃
β Yβ (disjoint).

P r o o f. Since strong paracompactness is hereditary with respect to
closed subspaces, we may assume that Y is strongly paracompact. For each
point y in Y there exists an open set O in Y with y ∈ O and 0 < µ(O) < ∞.
Since O satisfies the ccc, so does Cl(O), and it is strongly paracompact.
Hence it is Lindelöf. Let O be a cover of Y . There exists a star-finite refine-
ment U = {U} of O. By ([En], Lemmas 5.3.8, 5.3.9, p. 404), Y =

⋃
β{Yβ :

β ∈ B} (disjoint) and each Yβ is a countable union of elements of U . Since
each Yβ is a closed subspace in a countable union of Lindelöf subspaces of
the form Cl(U), it is Lindelöf.

4.2. Theorem. The support Y of a Radon measure µ in a regular
σ-metacompact space is strongly paracompact.

P r o o f. We may assume that Y is σ-metacompact. Let O be any cover
of Y . There exists a refinement U of O consisting of sets of finite µ-measure.
Then there exists a refinement V =

⋃
n Vn of U such that each Vn is point-

finite. Let Vn =
⋃

i≤n Vi for each n < ω.
By ([En], Theorem 5.3.10, pp. 404–405) we need only prove that V is

star-countable. Indeed, let {Xα : α ∈ A} be a concassage of µ. If V ∈ V,
then 0 < µ(V ) < ∞ and therefore A0 = {α ∈ A : V ∩Xα 6= ∅} is countable.
If V ′ ∩ V 6= ∅ for V ′ ∈ V, then µ(V ′ ∩ V ) > 0 and hence V ′ ∩ Xα 6= ∅
and µ(V ′ ∩Xα) > 0 for some α in A0. It remains to show that {V ′ ∈ Vn :
V ′ ∩ Xα 6= ∅} is countable for each α in A0. Since Vn is point-finite, by
([GaPf4], Lemma 12.1, pp. 1014–1015), {V ′ ∩Xα : V ′ ∩Xα 6= ∅, V ′ ∈ Vn}
is countable and the conclusion follows since Vn is point-finite.

4.3. Theorem. Under MA and nonCH, the support Y of a Radon mea-
sure µ in a regular meta-Lindelöf space X is strongly paracompact.

R e m a r k. Under CH there exist a locally compact meta-Lindelöf space
X and a σ-finite Radon measure µ in X such that the support of µ is not
strongly paracompact ([GaPf1], Theorem 3.7, pp. 72–73).

P r o o f o f T h e o r e m 4.3. Y is a regular meta-Lindelöf space. Let O
be any cover of Y . There exists a refinement U of O consisting of sets of
finite µ-measure. Then there exists a point-countable refinement V of U .

We show that V is star-countable. Indeed, let {Xα : α ∈ A} be a
concassage of µ. If V ∈ V, then A0 = {α ∈ A : V ∩Xα 6= ∅} is countable.
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If V ′ ∩ V 6= ∅ for V ′ ∈ V, then V ′ ∩Xα 6= ∅ for some α in A0. We consider
the point-countable cover {V ′ ∩Xα : V ′ ∩Xα 6= ∅, V ′ ∈ V} of Xα. Then it
is countable by (2.3) since Xα satisfies the ccc. Since V is point-countable,
{V ′ ∈ V : V ′ ∩Xα 6= ∅} is countable for each α in A0.

4.4. Proposition. Let µ be a Radon measure in a regular space X.
If there exists a star-countable cover U of X consisting of sets of finite
µ-measure, then there exists a null Gδ-set N such that the subspace X −N
is strongly paracompact.

P r o o f. By ([En], Lemmas 5.3.8, 5.3.9, p. 404) there exists a disjoint
collection {Yβ : β ∈ B} of open sets such that each Yβ is a countable
union of elements of U and X =

⋃
{Yβ : β ∈ B}. Hence µβ = µ|Yβ is a

σ-finite Radon measure and therefore the union Zβ of a concassage of µβ

is σ-compact and µ(Yβ − Zβ) = 0 for each β in B. Since Zβ is regular,
it is strongly paracompact. Therefore Z =

⋃
β{Zβ : β ∈ B} is strongly

paracompact (Zβ ⊂ Yβ and Yβ is clopen). We put Nβ = Yβ −Zβ for each β
in B and N =

⋃
β{Nβ : β ∈ B}.

Then µ(N) = 0. Indeed, for each β in B, Nβ is a Gδ-set, Nβ =
⋂

n Gβn,
where Gβn ⊂ Yβ is open. Therefore N =

⋃
β

⋂
n Gβn =

⋂
n(

⋃
β Gβn)

∈ S (Gβn ⊂ Yβ , Yβ ∩ Yγ = ∅ (β 6= γ)). Now, for any Borel set E we
have

(4.4.1) µ(E) =
∑

β

(E ∩ Yβ).

The equality is clear for a compact set E, since then |{β ∈ B : E ∩ Yβ

6= ∅}| < ω and X =
⋃

β Yβ . In the general case the equality follows because
µ is Radon. Finally, this equality yields µ(N) = 0.

4.5. Theorem. If µ is a Radon measure in a regular weakly θ-refinable
space X, then there exists a disjoint collection {Yn : n < ω} of measurable
sets such that each subspace Yn is strongly paracompact and Y =

⋃
n Yn

satisfies µ(X − Y ) = 0.

R e m a r k. Under MA and nonCH the conclusion is valid for a regular
weakly δθ-refinable space with countable tightness. Gardner and Pfeffer
([GaPf3], Proposition 3.7) gave the similar result for X∗ in the case where
X∗ is the union of a concassage of µ.

P r o o f o f T h e o r e m 4.5. There exists a refinement U =
⋃

n Un of the
cover O = {O ∈ G : µ(O) < ∞} of X such that for each x in X there exists
n < ω with 1 ≤ ord(x,Un) < ω. Then Xn = {x ∈ X : 1 ≤ ord(x,Un)<ω} is
a Borel set for each n < ω. We put Xn = Xn−

⋃n−1
k=1 Xk. Then X =

⋃
n Xn

(disjoint) and µn = µ|Xn is a Radon measure in Xn. If X0
n is the support

of µn, then µn(Xn −X0
n) = 0. Let U0

n = {U ∩X0
n : U ∩X0

n 6= ∅, U ∈ Un}.
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Then U0
n is star-countable: Let U ∩ X0

n ∈ U0
n. Let {Xα : α ∈ A} be a

concassage of µn. Then A0 = {α ∈ A : U ∩ Xα 6= ∅} is countable. If
(U ∩X0

n)∩ (V ∩X0
n) 6= ∅ for V ∩X0

n ∈ U0
n, then µn(U ∩V ) > 0 and therefore

V ∩ Xα 6= ∅ for some α in A0. Since the collection {V ∩ Xα : V ∩ Xα 6=
∅, V ∈ Un} is a point-finite cover of the compact set Xα and µ(V ∩Xα) > 0,
it is countable by ([GaPf4], Lemma 12.1, pp. 1014–1015). Together with the
point-finiteness of Un in Xα, {V ∈ Un : V ∩Xα 6= ∅} is countable. Since A0

is countable, U0
n is star-countable.

We consider the measure space (X0
n,S|X0

n, µ|X0
n). By Proposition 4.4

there exists a strongly paracompact subset Yn ⊂ X0
n with µ(X0

n − Yn) = 0.
If Y =

⋃
n Yn, then µ(X − Y ) = 0.

4.6. Example. There exists a locally compact weakly θ-refinable space
X which is not meta-Lindelöf such that there exists a Radon measure µ in
X whose support is not strongly paracompact. Actually, X can be chosen to
be subparacompact. The relevant example is due to Gruenhage and Pfeffer
([GrPf], Example 7, pp. 170–171). For the reader’s convenience we state
it here. Let I = [0, 1] and let X = {(k/2n, 1/2n) ∈ I × I : 0 ≤ k ≤ 2n,
n ≥ 0} ∪ (I × {0}). We define a topology in X as follows: the points
(k/2n, 1/2n) are open and a neighbourhood base at (t, 0) is given by the
sets

U(t, ε) = {(u, v) ∈ X : 2|u− t| < v < ε} ∪ {(t, 0)},
where ε > 0. Then X has the topological properties mentioned above.

We define a Radon measure µ in X different from [GrPf]. The collection
{(t, 0) : 0 ≤ t ≤ 1} is discrete. Let µ|(I×{0}) be the counting measure. For
any subset E ⊂ X − (I × {0}) we define µ(E) by

∞∑
n=0

|{k : (k/2n, 1/2n) ∈ E}|/2n.

The support of µ is X. Now, X is separable. If X were strongly paracom-
pact, then it would be Lindelöf. But it is clear that X is not Lindelöf. If
Y1 = {(k/2n, 1/2n) : 0 ≤ k ≤ 2n, n ≥ 0} and Y2 = I×{0}, then Yi (i = 1, 2)
is strongly paracompact and X = Y1 ∪ Y2 (disjoint).

4.7. Theorem. If µ is a σ-finite Radon measure in a regular σ-me-
tacompact space, then the support of µ is Lindelöf. The same conclusion
is valid for µ in a regular meta-Lindelöf space if MA+nonCH holds true.
These measures are regular.

P r o o f. In both cases the support Y is strongly paracompact by Theo-
rems 4.2 and 4.3. Since Y satisfies the ccc, it is Lindelöf.

R e m a r k. Gruenhage and Pfeffer ([GrPf], Theorem 1, p. 167) proved
that a σ-finite Radon measure in a metacompact space is regular. The
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support of a σ-finite Radon measure µ in a σ-para-Lindelöf space satisfies
the ccc and is σ-para-Lindelöf. Hence it is Lindelöf. Moreover, µ is regular.

5. Coverable Radon measures. We prove that a Radon measure in
a weakly θ-refinable space or in a meta-Lindelöf space under MA+nonCH
is coverable.

5.1. Lemma. A Radon measure µ in a strongly paracompact space X is
coverable.

P r o o f. Let Y be the support of µ. By Proposition 4.1, Y is a free sum
of Lindelöf subspaces Yβ (β ∈ B). The Radon measure µβ = µ|Yβ is (outer)
regular for each β in B.

Let D be any subset of X and let Dβ = D ∩ Yβ . Since µβ is σ-finite
there exists a measurable cover Eβ of Dβ . By regularity of µβ , there exists a
Gδ-set G∗

β ⊃ Eβ with µ(G∗
β −Eβ) = 0. Let G∗

β =
⋂

n Gβn, where Gβn ⊂ Yβ

is open for each n < ω. If G0 =
⋂

n

⋃
β Gβn, then G0 ∪ (X − Y ) is a

measurable cover of D:
We have G0 =

⋃
β

⋂
n Gβn =

⋃
β G∗

β and G0 ∪ (X − Y ) ⊃ D. Let
[G0∪(X−Y )]−D ⊃ F ∈ S. Then we have F ∩Yβ ⊂ (G∗

β−Eβ)∪(Eβ−Dβ).
Since Eβ is a measurable cover of Dβ , µ[(F ∩ Yβ)− (G∗

β − Eβ)] = 0, which
implies µ(F ∩ Yβ) = 0. We have µ(F ) =

∑
β µ(F ∩ Yβ) similarly to (4.4.1),

which implies µ(F ) = 0.

5.2. Theorem. Let µ be a Radon measure in a regular space. If

(a) X is weakly θ-refinable, or
(b) X is meta-Lindelöf and MA+nonCH holds true,

then µ is coverable and , consequently , localizable, µ∗-semifinite and locally
determined.

R e m a r k 1. A Radon measure in a regular σ-para-Lindelöf space is
coverable.

R e m a r k 2. Under CH there exists a Radon measure in a meta-Lindelöf
space which is not coverable by ([GaPf3], Example 4.5, pp. 290–291).

R e m a r k 3. A Radon measure µ in a regular σ-para-Lindelöf space is lo-
calizable, µ∗-semifinite and locally determined (see Remark 1). Gardner and
Pfeffer proved that a Radon measure in a space with the same properties as
in the theorem is localizable and locally determined ([GaPf3], Theorem 3.4,
pp. 286–287).

P r o o f o f T h e o r e m 5.2. If X is weakly θ-refinable, then by Theo-
rem 4.5 there exists a disjoint collection {Yn : n < ω} of strongly paracom-
pact subspaces with µ(X − Y ) = 0, where Y =

⋃
n Yn.
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Let D ⊂ X. Then by Lemma 5.1 there exists a measurable cover En ⊂
Yn of D ∩ Yn and (

⋃
n En) ∪ (X − Y ) is a measurable cover of D. (A Borel

set in Yn is a Borel set in X.)
If X is meta-Lindelöf, then the support of µ is strongly paracompact by

Theorem 4.3. And therefore µ is coverable by Lemma 5.1 since µ(X−Y ) = 0.
By Propositions 3.1 and 3.2 we get the conclusion.

A subset E of X is said to be negligible if µ∗(E) = 0. A subset E of X is
said to be locally negligible if each point of X has a neighbourhood U such
that µ∗(E ∩U) = 0. By Prinz ([P], Proposition 1, p. 442) a Radon measure
µ is µ∗-semifinite if and only if each locally negligible set is negligible. Prinz
proved that each locally negligible set is negligible for any Radon measure
in a metacompact space ([P], Theorem, p. 443). Together with Theorem 5.2
we get the following:

5.3. Theorem. If

(a) X is a regular weakly θ-refinable space, or
(b) X is a regular meta-Lindelöf space and MA+nonCH holds true,

then each locally negligible set is negligible for any Radon measure in X.

6. Applications. Localizable measures and coverable measures play an
important role in statistical structures (see [Ma] for background, [LuMu],
[RaYa]). A topological space X is said to be Radon if each finite Borel
measure in X is Radon. Let X be a Radon space. Let {µα : α ∈ A} be
a collection of probability Borel measures in X. If there exists a semifinite
Borel measure µ such that the Radon–Nikodym derivative dµα/dµ exists for
each α in A, then we have a satisfactory theory of statistical structure ([Ma],
293F, Dominated statistical structure, pp. 873–874). We cannot expect in
general that µ is σ-finite and we cannot avoid not necessarily σ-finite localiz-
able measures. The Lebesgue decomposition as well as the Radon–Nikodym
theorem for semifinite measures are necessary for statistical structures, and
coverable Radon measures play an important role. We note that µ is Radon
if µ is semifinite since X is Radon.

We can find the Radon–Nikodym theorem for Radon measures in ([Sc],
Theorem 14, p. 47). But it is incomplete since a “Radon–Nikodym deriva-
tive” is not measurable. We can give the Radon–Nikodym theorem for a
fairly wide class of Radon measures. Under CH the theorem does not hold
in general. Together with localizability mentioned above and ([Ku2], Corol-
lary 3.2) we get the following:

6.1. Theorem. Assume that

(a) X is a regular weakly θ-refinable space, or
(b) X is a regular meta-Lindelöf space and MA+nonCH holds true.
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Let ν and µ be Radon measures in X. If ν is absolutely continuous with
respect to µ, then there exists a Borel measurable function f such that

ν(E) =
∫
E

f dµ

for any Borel measurable set E.

The Lebesgue decomposition for semifinite measures which are not nec-
essarily σ-finite plays an important role in statistical structures ([RaYa],
Theorem, pp. 259–261). For the Lebesgue decomposition, coverability of
Radon measures is essential and localizability is not sufficient ([Ku1], The-
orem 4.4).

6.2. Theorem. Let ν be a Radon measure in a regular space X. If

(a) X is weakly θ-refinable, or
(b) X is meta-Lindelöf and MA+nonCH holds true,

then there exist Radon measures ν1, ν2 such that

ν = ν1 + ν2, ν1 � µ, ν2 ⊥ µ

for any Radon measure µ in X.
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