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ON THE COMPLEXITY OF H SETS OF THE UNIT CIRCLE
BY

ETIENNE MATHERON (PARIS)

Let K(T) be the space of all compact subsets of the circle group T
equipped with its natural (metric, compact) topology. Recently T. Linton
([8]) showed that an important class of thin sets from harmonic analysis,
the H sets, form a true X9 (Gs,) subset of K(T), that is, a £ set which
is not II (F,s). In this note, we generalize his result by showing that if
E € K(T) is an M set (see the definition below), then the H sets contained
in £ also form a true X9 subset of K(T). In fact, the result is somewhat
more general and shows that several related classes of thin sets are true 39
within any M set.

Before stating precisely the result, we have to introduce some definitions.
We denote by A the Banach algebra of all continuous complex-valued func-
tions on T with absolutely convergent Fourier series. The norm of f € A is

~

given by || fll 4 = >_,ez |f(n)]. Thus the Fourier transform identifies A with
I*(Z). The dual space of A is the space PM (~ [°°) of all distributions on T
with bounded Fourier coefficients, and A itself is the dual of the space PF
(~ ¢o) of pseudofunctions (distributions with Fourier coefficients tending
to 0).

DEFINITION 1. A closed set £ C T is said to be a set of uniqueness, or
a U set (resp. a Uy set) if it supports no non-zero pseudofunction (resp. no
probability measure in PF'). E is an M set (My set) if it is not in U (Up).

DEFINITION 2. A closed set E C T is said to be an H set if there exists a

non-empty open set V' C T and an infinite sequence (my,) of positive integers
such that for all k, myE NV = () (where mE = {mx : x € E}).

Evidently U C Uy but the converse is not true. It is well known that
every H set is a set of uniqueness; in fact, H is only a very small part of U.
All these sets have a long history and we refer to [1], [4] or [7] for much more
information.

It is not difficult to check that H is X9 in K(T) (a proof is given in [8]).
Now the easiest way to show that it is not II3 is to produce a continuous
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map ¢ : X — K(T) from some Polish space X, such that o ~1(H) is not IT9
in X. The Polish space we use is the space w® of all infinite sequences of
non-negative integers, with the product topology. Let W be the following
subset of w*:

W ={aew”:a(p) — ocoasp— oo}
It is well known that W is a true II$ subset of w* (see [9], pp. 92-96, for a
proof). In [8] T. Linton constructs a continuous ¢ : w* — K(T) such that

¢ Y (H) = w* \ W. We now state a similar but more general result. Below,
if £ € K(T) welet K(E) ={K € K(T) : K C E}.

THEOREM. (1) Let E C T be an M set. Then there is a continuous map
v :wY — K(E) such that

o if a € W then p(a) is an M set,

o ifa ¢ W then o(«) is an H set.

In particular, there is no II3 set B C K(T) such that HNK(E) C BCU.
(2) If E is an My set, the same conclusion holds with M replaced by My.
Hence there is no II3 subset of K(T) such that HNK(E) C B C Up.

Remark. It follows from a result of N. Bary ([2], Théoreme V) that
the proof in [8] gives the above conclusion for E = T.

For the proof of our theorem we will make use of two standard lemmas.

LEMMA 1 (see [7], p. 234). Let h be a function in A and S € PF. For
m € Z define h™ € A by h™(x) = h(mx) and S™ = h™ -S € PF. Then

(i) S™ — h(0) - S weakly in PF as |m| — oo
() [15™ N par = Nl pas 151 pas-

LEMMA 2. Let € be any positive number. Then one can find h € A,
h > 0, such that

e h(0) =1,
o [n(k)| <eif k#0,
e h =0 in a neighbourhood of 0.

One can take 1—7, suitably normalized, where 7,, is the usual trapezoidal
function and 7 is small enough.

Before turning to the proof of the theorem, let us fix some notations.
The set of non-negative integers is denoted by w, and w<% is the set of all
finite sequences of (non-negative) integers. If s € w<%, |s| is the length of s.
If s = (ng,...,ng) € w<¥ and n € w, s n is the sequence (ng,...,ng,n). If
s € ws¥ and o € w¥, s = o means that a(:) = s(i) for all i < |s|. Finally,
if « € w¥ and N is a positive integer, we denote by ary the sequence
(a(0),...,a(N —1)).
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We can at last begin the proof of the theorem. The two parts will be
treated together.

First, according to Lemma 2, we choose for each n € w a non-negative
function h,, € A and an open set U,, C T such that h,, =0 on U,, h,(0) =1
and [h(k)| < 1/(2(n+ 1)) if k 0.

Let now E € K(T) be an M set and T be a non-zero pseudofunction
with supp(T) C E, |[T]| py, = 1 =T(0).

We construct for each s € w<% a closed set E; C T, a pseudofunction T}
and positive integers N, m satisfying the following conditions:

(0) Ty = T, Ey = supp(T);

(1) NSAn > Ny, Mmg—~p > myg, Eg—~, C E for all n € w;

(2) Es is a perfect set and supp(Ts) C Eg;

(3) 0(Es~n, E;) < 278! for all n, where § is the Hausdorff metric on
K(T);

(4) sup{|Ts(k)| : |k| > N} < 27lsl;

(5) & [Tl < 2
o |Ty(k) — Ts~n (k)| < 2715171 for all n € w and k, |k| < Ng;

(6) |Ts — Ts~nll pay < 27151 +1/(n + 1) for all n;

(7) mg—~p - Es~n N U, =0 for all n.

By condition (0) we must let Ty = T', Ey = supp(7p). Then Ej is perfect
because T' € PF, so that (2) is true. We can also choose Ny big enough to
ensure (4).

Assume E, Ty, Ny, mg have been constructed and fix n € w. Let h = h,,
and, as in Lemma 1, S™ = h(mx) - Ts for m € Z.

If we apply Lemma 1 to h — 1 and T}, then by the definition of A and
condition (5) (i.e. ||Ts||pp; < 2) we obtain

1
lim ||S™ — T, < —
T 187 = Tllpas <
Lemma 1 also gives that S™ — T, weakly and [|S™| 5y, — |Ts||pps- Thus
we can find a positive integer M > m, such that for every m > M,

o |5 (k) — Ty(k)| < 2715171 if |k| < N,
o [S™py <2,
o |S™ =Tyl pyy < 1/(n+1).

Then we almost get what we want, except that perhaps there will be no
m > M such that §(Es, supp(S™)) < 2-151. To overcome this difficulty, we
introduce another definition: a set K € K(T) is said to be a Kronecker set if
the exponentials €™ are uniformly dense in S(K) = {f € C(K) : |f(t)| =1
for all t € K'}. We shall use two results about Kronecker sets. The first one
is almost obvious: if K is a Kronecker set, then for any non-empty open set
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V C T and any integer L one can find [ > L such that [K C V. The second
result is essentially due to R. Kaufman (see [5], or [7], pp. 337-338): for any
perfect set F' C T, the perfect Kronecker sets contained in F' are dense in
K(F).

After this detour we complete the inductive step as follows. Since Fj is
perfect (by (2)), we choose a Kronecker set K C E, with §(K, E,) < 275l
Then we pick m > M such that mK NU, = 0, and let Ty~, = S™,
Es~,, = KUsupp(Ts—y), ms~pn = m. Finally, we take Ny~,, > N, large
enough to ensure (4). Then conditions (1),..., (7) are clearly satisfied and
this concludes the inductive step.

Now if a € w* it follows from (1) and (5) that the sequence (T )n>1
converges w* to a pseudomeasure T,. By (5), fa(O) > QA’(O) —-1/2=1/2,
hence T, # 0. If we set Ey = (x> Ea(, then by (1) and (2), supp(7a) C
E, C E. Moreover, condition (3) implies that the map a + FE, is continu-
ous.

We claim that if a(p) — oo as p — oo then T,, € PF, hence E, is an
M set. Indeed, if k is any integer with |k| > Ny then by (1) there is a
unique (n, s) € w X w<* such that s™n < a and Ns < |k| < Ng~,. Now by
conditions (4), (5), (6) we get

1

Talb)] < [Bak) = Tomn (0] + [Tomnll) = T ()| + L ()] < 3-27 4+ —

and the claim follows.

On the other hand, if a(p) /4 oo as p — oo then conditions (1) and (7)
readily imply that F, is an H set.

Thus we have proved the first part of the theorem.

Now if we assume that E is an M, set rather than an M set then the
preceding construction begins with a positive measure in PF and since the
functions h,, are non-negative we get a positive measure p,, in the end. This
completes the whole proof. =

To conclude this note we point out very quickly some consequences of
the above result (or of its proof). For all the notions involved below, we
refer to [7] (and [10] for the definition of UJ).

(1) Given T' € PF and ¢ > 0 there exists a pseudomeasure S whose
support is an H set contained in supp(7’) such that ||T'— S| p,, < &; if T is
a probability measure, then S can be chosen to be a probability measure as
well (see [3], or [7], pp. 217, 239, for comparison).

(2) If E is an M set then the class U’ and all the classes H™ n > 1,
are true X9 in K(E). If E is an M set the same conclusion holds for the
Ul and U} sets contained in E.
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(3) (Debs—Saint Raymond [3], Kechris-Louveau [7], p. 242, Kaufman [6])
Let H, be the sigma-ideal generated by the H sets. Then if E is an M set
there is no X1 set B C K(E) such that H, NK(E) C B C U; if E is an My
set there is no X1 set such that H, N K(E) C B C U,.

The proof of (3) is as follows. Let 2* be the space of all infinite sequences
of 0’s and 1’s (with the product topology) and D = {a € 2¥ : InVp > n
a(p) = 0}. Then D is XY in 2%, hence by the result just proved there
is a continuous map f : 2¥ — I(E) such that f(a) € H if « € D and
f(a) is an M (or My) set if o ¢ D. One can define a continuous map
F : K(2¥) — K(E) by setting F(K) = J{f(a) : @« € K}. Then F(K) is
an H, set if K C D and an M (or M) set if K ¢ D. This completes the
proof since (D) is not a X} set (for a proof of this last result see e.g. [7],
p. 119).

REFERENCES

[1] N.Bary, A Treatise on Trigonometric Series, MacMillan, New York, 1964.

[2] —, Sur lunicité du développement trigonométrique, Fund. Math. 9 (1927), 62-115.

[3] G. Debset J. Saint Raymond, Ensembles d’unicité et d’unicité au sens large,
Ann. Inst. Fourier (Grenoble) 37 (3) (1987), 217-239.

[4] J. P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Her-
mann, Paris, 1963.

[5] R.Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187.

[6] —, Absolutely convergent Fourier series and some classes of sets, Bull. Sci. Math.
109 (1985), 363-372.

[7] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets
of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press,
1987.

[8] T. Linton, The H-sets in the unit circle are properly Ggs,, Real Anal. Exchange,
to appear.

[9] N. Lusin, Les ensembles analytiques, Chelsea, New York, 1972.

[10] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458.

EQUIPE D’ANALYSE
UNIVERSITE PARIS VI

BOITE 186

4, PLACE JUSSIEU

75252 PARIS CEDEX 05, FRANCE
E-mail: LANA@QCCR.JUSSIEU.FR

Rec¢u par la Rédaction le 22.2.1994



