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ON THE COMPLEXITY OF H SETS OF THE UNIT CIRCLE

BY

ETIENNE MATHERON (PARIS)

Let K(T) be the space of all compact subsets of the circle group T
equipped with its natural (metric, compact) topology. Recently T. Linton
([8]) showed that an important class of thin sets from harmonic analysis,
the H sets, form a true Σ0

3 (Gδσ) subset of K(T), that is, a Σ0
3 set which

is not Π0
3 (Fσδ). In this note, we generalize his result by showing that if

E ∈ K(T) is an M set (see the definition below), then the H sets contained
in E also form a true Σ0

3 subset of K(T). In fact, the result is somewhat
more general and shows that several related classes of thin sets are true Σ0

3

within any M set.
Before stating precisely the result, we have to introduce some definitions.

We denote by A the Banach algebra of all continuous complex-valued func-
tions on T with absolutely convergent Fourier series. The norm of f ∈ A is
given by ‖f‖A =

∑
n∈Z |f̂(n)|. Thus the Fourier transform identifies A with

l1(Z). The dual space of A is the space PM (∼ l∞) of all distributions on T
with bounded Fourier coefficients, and A itself is the dual of the space PF
(∼ c0) of pseudofunctions (distributions with Fourier coefficients tending
to 0).

Definition 1. A closed set E ⊆ T is said to be a set of uniqueness, or
a U set (resp. a U0 set) if it supports no non-zero pseudofunction (resp. no
probability measure in PF ). E is an M set (M0 set) if it is not in U (U0).

Definition 2. A closed set E ⊆ T is said to be an H set if there exists a
non-empty open set V ⊆ T and an infinite sequence (mk) of positive integers
such that for all k, mkE ∩ V = ∅ (where mE = {mx : x ∈ E}).

Evidently U ⊆ U0 but the converse is not true. It is well known that
every H set is a set of uniqueness; in fact, H is only a very small part of U .
All these sets have a long history and we refer to [1], [4] or [7] for much more
information.

It is not difficult to check that H is Σ0
3 in K(T) (a proof is given in [8]).

Now the easiest way to show that it is not Π0
3 is to produce a continuous
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map ϕ : X → K(T) from some Polish space X, such that ϕ−1(H) is not Π0
3

in X. The Polish space we use is the space ωω of all infinite sequences of
non-negative integers, with the product topology. Let W be the following
subset of ωω:

W = {α ∈ ωω : α(p) →∞ as p →∞}.
It is well known that W is a true Π0

3 subset of ωω (see [9], pp. 92–96, for a
proof). In [8] T. Linton constructs a continuous ϕ : ωω → K(T) such that
ϕ−1(H) = ωω \W . We now state a similar but more general result. Below,
if E ∈ K(T) we let K(E) = {K ∈ K(T) : K ⊆ E}.

Theorem. (1) Let E ⊆ T be an M set. Then there is a continuous map
ϕ : ωω → K(E) such that

• if α ∈ W then ϕ(α) is an M set ,
• if α 6∈ W then ϕ(α) is an H set.

In particular , there is no Π0
3 set B ⊆ K(T) such that H ∩ K(E) ⊆ B ⊆ U .

(2) If E is an M0 set , the same conclusion holds with M replaced by M0.
Hence there is no Π0

3 subset of K(T) such that H ∩ K(E) ⊆ B ⊆ U0.

R e m a r k. It follows from a result of N. Bary ([2], Théorème V) that
the proof in [8] gives the above conclusion for E = T.

For the proof of our theorem we will make use of two standard lemmas.

Lemma 1 (see [7], p. 234). Let h be a function in A and S ∈ PF . For
m ∈ Z define hm ∈ A by hm(x) = h(mx) and Sm = hm · S ∈ PF . Then

(i) Sm → ĥ(0) · S weakly in PF as |m| → ∞;
(ii) ‖Sm‖PM → ‖ĥ‖PM ‖S‖PM .

Lemma 2. Let ε be any positive number. Then one can find h ∈ A,
h ≥ 0, such that

• ĥ(0) = 1,
• |ĥ(k)| < ε if k 6= 0,
• h ≡ 0 in a neighbourhood of 0.

One can take 1−τη suitably normalized, where τη is the usual trapezoidal
function and η is small enough.

Before turning to the proof of the theorem, let us fix some notations.
The set of non-negative integers is denoted by ω, and ω<ω is the set of all
finite sequences of (non-negative) integers. If s ∈ ω<ω, |s| is the length of s.
If s = (n0, . . . , nk) ∈ ω<ω and n ∈ ω, s_n is the sequence (n0, . . . , nk, n). If
s ∈ ω<ω and α ∈ ωω, s � α means that α(i) = s(i) for all i < |s|. Finally,
if α ∈ ωω and N is a positive integer, we denote by αdN the sequence
(α(0), . . . , α(N − 1)).
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We can at last begin the proof of the theorem. The two parts will be
treated together.

First, according to Lemma 2, we choose for each n ∈ ω a non-negative
function hn ∈ A and an open set Un ⊆ T such that hn ≡ 0 on Un, ĥn(0) = 1
and |ĥ(k)| < 1/(2(n + 1)) if k 6= 0.

Let now E ∈ K(T) be an M set and T be a non-zero pseudofunction
with supp(T ) ⊆ E, ‖T‖PM = 1 = T̂ (0).

We construct for each s ∈ ω<ω a closed set Es ⊆ T, a pseudofunction Ts

and positive integers Ns, ms satisfying the following conditions:

(0) T∅ = T , E∅ = supp(T );
(1) Ns_n > Ns, ms_n > ms, Es_n ⊆ Es for all n ∈ ω;
(2) Es is a perfect set and supp(Ts) ⊆ Es;
(3) δ(Es_n, Es) < 2−|s| for all n, where δ is the Hausdorff metric on

K(T);
(4) sup{|T̂s(k)| : |k| > Ns} < 2−|s|;
(5) • ‖Ts‖PM < 2,

• |T̂s(k)− T̂s_n(k)| < 2−|s|−1 for all n ∈ ω and k, |k| ≤ Ns;
(6) ‖Ts − Ts_n‖PM < 2−|s| + 1/(n + 1) for all n;
(7) ms_n · Es_n ∩ Un = ∅ for all n.

By condition (0) we must let T∅ = T , E∅ = supp(T∅). Then E∅ is perfect
because T ∈ PF , so that (2) is true. We can also choose N∅ big enough to
ensure (4).

Assume Es, Ts, Ns, ms have been constructed and fix n ∈ ω. Let h = hn

and, as in Lemma 1, Sm = h(mx) · Ts for m ∈ Z.
If we apply Lemma 1 to h − 1 and Ts, then by the definition of h and

condition (5) (i.e. ‖Ts‖PM < 2) we obtain

lim
|m|→∞

‖Sm − Ts‖PM <
1

n + 1
.

Lemma 1 also gives that Sm → Ts weakly and ‖Sm‖PM → ‖Ts‖PM . Thus
we can find a positive integer M > ms such that for every m ≥ M ,

• |Ŝm(k)− T̂s(k)| < 2−|s|−1 if |k| ≤ Ns,
• ‖Sm‖PM < 2,
• ‖Sm − Ts‖PM < 1/(n + 1).

Then we almost get what we want, except that perhaps there will be no
m ≥ M such that δ

(
Es, supp(Sm)

)
< 2−|s|. To overcome this difficulty, we

introduce another definition: a set K ∈ K(T) is said to be a Kronecker set if
the exponentials eint are uniformly dense in S(K) = {f ∈ C(K) : |f(t)| = 1
for all t ∈ K}. We shall use two results about Kronecker sets. The first one
is almost obvious: if K is a Kronecker set, then for any non-empty open set
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V ⊆ T and any integer L one can find l ≥ L such that lK ⊆ V . The second
result is essentially due to R. Kaufman (see [5], or [7], pp. 337–338): for any
perfect set F ⊆ T, the perfect Kronecker sets contained in F are dense in
K(F ).

After this detour we complete the inductive step as follows. Since Es is
perfect (by (2)), we choose a Kronecker set K ⊆ Es with δ(K, Es) < 2−|s|.
Then we pick m ≥ M such that mK ∩ Un = ∅, and let Ts_n = Sm,
Es_n = K ∪ supp(Ts_n), ms_n = m. Finally, we take Ns_n > Ns large
enough to ensure (4). Then conditions (1), . . . , (7) are clearly satisfied and
this concludes the inductive step.

Now if α ∈ ωω it follows from (1) and (5) that the sequence (TαdN
)N≥1

converges w∗ to a pseudomeasure Tα. By (5), T̂α(0) ≥ T̂ (0) − 1/2 = 1/2,
hence Tα 6= 0. If we set Eα =

⋂
N≥1 EαdN

then by (1) and (2), supp(Tα) ⊆
Eα ⊆ E. Moreover, condition (3) implies that the map α 7→ Eα is continu-
ous.

We claim that if α(p) → ∞ as p → ∞ then Tα ∈ PF , hence Eα is an
M set. Indeed, if k is any integer with |k| > N∅ then by (1) there is a
unique (n, s) ∈ ω × ω<ω such that s_n � α and Ns < |k| ≤ Ns_n. Now by
conditions (4), (5), (6) we get

|T̂α(k)| ≤ |T̂α(k)− T̂s_n(k)|+ |T̂s_n(k)− T̂s(k)|+ |T̂s(k)| < 3 · 2−|s|+ 1
n + 1

and the claim follows.
On the other hand, if α(p) 6→ ∞ as p → ∞ then conditions (1) and (7)

readily imply that Eα is an H set.
Thus we have proved the first part of the theorem.
Now if we assume that E is an M0 set rather than an M set then the

preceding construction begins with a positive measure in PF and since the
functions hn are non-negative we get a positive measure µα in the end. This
completes the whole proof.

To conclude this note we point out very quickly some consequences of
the above result (or of its proof). For all the notions involved below, we
refer to [7] (and [10] for the definition of U ′

2).

(1) Given T ∈ PF and ε > 0 there exists a pseudomeasure S whose
support is an H set contained in supp(T ) such that ‖T − S‖PM < ε; if T is
a probability measure, then S can be chosen to be a probability measure as
well (see [3], or [7], pp. 217, 239, for comparison).

(2) If E is an M set then the class U ′ and all the classes H(n), n ≥ 1,
are true Σ0

3 in K(E). If E is an M0 set the same conclusion holds for the
U ′

0 and U ′
2 sets contained in E.
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(3) (Debs–Saint Raymond [3], Kechris–Louveau [7], p. 242, Kaufman [6])
Let Hσ be the sigma-ideal generated by the H sets. Then if E is an M set
there is no Σ1

1 set B ⊆ K(E) such that Hσ ∩K(E) ⊆ B ⊆ U ; if E is an M0

set there is no Σ1
1 set such that Hσ ∩ K(E) ⊆ B ⊆ U0.

The proof of (3) is as follows. Let 2ω be the space of all infinite sequences
of 0’s and 1’s (with the product topology) and D = {α ∈ 2ω : ∃n∀p > n
α(p) = 0}. Then D is Σ0

2 in 2ω, hence by the result just proved there
is a continuous map f : 2ω → K(E) such that f(α) ∈ H if α ∈ D and
f(α) is an M (or M0) set if α 6∈ D. One can define a continuous map
F : K(2ω) → K(E) by setting F (K) =

⋃
{f(α) : α ∈ K}. Then F (K) is

an Hσ set if K ⊆ D and an M (or M0) set if K 6⊆ D. This completes the
proof since K(D) is not a Σ1

1 set (for a proof of this last result see e.g. [7],
p. 119).
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mann, Paris, 1963.
[5] R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185–187.
[6] —, Absolutely convergent Fourier series and some classes of sets, Bull. Sci. Math.

109 (1985), 363–372.
[7] A. Kechr i s and A. Louveau, Descriptive Set Theory and the Structure of Sets

of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press,
1987.

[8] T. Linton, The H-sets in the unit circle are properly Gδσ , Real Anal. Exchange,
to appear.

[9] N. Lus in, Les ensembles analytiques, Chelsea, New York, 1972.
[10] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431–458.
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UNIVERSITÉ PARIS VI

BOÎTE 186

4, PLACE JUSSIEU

75252 PARIS CEDEX 05, FRANCE

E-mail: LANA@CCR.JUSSIEU.FR

Reçu par la Rédaction le 22.2.1994


