COLLOQUIUM MATHEMATICUM

VOL. LXX

1996

MENGER CURVES IN PEANO CONTINUA

BҮ

P. KRUPSKI (WROCŁAW) AND H. PATKOWSKA (WARSZAWA)

1. Preliminaries. By a continuum we mean a metric compact connected space. A curve is a one-dimensional continuum. We denote by M_1^3 the Menger universal curve. It is topologically characterized as a Peano curve with no local separating points and no nonempty open planar subsets [1, 2] (this and other facts about M_1^3 as well as related notions can be found in [8]).

A metric space (X, ϱ) has the *disjoint arcs property* (DAP) if any two paths in X can be approximated by disjoint paths, i.e., if for each $\varepsilon > 0$ and for any two continuous maps $f, g: I = [0, 1] \to X$ there exist continuous maps $f', g': I \to X$ such that $f'(I) \cap g'(I) = \emptyset$ and $\tilde{\varrho}(f, f') < \varepsilon$, $\tilde{\varrho}(g, g') < \varepsilon$, where $\tilde{\varrho}$ denotes the sup-norm metric induced by ϱ .

There is another characterization of M_1^3 as a Peano curve with the DAP [3].

Let ∂A denote the set of end-points of an arc A. An arc A in a Peano continuum X is said to be *approximately non-locally-separating* if for any region (i.e., open connected set) $V \subset X$ such that $V \cap A = A \setminus \partial A$ there exists an arc B such that $V \cap B = B \setminus \partial B$, $\partial A = \partial B$ and $V \setminus B$ is connected. An arc with end-points a and b ordered from a to b will be denoted by ab.

Recall that if X is a Peano continuum with no local separating points and no nonempty open planar subsets, then each open nonempty subset of X contains a complete five-point graph [8, Corollary 3.9.2].

The hyperspace of all subcontinua of a continuum X with the Hausdorff metric is denoted by C(X). We shall consider the subspace $\mathbf{M} \subset C(X)$ consisting of all topological copies of M_1^3 in X.

If \mathcal{U} is a collection of sets, then $\operatorname{St}(A, \mathcal{U}) = \{U \in \mathcal{U} : U \cap A \neq \emptyset\}, \mathcal{U}^*$ denotes the union of \mathcal{U} , and $\operatorname{St}^*(A, \mathcal{U}) = (\operatorname{St}(A, \mathcal{U}))^*$.

Key words and phrases: Peano continuum, Menger universal curve, disjoint arcs property, homogeneous continuum.

¹⁹⁹¹ Mathematics Subject Classification: 54F15, 54F65.

Results

THEOREM 1. Let X be a Peano continuum. Then the following conditions are equivalent.

(i) X has no local separating points and no open nonempty subset of X is planar;

- (ii) Any curve in X is contained in some $M \in \mathbf{M}$;
- (iii) **M** is dense in C(X);
- (iv) X has the DAP;

(v) Any arc in X has empty interior in X and is approximately non-locally-separating.

Proof. (i) \Rightarrow (ii). Let $C \subset X$ be a curve. We are going to construct inductively the following three sequences: $\{C_n\}_{n=1}^{\infty}$ of curves in X, $\{\mathcal{U}_n\}_{n=1}^{\infty}$ of finite families of regions in X and $\{\varepsilon_n\}_{n=1}^{\infty}$ of positive numbers such that

- (1_n) $C_1 \supset C, C_n \supset C_{n-1}$ for $n > 1, \mathcal{U}_n$ is an irreducible covering of C_n and if $U, U' \in \mathcal{U}_n$ and $U \cap U' \neq \emptyset$, then some arc in $C_n \cap (U \cup U')$ intersects both $U \setminus U'$ and $U' \setminus U$,
- (2_n) $C_n \cap U$ contains a nonplanar graph for any $U \in \mathcal{U}_n$,
- (3_n) mesh $\mathcal{U}_n < \varepsilon_n < 1/n$ and the family of closures of elements of \mathcal{U}_n is of order 2,
- (4_n) \mathcal{U}_n is a star closure refinement of \mathcal{U}_{n-1} for n > 1,
- (5_n) if $V, V' \in \mathcal{U}_n, U \in \mathcal{U}_{n-1}, n > 1$, and $cl(V \cup V') \subset U$, then there is a chain \mathcal{A} in \mathcal{U}_n joining V to V' such that $cl \mathcal{A}^* \subset U$,
- (6_n) if $V_0, V_1, V_2 \in \mathcal{U}_n, V_i \cap C_{n-1} \neq \emptyset$ for i = 0, 1, 2, $\operatorname{dist}(V_0, V_1) > \varepsilon_{n-1}$, $\operatorname{dist}(V_0, V_2) > \varepsilon_{n-1}$ and $V_0 \cup V_1 \cup V_2 \subset U$, where $U \in \mathcal{U}_i, i < n-1$, then there is a chain \mathcal{A} in \mathcal{U}_n joining V_1 to V_2 and such that $\operatorname{cl} \mathcal{A}^* \subset$ $\operatorname{St}^*(U, \mathcal{U}_i) \setminus \operatorname{cl} V_0$.

Let $\varepsilon_1 = 1$ and let \mathcal{U}_1 be an irreducible covering of C by regions in Xwith mesh $\mathcal{U}_1 < 1$ such that the family of closures of elements of \mathcal{U}_1 is of order 2. For any $U \in \mathcal{U}_1$ find a complete five-point graph $K_U \subset U$ and an arc $J_U \subset U$ joining K_U to a point of $U \cap C$. Also, for any $U, U' \in \mathcal{U}_1$ such that $U \cap U' \neq \emptyset$ choose an arc $J_{UU'} \subset U \cup U'$ joining $U \setminus U'$ to $U' \setminus U$ and an arc $L_U \subset U$ intersecting both C and $J_{UU'}$. Define C_1 as the union of Cand of all the arcs $J_U, J_{UU'}, L_U$ and graphs K_U .

Assume now that C_i , $\mathcal{U}_i = \{U_1^i, \ldots, U_{k_i}^i\}$ and ε_i have been constructed for $i \leq n$. In order to find ε_{n+1} and \mathcal{U}_{n+1} choose first a family $\mathcal{D}_n = \{D_1^n, \ldots, D_{k_n}^n\}$ of closed subsets of C_n such that $D_j^n \subset U_j^n$ and $\mathcal{D}_n^* = C_n$. Let

$$F_j^i = \operatorname{St}^*(U_j^i, \mathcal{D}_n) \text{ and } \mathcal{F}_i = \{F_1^i, \dots, F_{k_i}^i\} \text{ for } i \le n.$$

Observe that

(1)
$$C_n \cap U_j^i \subset F_j^i \subset C_n \cap \mathcal{U}_n^* \cap \operatorname{St}^*(U_j^i, \mathcal{U}_i).$$

Next, we construct, for $i \leq n$, a family $\mathcal{G}_i = \{G_1^i, \ldots, G_{k_i}^i\}$ of regions in X such that

(2)
$$F_j^i \subset G_j^i \subset \mathcal{U}_n^* \cap \operatorname{St}^*(U_j^i, \mathcal{U}_i).$$

Define $E_j^i = \operatorname{St}^*(U_j^i, \mathcal{U}_n)$. The set E_j^i is an open subset of X satisfying (2) with G_j^i replaced by E_j^i . The sets E_j^n are also connected, so we put $G_j^n = E_j^n$. However, E_j^i need not be connected for i < n. Therefore, to obtain a region $G_j^i \supset E_j^i$ satisfying (2) observe that

(3) if $V, V' \in \operatorname{St}(U_j^i, \mathcal{U}_n), i < n$, then there is a chain \mathcal{A} in \mathcal{U}_n joining V to V' such that $\operatorname{cl} \mathcal{A}^* \subset \operatorname{St}^*(U_i^i, \mathcal{U}_i)$.

Indeed, because of (4_n) , (4_{n-1}) , ..., (4_{i+1}) , there are $V_n = V, V_{n-1}, ..., V_i$ and $V'_n = V', V'_{n-1}, ..., V'_i$ such that

$$V_{k-1}, V'_{k-1} \in \mathcal{U}_{k-1}, \quad \operatorname{cl}\operatorname{St}^*(V_k, \mathcal{U}_k) \subset V_{k-1} \quad \text{and} \quad \operatorname{cl}\operatorname{St}^*(V'_k, \mathcal{U}_k) \subset V'_{k-1}$$

for $i+1 \le k \le i$

Since $V \cap U_j^i \neq \emptyset \neq V' \cap U_j^i$, we have $V_i, V_i' \in \operatorname{St}(U_j^i, \mathcal{U}_i)$. By (1_i) and (4_{i+1}) , there exist $W, W' \in \mathcal{U}_{i+1}$ such that $W \subset V_i \cap U_j^i$ and $W' \subset V_i' \cap U_j^i$. It follows from (5_{i+1}) that there is a chain \mathcal{A}_{i+1} in \mathcal{U}_{i+1} from V_{i+1} to V_{i+1}' (through W and W') such that $\operatorname{cl} \mathcal{A}_{i+1}^* \subset \operatorname{St}^*(U_j^i, \mathcal{U}_i)$. Observe further that $V_{i+1}, V_{i+1}' \in \operatorname{St}(U_j^i, \mathcal{U}_{i+1})$. Again, using conditions $(1_{i+1}), (4_{i+2})$ and (5_{i+2}) we get a chain \mathcal{A}_{i+2} in \mathcal{U}_{i+2} from V_{i+2} to V_{i+2}' (through some elements of \mathcal{U}_{i+2} lying in the intersections of elements of \mathcal{A}_{i+1}) such that $\operatorname{cl} \mathcal{A}_{i+2}^* \subset$ $\operatorname{St}^*(U_j^i, \mathcal{U}_i)$. Proceeding that way we finally get the required chain \mathcal{A} in \mathcal{U}_n , so that (3) is satisfied.

The existence of G_i^i immediately follows from (3).

Let $0 < \varepsilon'_n < \varepsilon_n$. For each $x \in F_j^i$ there exists a neighborhood V_x of x in G_j^i of diameter less than $(\varepsilon_n - \varepsilon'_n)/2$ such that if $y, z \in F_j^i$ and $\varrho(x, y) \ge \varepsilon'_n$, $\varrho(x, z) \ge \varepsilon'_n$, then there is an arc $J = yz \subset G_j^i \setminus \operatorname{cl} V_x$.

In fact, cover the compact set $\{p \in F_j^i : \varrho(p, x) \ge \varepsilon'_n\}$ by a finite number of regions whose closures are contained in $G_j^i \setminus \{x\}$. Since x does not separate G_j^i , one can join these regions by arcs in $G_j^i \setminus \{x\}$ and then find a suitable V_x .

Let $\lambda_j^i > 0$ be a Lebesgue number for the covering $\{V_x : x \in F_j^i\}$ of F_j^i . Let \mathcal{W} be an open covering of C_n which is a star closure refinement of \mathcal{U}_n and each element of which intersects at most two elements of \mathcal{U}_n ; denote by $\lambda > 0$ its Lebesgue number. Put

$$\varepsilon_{n+1} = \min\left(\frac{1}{n+1}, \frac{\varepsilon_n - \varepsilon'_n}{2}, \lambda, \lambda_j^i : i = 1, \dots, n, \ j = 1, \dots, k_i\right).$$

Find an irreducible covering \mathcal{V} of C_n by regions in X such that the family of closures of elements of \mathcal{V} is of order 2 and mesh $\mathcal{V} < \varepsilon_{n+1}$. Consider $V_0, V_1, V_2 \in \mathcal{V}$ such that

(4) dist
$$(V_0, V_1) > \varepsilon_n$$
, dist $(V_0, V_2) > \varepsilon_n$ and $V_0 \cup V_1 \cup V_2 \subset U_j^i$,
where $i < n$.

Since mesh $\mathcal{V} < \lambda_j^i$, there is a $V_x \in \{V_p : p \in F_j^i\}$ such that $V_x \supset V_0$. Let $y \in C_n \cap V_1 \subset F_j^i$ and $z \in C_n \cap V_2 \subset F_j^i$ (see (1)). Then $\varrho(x, y) > \varepsilon_n - 2 \operatorname{mesh} \mathcal{V} \ge \varepsilon'_n$ and $\varrho(x, z) \ge \varepsilon'_n$, so there is an arc

$$J_{V_0V_1V_2} = yz \subset G_i^i \setminus \operatorname{cl} V_x \subset \mathcal{U}_n^* \cap \operatorname{St}^*(U_i^i, \mathcal{U}_i) \setminus \operatorname{cl} V_0 \quad (\text{cf. (2)}).$$

Define a curve $C'_n \subset \mathcal{U}_n^*$ as the union of C_n and the arcs $J_{V_0V_1V_2}$ for all triples (V_0, V_1, V_2) satisfying (4). Now, one can easily construct an irreducible covering \mathcal{V}' of C'_n by regions in X whose closures form an order two family such that

- mesh $\mathcal{V}' < \varepsilon_{n+1}, \operatorname{cl}(\mathcal{V}')^* \subset \mathcal{U}_n^*,$
- each element of \mathcal{V} is contained in exactly one element of \mathcal{V}' ,
- elements of \mathcal{V}' not containing elements of \mathcal{V} are disjoint from C_n ,

• for any $V_0, V_1, V_2 \in \mathcal{V}'$ intersecting C_n with $\operatorname{dist}(V_0, V_1) > \varepsilon_n$, $\operatorname{dist}(V_0, V_2) > \varepsilon_n$ and $V_0 \cup V_1 \cup V_2 \subset U_j^i$, i < n, there is a chain \mathcal{A}' in \mathcal{V}' from V_1 to V_2 such that $\operatorname{cl}(\mathcal{A}')^* \subset \mathcal{U}_n^* \cap \operatorname{St}^*(U_i^i, \mathcal{U}_i) \setminus \operatorname{cl} V_0$.

Next, we define a new curve C''_n by adding some arcs to C'_n . Namely, for any $V, V' \in \mathcal{V}'$ contained in $U \in \mathcal{U}_n$ choose an arc $A_{VV'} \subset U$ joining $C'_n \cap V$ to $C'_n \cap V'$. Then C''_n is the union of C'_n and all such arcs $A_{VV'}$.

Now, one can construct (similarly to \mathcal{V}') an irreducible covering \mathcal{U}_{n+1} of C''_n by regions in X such that

- the family of closures of elements of \mathcal{U}_n is of order 2,
- mesh $\mathcal{U}_{n+1} < \varepsilon_{n+1}, \ \mathrm{cl}\,\mathcal{U}_{n+1}^* \subset \mathcal{U}_n^*,$
- each element of \mathcal{V}' is contained in exactly one element of \mathcal{U}_{n+1} ,
- elements of \mathcal{U}_{n+1} not containing elements of \mathcal{V}' are disjoint from C'_n .

It is easily seen that \mathcal{U}_{n+1} satisfies conditions $(3_{n+1})-(6_{n+1})$; in particular, (6_{n+1}) follows from the properties of \mathcal{V}' , because elements of \mathcal{U}_{n+1} intersecting C_n contain elements of \mathcal{V} .

Finally, the desired curve $C_{n+1} \subset \mathcal{U}_{n+1}^*$ can be constructed (similarly to the case n = 1) by adding to C''_n complete five-point graphs and some arcs to fulfil all the conditions $(1_{n+1})-(6_{n+1})$.

Define

$$M = \bigcap_{n=1}^{\infty} \mathcal{U}_n^* = \bigcap_{n=1}^{\infty} \operatorname{cl} \mathcal{U}_n^* = \operatorname{cl} \Big(\bigcup_{n=1}^{\infty} C_n\Big).$$

It is clear that M is a curve (by (3_n) and (4_n)) and M has no nonempty open planar subsets (by (2_n)). Conditions (1_n) and (5_n) , for n = 1, 2, ...,imply that M is locally connected (cf. (3)). To see that M has no local separating points, suppose $x, y, z \in U \in \mathcal{U}_i$ are distinct points of M. Let

$$y = \lim y_n, \quad z = \lim z_n, \quad \text{where } y_n, z_n \in C_n.$$

It follows from (1_n) , (6_n) and the local connectedness of M that there exists a continuum

$$F \subset (M \setminus \{x\}) \cap \operatorname{St}^*(U, \mathcal{U}_i)$$

containing y and z. Such an F can be constructed as the union of three continua joining, respectively, y to y_n , y_n to z_n and z_n to z, for sufficiently great n. Thus, no point $x \in M$ locally separates M. Consequently, $M \in \mathbf{M}$ and $C \subset M$ as required.

(ii) \Rightarrow (iii). Any subcontinuum K of X can be approximated by a connected finite union of arcs in X. To see this, consider an arbitrary finite irreducible cover $\mathcal{U} = \{U_1, \ldots, U_n\}$ of K by regions in X. Choose a point $x_i \in U_i$ for $i = 1, \ldots, n$. For each pair (i, j) such that $U_i \cap U_j \neq \emptyset$ there is an arc $x_i x_j \subset U_i \cup U_j$. If $A_{\mathcal{U}}$ is the union of such arcs and mesh $\mathcal{U} \to 0$, then $\operatorname{dist}(A_{\mathcal{U}}, K) \to 0$. Now, $A_{\mathcal{U}}$ is contained in some $M_{\mathcal{U}} \in \mathbf{M}$. It easily follows from the properties of M_1^3 (it is a fractal!) that $M_{\mathcal{U}}$ can be chosen so that $M_{\mathcal{U}} \subset \mathcal{U}^*$. Thus, $\operatorname{dist}(K, M_{\mathcal{U}}) \to 0$.

(iii) \Rightarrow (v). Clearly, any arc in X has empty interior. Assume $A = ab \subset X$ is an arc and $V \subset X$ is a region such that $V \cap A = A \setminus \{a, b\}$. It is easy to find an $M \in \mathbf{M}$ and two disjoint arcs aa' and bb' such that

$$(aa' \cup bb' \cup M) \setminus \{a, b\} \subset V$$

and

$$aa' \cap M = \{a'\}, \quad bb' \cap M = \{b'\}$$

Indeed, let c, d be two different points of $A \setminus \{a, b\}$ such that $c \in ad \subset A$. There are two regions C, D containing the points c, d, respectively, such that $c \mid C \cap c \mid D = \emptyset$ and $c \mid C \cup c \mid D \subset V$. It follows from (3) that there exists an $M \in \mathbf{M}$ so close to the arc $cd \subset A$ that $M \subset V, M \cap C \neq \emptyset \neq M \cap D$, $ac \cap M \subset C$ and $bd \cap M \subset D$. If $ac \cap M \neq \emptyset$, then let a' be the first point of the arc ac (in its order from a to c) that belongs to M. Similarly define $b' \in bd$ in case $bd \cap M \neq \emptyset$. If $ac \cap M = \emptyset$ ($bd \cap M = \{b'\}$), then take an arc $ca' \subset C$ ($db' \subset D$) such that $ca' \cap M = \{a'\}$ ($db' \cap M = \{b'\}$). Thus the required arc $aa' \subset ac \cup ca'$ ($bb' \subset bd \cup db'$) exists.

There are a simple closed curve $S \subset M \setminus \{a', b'\}$ (contained in the "irrational" part of M) and an uncountable family $\{L_t\}_{t \in T}$ of arcs in M with end-points a', b' such that $L_t \cap L_{t'} = \{a', b'\}$ for $t \neq t'$ and with the one-point intersection $L_t \cap S$ for each $t \in T$. Then there is a $t_0 \in T$ such that $V \setminus (aa' \cup L_{t_0} \cup bb')$ is connected. In fact, suppose $V \setminus (aa' \cup L_t \cup bb')$ is

not connected for all $t \in T$. There is a component C_t of $V \setminus (aa' \cup L_t \cup bb')$ disjoint from the connected set

$$(S \setminus L_t) \cup \bigcup_{t' \neq t} \{aa' \cup L_{t'} \cup bb'\} \setminus \{a, b\}.$$

Observe that since X is locally connected, each component C_t is an open subset of X and $C_t \cap C_{t'} = \emptyset$ for $t \neq t'$. This is impossible in a separable space.

Thus the arc $B = aa' \cup L_{t_0} \cup bb'$ satisfies

 $V \cap B = B \setminus \partial B$, $\partial A = \partial B$ and $V \setminus B$ is connected.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$. Suppose a point $p \in U \subset X$ separates a region U. Let C, D be two different components of $U \setminus \{p\}$ and let cd be an arc in U from a point $c \in C$ to some $d \in D$. We have $p \in cd$. Take a region V such that $p \in V \subset cl V \subset U \setminus \{c, d\}$. Then there is a subarc $ab \subset cd$ such that

 $a \in \operatorname{bd} V \cap C$, $b \in \operatorname{bd} V \cap D$ and $p \in ab \setminus \{a, b\} \subset V$.

By (v), there exists an arc $B \subset \operatorname{cl} V$ such that

 $\partial B = \{a, b\}, \quad B \setminus \partial B \subset V \text{ and } V \setminus B \text{ is connected nonempty.}$

Observe that $p \in B$. Since C is open in X, we have $C \cap (V \setminus B) \neq \emptyset$; otherwise $C \subset (X \setminus V) \cup B$ and $\operatorname{int} B \neq \emptyset$, which contradicts (v). Similarly, $D \cap (V \setminus B) \neq \emptyset$, hence $C \cup (V \setminus B) \cup D$ is a connected subset of U omitting p, a contradiction. Thus X is a Peano continuum with no local separating points.

Suppose X contains an open nonempty planar subset U. Then either U contains a disk or U is one-dimensional. In the latter case it is well known that U contains an open nonempty subset homeomorphic to an open subset of the Sierpiński universal planar curve (see, e.g., [6, Lemma 1.1]). In both cases U contains an arc which is not approximately non-locally-separating.

(ii) \Rightarrow (iv). Assume two mappings $f, g: I \to X$ are given. One can easily approximate f and g by f' and g' such that f'(I) and g'(I) are connected finite unions of arcs. If the images f'(I) and g'(I) intersect, their union, by (ii), embeds in some $M \in \mathbf{M}$ and we use the DAP for M [3] to get mappings $f'', g'': I \to M$ that approximate f' and g' and have disjoint images.

 $(iv) \Rightarrow (i)$. Suppose a point p separates a region $U \subset X$ and let C, D be two distinct components of $U \setminus \{p\}$. Choose points $c \in C$ and $d \in D$ and join them by an arc $cd \subset U$ parametrized by a homeomorphism $f: I \to cd$. Since p belongs to each continuum in U that meets both C and D which are open subsets of X, it is impossible to approximate f, arbitrarily closely, by two mappings with disjoint images. Thus, X is a Peano continuum without local separating points.

An argument that X contains no open nonempty planar subsets is similar to that of the proof of $(v) \Rightarrow (i)$ (both a planar disk and an open nonempty subset homeomorphic to an open subset of the Sierpiński curve exclude the DAP).

There is yet another property of Peano continua, the so-called *cross-connectedness*, which is equivalent to (i) and studied in [2] and [8, 3.11–3.13]. The equivalence of conditions (i) and (iv) can also be derived from that property.

Implicitly contained in [3] is the fact that an LC^{n-1} compactum X has the disjoint *n*-disks property (DD^nP) if and only if any continuous mapping from an arbitrary at most *n*-dimensional compactum into X can be approximated by embeddings (see [4, p. 40]). It follows (similarly to the proof of (ii) \Rightarrow (iii)) that for any LC^{n-1} compactum X satisfying the DD^nP the space of all topological copies of the universal *n*-dimensional Menger compactum is dense in C(X). For n = 1 this gives the implication (iv) \Rightarrow (iii). Yet, Theorem 1 does not require such an elaborate theory; in its proof we only use the classical Anderson characterization of M_1^3 and standard point-set topology methods.

THEOREM 2. If X is a homogeneous Peano continuum, then X is not an n-manifold for $n \leq 2$ if and only if X satisfies either of the conditions (i)-(v).

Proof. Assume X is not an n-manifold, $n \leq 2$. The easiest condition to show is (i). To this end, suppose X contains a local separating point. Then each point of X has this property and it follows from [9, (9.2), p. 61] that all points of X are of order two, so X is a simple closed curve [7, p. 294], contrary to the assumption on X. Hence, X is a Peano continuum without local separating points and we can further argue as in the proofs of $(v) \Rightarrow (i)$ and $(iv) \Rightarrow (i)$ of Theorem 1. If X contains a planar open disk which is open in X, then X is a 2-manifold; if X contains an open nonempty subset homeomorphic to an open subset of the Sierpiński curve, then X cannot be homogeneous. So, condition (i) is satisfied.

The converse implication is clear. \blacksquare

Theorem 2 is particularly welcome if $\dim X = 2$, when it contributes to understanding homogeneous 2-dimensional Peano continua. Higher-dimensional cases were known to be local Cantor manifolds; in such spaces arcs cannot separate regions (hence, arcs are approximately non-locallyseparating) and the DAP holds [5].

As another consequence we get the following topological characterization of M_1^3 .

THEOREM 3. A Peano curve X is homeomorphic to M_1^3 if and only if each arc in X is approximately non-locally-separating and has empty interior in X.

REFERENCES

- R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 33–324.
- [2] —, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958), 1–16.
- [3] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
- [4] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, *Menger manifolds*, in: Continua with the Houston Problem Book, H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek and P. Minc (eds.), Marcel Dekker, 1995, 37–88.
- [5] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109–118.
- [6] —, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995), 159–169.
- [7] K. Kuratowski, *Topology II*, Academic Press, New York, and PWN–Polish Sci. Publ., Warszawa, 1968.
- [8] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986).
- [9] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.

MATHEMATICAL INSTITUTE WROCŁAW UNIVERSITY PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND E-mail: KRUPSKI@MATH.UNI.WROC.PL INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2 02-097 WARSZAWA, POLAND

Reçu par la Rédaction le 27.9.1994; en version modifiée le 5.5.1995