VOL. LXX	1996	FASC. 1

MENGER CURVES IN PEANO CONTINUA

> BY
P. KRUPSKI (WROCŁAW) and H. PATKOWSKA (WARSZAWA)

1. Preliminaries. By a continuum we mean a metric compact connected space. A curve is a one-dimensional continuum. We denote by M_{1}^{3} the Menger universal curve. It is topologically characterized as a Peano curve with no local separating points and no nonempty open planar subsets $[1,2]$ (this and other facts about M_{1}^{3} as well as related notions can be found in [8]).

A metric space (X, ϱ) has the disjoint arcs property $(D A P)$ if any two paths in X can be approximated by disjoint paths, i.e., if for each $\varepsilon>0$ and for any two continuous maps $f, g: I=[0,1] \rightarrow X$ there exist continuous maps $f^{\prime}, g^{\prime}: I \rightarrow X$ such that $f^{\prime}(I) \cap g^{\prime}(I)=\emptyset$ and $\widetilde{\varrho}\left(f, f^{\prime}\right)<\varepsilon, \widetilde{\varrho}\left(g, g^{\prime}\right)<\varepsilon$, where $\widetilde{\varrho}$ denotes the sup-norm metric induced by ϱ.

There is another characterization of M_{1}^{3} as a Peano curve with the DAP [3].

Let ∂A denote the set of end-points of an arc A. An arc A in a Peano continuum X is said to be approximately non-locally-separating if for any region (i.e., open connected set) $V \subset X$ such that $V \cap A=A \backslash \partial A$ there exists an arc B such that $V \cap B=B \backslash \partial B, \partial A=\partial B$ and $V \backslash B$ is connected. An arc with end-points a and b ordered from a to b will be denoted by $a b$.

Recall that if X is a Peano continuum with no local separating points and no nonempty open planar subsets, then each open nonempty subset of X contains a complete five-point graph [8, Corollary 3.9.2].

The hyperspace of all subcontinua of a continuum X with the Hausdorff metric is denoted by $C(X)$. We shall consider the subspace $\mathbf{M} \subset C(X)$ consisting of all topological copies of M_{1}^{3} in X.

If \mathcal{U} is a collection of sets, then $\operatorname{St}(A, \mathcal{U})=\{U \in \mathcal{U}: U \cap A \neq \emptyset\}, \mathcal{U}^{*}$ denotes the union of \mathcal{U}, and $\operatorname{St}^{*}(A, \mathcal{U})=(\operatorname{St}(A, \mathcal{U}))^{*}$.

[^0]
Results

Theorem 1. Let X be a Peano continuum. Then the following conditions are equivalent.
(i) X has no local separating points and no open nonempty subset of X is planar;
(ii) Any curve in X is contained in some $M \in \mathbf{M}$;
(iii) \mathbf{M} is dense in $C(X)$;
(iv) X has the DAP;
(v) Any arc in X has empty interior in X and is approximately non-locally-separating.

Proof. (i) \Rightarrow (ii). Let $C \subset X$ be a curve. We are going to construct inductively the following three sequences: $\left\{C_{n}\right\}_{n=1}^{\infty}$ of curves in $X,\left\{\mathcal{U}_{n}\right\}_{n=1}^{\infty}$ of finite families of regions in X and $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that
$\left(1_{n}\right) \quad C_{1} \supset C, C_{n} \supset C_{n-1}$ for $n>1, \mathcal{U}_{n}$ is an irreducible covering of C_{n} and if $U, U^{\prime} \in \mathcal{U}_{n}$ and $U \cap U^{\prime} \neq \emptyset$, then some arc in $C_{n} \cap\left(U \cup U^{\prime}\right)$ intersects both $U \backslash U^{\prime}$ and $U^{\prime} \backslash U$,
$\left(2_{n}\right) \quad C_{n} \cap U$ contains a nonplanar graph for any $U \in \mathcal{U}_{n}$,
$\left(3_{n}\right) \quad \operatorname{mesh} \mathcal{U}_{n}<\varepsilon_{n}<1 / n$ and the family of closures of elements of \mathcal{U}_{n} is of order 2 ,
$\left(4_{n}\right) \quad \mathcal{U}_{n}$ is a star closure refinement of \mathcal{U}_{n-1} for $n>1$,
$\left(5_{n}\right) \quad$ if $V, V^{\prime} \in \mathcal{U}_{n}, U \in \mathcal{U}_{n-1}, n>1$, and $\operatorname{cl}\left(V \cup V^{\prime}\right) \subset U$, then there is a chain \mathcal{A} in \mathcal{U}_{n} joining V to V^{\prime} such that $\operatorname{cl} \mathcal{A}^{*} \subset U$,
$\left(6_{n}\right) \quad$ if $V_{0}, V_{1}, V_{2} \in \mathcal{U}_{n}, V_{i} \cap C_{n-1} \neq \emptyset$ for $i=0,1,2, \operatorname{dist}\left(V_{0}, V_{1}\right)>\varepsilon_{n-1}$, $\operatorname{dist}\left(V_{0}, V_{2}\right)>\varepsilon_{n-1}$ and $V_{0} \cup V_{1} \cup V_{2} \subset U$, where $U \in \mathcal{U}_{i}, i<n-1$, then there is a chain \mathcal{A} in \mathcal{U}_{n} joining V_{1} to V_{2} and such that $\operatorname{cl} \mathcal{A}^{*} \subset$ $\mathrm{St}^{*}\left(U, \mathcal{U}_{i}\right) \backslash \mathrm{cl} V_{0}$.
Let $\varepsilon_{1}=1$ and let \mathcal{U}_{1} be an irreducible covering of C by regions in X with mesh $\mathcal{U}_{1}<1$ such that the family of closures of elements of \mathcal{U}_{1} is of order 2. For any $U \in \mathcal{U}_{1}$ find a complete five-point graph $K_{U} \subset U$ and an $\operatorname{arc} J_{U} \subset U$ joining K_{U} to a point of $U \cap C$. Also, for any $U, U^{\prime} \in \mathcal{U}_{1}$ such that $U \cap U^{\prime} \neq \emptyset$ choose an arc $J_{U U^{\prime}} \subset U \cup U^{\prime}$ joining $U \backslash U^{\prime}$ to $U^{\prime} \backslash U$ and an $\operatorname{arc} L_{U} \subset U$ intersecting both C and $J_{U U^{\prime}}$. Define C_{1} as the union of C and of all the $\operatorname{arcs} J_{U}, J_{U U^{\prime}}, L_{U}$ and graphs K_{U}.

Assume now that $C_{i}, \mathcal{U}_{i}=\left\{U_{1}^{i}, \ldots, U_{k_{i}}^{i}\right\}$ and ε_{i} have been constructed for $i \leq n$. In order to find ε_{n+1} and \mathcal{U}_{n+1} choose first a family $\mathcal{D}_{n}=$ $\left\{D_{1}^{n}, \ldots, D_{k_{n}}^{n}\right\}$ of closed subsets of C_{n} such that $D_{j}^{n} \subset U_{j}^{n}$ and $\mathcal{D}_{n}^{*}=C_{n}$. Let

$$
F_{j}^{i}=\operatorname{St}^{*}\left(U_{j}^{i}, \mathcal{D}_{n}\right) \quad \text { and } \quad \mathcal{F}_{i}=\left\{F_{1}^{i}, \ldots, F_{k_{i}}^{i}\right\} \quad \text { for } i \leq n
$$

Observe that

$$
\begin{equation*}
C_{n} \cap U_{j}^{i} \subset F_{j}^{i} \subset C_{n} \cap \mathcal{U}_{n}^{*} \cap \mathrm{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right) \tag{1}
\end{equation*}
$$

Next, we construct, for $i \leq n$, a family $\mathcal{G}_{i}=\left\{G_{1}^{i}, \ldots, G_{k_{i}}^{i}\right\}$ of regions in X such that

$$
\begin{equation*}
F_{j}^{i} \subset G_{j}^{i} \subset \mathcal{U}_{n}^{*} \cap \mathrm{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right) \tag{2}
\end{equation*}
$$

Define $E_{j}^{i}=\operatorname{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{n}\right)$. The set E_{j}^{i} is an open subset of X satisfying (2) with G_{j}^{i} replaced by E_{j}^{i}. The sets E_{j}^{n} are also connected, so we put $G_{j}^{n}=E_{j}^{n}$. However, E_{j}^{i} need not be connected for $i<n$. Therefore, to obtain a region $G_{j}^{i} \supset E_{j}^{i}$ satisfying (2) observe that
(3) if $V, V^{\prime} \in \operatorname{St}\left(U_{j}^{i}, \mathcal{U}_{n}\right), i<n$, then there is a chain \mathcal{A} in \mathcal{U}_{n} joining V to V^{\prime} such that $\mathrm{cl} \mathcal{A}^{*} \subset \operatorname{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right)$.
Indeed, because of $\left(4_{n}\right),\left(4_{n-1}\right), \ldots,\left(4_{i+1}\right)$, there are $V_{n}=V, V_{n-1}, \ldots, V_{i}$ and $V_{n}^{\prime}=V^{\prime}, V_{n-1}^{\prime}, \ldots, V_{i}^{\prime}$ such that
$V_{k-1}, V_{k-1}^{\prime} \in \mathcal{U}_{k-1}, \quad \operatorname{cl~St}^{*}\left(V_{k}, \mathcal{U}_{k}\right) \subset V_{k-1} \quad$ and $\quad \operatorname{cl~St}^{*}\left(V_{k}^{\prime}, \mathcal{U}_{k}\right) \subset V_{k-1}^{\prime}$ for $i+1 \leq k \leq n$.
Since $V \cap U_{j}^{i} \neq \emptyset \neq V^{\prime} \cap U_{j}^{i}$, we have $V_{i}, V_{i}^{\prime} \in \operatorname{St}\left(U_{j}^{i}, \mathcal{U}_{i}\right)$. By $\left(1_{i}\right)$ and $\left(4_{i+1}\right)$, there exist $W, W^{\prime} \in \mathcal{U}_{i+1}$ such that $W \subset V_{i} \cap U_{j}^{i}$ and $W^{\prime} \subset V_{i}^{\prime} \cap U_{j}^{i}$. It follows from $\left(5_{i+1}\right)$ that there is a chain \mathcal{A}_{i+1} in \mathcal{U}_{i+1} from V_{i+1} to V_{i+1}^{\prime} (through W and W^{\prime}) such that $\operatorname{cl} \mathcal{A}_{i+1}^{*} \subset \operatorname{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right)$. Observe further that $V_{i+1}, V_{i+1}^{\prime} \in \operatorname{St}\left(U_{j}^{i}, \mathcal{U}_{i+1}\right)$. Again, using conditions $\left(1_{i+1}\right),\left(4_{i+2}\right)$ and $\left(5_{i+2}\right)$ we get a chain \mathcal{A}_{i+2} in \mathcal{U}_{i+2} from V_{i+2} to V_{i+2}^{\prime} (through some elements of \mathcal{U}_{i+2} lying in the intersections of elements of \mathcal{A}_{i+1}) such that $\mathrm{cl} \mathcal{A}_{i+2}^{*} \subset$ $\mathrm{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right)$. Proceeding that way we finally get the required chain \mathcal{A} in \mathcal{U}_{n}, so that (3) is satisfied.

The existence of G_{j}^{i} immediately follows from (3).
Let $0<\varepsilon_{n}^{\prime}<\varepsilon_{n}$. For each $x \in F_{j}^{i}$ there exists a neighborhood V_{x} of x in G_{j}^{i} of diameter less than $\left(\varepsilon_{n}-\varepsilon_{n}^{\prime}\right) / 2$ such that if $y, z \in F_{j}^{i}$ and $\varrho(x, y) \geq \varepsilon_{n}^{\prime}$, $\varrho(x, z) \geq \varepsilon_{n}^{\prime}$, then there is an arc $J=y z \subset G_{j}^{i} \backslash \operatorname{cl} V_{x}$.

In fact, cover the compact set $\left\{p \in F_{j}^{i}: \varrho(p, x) \geq \varepsilon_{n}^{\prime}\right\}$ by a finite number of regions whose closures are contained in $G_{j}^{i} \backslash\{x\}$. Since x does not separate G_{j}^{i}, one can join these regions by arcs in $G_{j}^{i} \backslash\{x\}$ and then find a suitable V_{x}.

Let $\lambda_{j}^{i}>0$ be a Lebesgue number for the covering $\left\{V_{x}: x \in F_{j}^{i}\right\}$ of F_{j}^{i}. Let \mathcal{W} be an open covering of C_{n} which is a star closure refinement of \mathcal{U}_{n} and each element of which intersects at most two elements of \mathcal{U}_{n}; denote by $\lambda>0$ its Lebesgue number. Put

$$
\varepsilon_{n+1}=\min \left(\frac{1}{n+1}, \frac{\varepsilon_{n}-\varepsilon_{n}^{\prime}}{2}, \lambda, \lambda_{j}^{i}: i=1, \ldots, n, j=1, \ldots, k_{i}\right)
$$

Find an irreducible covering \mathcal{V} of C_{n} by regions in X such that the family of closures of elements of \mathcal{V} is of order 2 and mesh $\mathcal{V}<\varepsilon_{n+1}$. Consider $V_{0}, V_{1}, V_{2} \in \mathcal{V}$ such that

$$
\begin{equation*}
\operatorname{dist}\left(V_{0}, V_{1}\right)>\varepsilon_{n}, \quad \operatorname{dist}\left(V_{0}, V_{2}\right)>\varepsilon_{n} \quad \text { and } \quad V_{0} \cup V_{1} \cup V_{2} \subset U_{j}^{i} \tag{4}
\end{equation*}
$$

where $i<n$.
Since mesh $\mathcal{V}<\lambda_{j}^{i}$, there is a $V_{x} \in\left\{V_{p}: p \in F_{j}^{i}\right\}$ such that $V_{x} \supset V_{0}$. Let $y \in C_{n} \cap V_{1} \subset F_{j}^{i}$ and $z \in C_{n} \cap V_{2} \subset F_{j}^{i}$ (see (1)). Then $\varrho(x, y)>$ $\varepsilon_{n}-2 \operatorname{mesh} \mathcal{V} \geq \varepsilon_{n}^{\prime}$ and $\varrho(x, z) \geq \varepsilon_{n}^{\prime}$, so there is an arc

$$
J_{V_{0} V_{1} V_{2}}=y z \subset G_{j}^{i} \backslash \operatorname{cl} V_{x} \subset \mathcal{U}_{n}^{*} \cap \mathrm{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right) \backslash \operatorname{cl} V_{0} \quad \text { (cf. (2)). }
$$

Define a curve $C_{n}^{\prime} \subset \mathcal{U}_{n}^{*}$ as the union of C_{n} and the $\operatorname{arcs} J_{V_{0} V_{1} V_{2}}$ for all triples (V_{0}, V_{1}, V_{2}) satisfying (4). Now, one can easily construct an irreducible covering \mathcal{V}^{\prime} of C_{n}^{\prime} by regions in X whose closures form an order two family such that

- mesh $\mathcal{V}^{\prime}<\varepsilon_{n+1}, \operatorname{cl}\left(\mathcal{V}^{\prime}\right)^{*} \subset \mathcal{U}_{n}^{*}$,
- each element of \mathcal{V} is contained in exactly one element of \mathcal{V}^{\prime},
- elements of \mathcal{V}^{\prime} not containing elements of \mathcal{V} are disjoint from C_{n},
- for any $V_{0}, V_{1}, V_{2} \in \mathcal{V}^{\prime}$ intersecting C_{n} with $\operatorname{dist}\left(V_{0}, V_{1}\right)>\varepsilon_{n}$, $\operatorname{dist}\left(V_{0}, V_{2}\right)>\varepsilon_{n}$ and $V_{0} \cup V_{1} \cup V_{2} \subset U_{j}^{i}, i<n$, there is a chain \mathcal{A}^{\prime} in \mathcal{V}^{\prime} from V_{1} to V_{2} such that $\operatorname{cl}\left(\mathcal{A}^{\prime}\right)^{*} \subset \mathcal{U}_{n}^{*} \cap \operatorname{St}^{*}\left(U_{j}^{i}, \mathcal{U}_{i}\right) \backslash \operatorname{cl} V_{0}$.

Next, we define a new curve $C_{n}^{\prime \prime}$ by adding some arcs to C_{n}^{\prime}. Namely, for any $V, V^{\prime} \in \mathcal{V}^{\prime}$ contained in $U \in \mathcal{U}_{n}$ choose an arc $A_{V V^{\prime}} \subset U$ joining $C_{n}^{\prime} \cap V$ to $C_{n}^{\prime} \cap V^{\prime}$. Then $C_{n}^{\prime \prime}$ is the union of C_{n}^{\prime} and all such $\operatorname{arcs} A_{V V^{\prime}}$.

Now, one can construct (similarly to \mathcal{V}^{\prime}) an irreducible covering \mathcal{U}_{n+1} of $C_{n}^{\prime \prime}$ by regions in X such that

- the family of closures of elements of \mathcal{U}_{n} is of order 2 ,
- $\operatorname{mesh} \mathcal{U}_{n+1}<\varepsilon_{n+1}, \operatorname{cl} \mathcal{U}_{n+1}^{*} \subset \mathcal{U}_{n}^{*}$,
- each element of \mathcal{V}^{\prime} is contained in exactly one element of \mathcal{U}_{n+1},
- elements of \mathcal{U}_{n+1} not containing elements of \mathcal{V}^{\prime} are disjoint from C_{n}^{\prime}.

It is easily seen that \mathcal{U}_{n+1} satisfies conditions $\left(3_{n+1}\right)-\left(6_{n+1}\right)$; in particular, $\left(6_{n+1}\right)$ follows from the properties of \mathcal{V}^{\prime}, because elements of \mathcal{U}_{n+1} intersecting C_{n} contain elements of \mathcal{V}.

Finally, the desired curve $C_{n+1} \subset \mathcal{U}_{n+1}^{*}$ can be constructed (similarly to the case $n=1$) by adding to $C_{n}^{\prime \prime}$ complete five-point graphs and some arcs to fulfil all the conditions $\left(1_{n+1}\right)-\left(6_{n+1}\right)$.

Define

$$
M=\bigcap_{n=1}^{\infty} \mathcal{U}_{n}^{*}=\bigcap_{n=1}^{\infty} \operatorname{cl} \mathcal{U}_{n}^{*}=\operatorname{cl}\left(\bigcup_{n=1}^{\infty} C_{n}\right)
$$

It is clear that M is a curve (by $\left(3_{n}\right)$ and $\left.\left(4_{n}\right)\right)$ and M has no nonempty open planar subsets (by $\left(2_{n}\right)$). Conditions $\left(1_{n}\right)$ and $\left(5_{n}\right)$, for $n=1,2, \ldots$, imply that M is locally connected (cf. (3)). To see that M has no local separating points, suppose $x, y, z \in U \in \mathcal{U}_{i}$ are distinct points of M. Let

$$
y=\lim y_{n}, \quad z=\lim z_{n}, \quad \text { where } y_{n}, z_{n} \in C_{n} .
$$

It follows from $\left(1_{n}\right),\left(6_{n}\right)$ and the local connectedness of M that there exists a continuum

$$
F \subset(M \backslash\{x\}) \cap \operatorname{St}^{*}\left(U, \mathcal{U}_{i}\right)
$$

containing y and z. Such an F can be constructed as the union of three continua joining, respectively, y to y_{n}, y_{n} to z_{n} and z_{n} to z, for sufficiently great n. Thus, no point $x \in M$ locally separates M. Consequently, $M \in \mathbf{M}$ and $C \subset M$ as required.
(ii) \Rightarrow (iii). Any subcontinuum K of X can be approximated by a connected finite union of arcs in X. To see this, consider an arbitrary finite irreducible cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ of K by regions in X. Choose a point $x_{i} \in U_{i}$ for $i=1, \ldots, n$. For each pair (i, j) such that $U_{i} \cap U_{j} \neq \emptyset$ there is an $\operatorname{arc} x_{i} x_{j} \subset U_{i} \cup U_{j}$. If $A_{\mathcal{U}}$ is the union of such arcs and mesh $\mathcal{U} \rightarrow 0$, then $\operatorname{dist}\left(A_{\mathcal{U}}, K\right) \rightarrow 0$. Now, $A_{\mathcal{U}}$ is contained in some $M_{\mathcal{U}} \in \mathbf{M}$. It easily follows from the properties of M_{1}^{3} (it is a fractal!) that $M_{\mathcal{U}}$ can be chosen so that $M_{\mathcal{U}} \subset \mathcal{U}^{*}$. Thus, $\operatorname{dist}\left(K, M_{\mathcal{U}}\right) \rightarrow 0$.
(iii) $\Rightarrow(\mathrm{v})$. Clearly, any arc in X has empty interior. Assume $A=a b \subset X$ is an arc and $V \subset X$ is a region such that $V \cap A=A \backslash\{a, b\}$. It is easy to find an $M \in \mathbf{M}$ and two disjoint arcs $a a^{\prime}$ and $b b^{\prime}$ such that

$$
\left(a a^{\prime} \cup b b^{\prime} \cup M\right) \backslash\{a, b\} \subset V
$$

and

$$
a a^{\prime} \cap M=\left\{a^{\prime}\right\}, \quad b b^{\prime} \cap M=\left\{b^{\prime}\right\} .
$$

Indeed, let c, d be two different points of $A \backslash\{a, b\}$ such that $c \in a d \subset A$. There are two regions C, D containing the points c, d, respectively, such that $\operatorname{cl} C \cap \operatorname{cl} D=\emptyset$ and $\operatorname{cl} C \cup \mathrm{cl} D \subset V$. It follows from (3) that there exists an $M \in \mathbf{M}$ so close to the arc $c d \subset A$ that $M \subset V, M \cap C \neq \emptyset \neq M \cap D$, $a c \cap M \subset C$ and $b d \cap M \subset D$. If $a c \cap M \neq \emptyset$, then let a^{\prime} be the first point of the arc $a c$ (in its order from a to c) that belongs to M. Similarly define $b^{\prime} \in b d$ in case $b d \cap M \neq \emptyset$. If $a c \cap M=\emptyset(b d \cap M=\emptyset)$, then take an arc $c a^{\prime} \subset C\left(d b^{\prime} \subset D\right)$ such that $c a^{\prime} \cap M=\left\{a^{\prime}\right\}\left(d b^{\prime} \cap M=\left\{b^{\prime}\right\}\right)$. Thus the required arc $a a^{\prime} \subset a c \cup c a^{\prime}\left(b b^{\prime} \subset b d \cup d b^{\prime}\right)$ exists.

There are a simple closed curve $S \subset M \backslash\left\{a^{\prime}, b^{\prime}\right\}$ (contained in the "irrational" part of M) and an uncountable family $\left\{L_{t}\right\}_{t \in T}$ of arcs in M with end-points a^{\prime}, b^{\prime} such that $L_{t} \cap L_{t^{\prime}}=\left\{a^{\prime}, b^{\prime}\right\}$ for $t \neq t^{\prime}$ and with the onepoint intersection $L_{t} \cap S$ for each $t \in T$. Then there is a $t_{0} \in T$ such that $V \backslash\left(a a^{\prime} \cup L_{t_{0}} \cup b b^{\prime}\right)$ is connected. In fact, suppose $V \backslash\left(a a^{\prime} \cup L_{t} \cup b b^{\prime}\right)$ is
not connected for all $t \in T$. There is a component C_{t} of $V \backslash\left(a a^{\prime} \cup L_{t} \cup b b^{\prime}\right)$ disjoint from the connected set

$$
\left(S \backslash L_{t}\right) \cup \bigcup_{t^{\prime} \neq t}\left\{a a^{\prime} \cup L_{t^{\prime}} \cup b b^{\prime}\right\} \backslash\{a, b\}
$$

Observe that since X is locally connected, each component C_{t} is an open subset of X and $C_{t} \cap C_{t^{\prime}}=\emptyset$ for $t \neq t^{\prime}$. This is impossible in a separable space.

Thus the arc $B=a a^{\prime} \cup L_{t_{0}} \cup b b^{\prime}$ satisfies

$$
V \cap B=B \backslash \partial B, \quad \partial A=\partial B \quad \text { and } \quad V \backslash B \text { is connected. }
$$

(v) \Rightarrow (i). Suppose a point $p \in U \subset X$ separates a region U. Let C, D be two different components of $U \backslash\{p\}$ and let $c d$ be an arc in U from a point $c \in C$ to some $d \in D$. We have $p \in c d$. Take a region V such that $p \in V \subset \operatorname{cl} V \subset U \backslash\{c, d\}$. Then there is a subarc $a b \subset c d$ such that

$$
a \in \operatorname{bd} V \cap C, \quad b \in \operatorname{bd} V \cap D \quad \text { and } \quad p \in a b \backslash\{a, b\} \subset V
$$

By (v), there exists an arc $B \subset \mathrm{cl} V$ such that

$$
\partial B=\{a, b\}, \quad B \backslash \partial B \subset V \quad \text { and } \quad V \backslash B \text { is connected nonempty. }
$$

Observe that $p \in B$. Since C is open in X, we have $C \cap(V \backslash B) \neq \emptyset$; otherwise $C \subset(X \backslash V) \cup B$ and $\operatorname{int} B \neq \emptyset$, which contradicts (v). Similarly, $D \cap(V \backslash B) \neq \emptyset$, hence $C \cup(V \backslash B) \cup D$ is a connected subset of U omitting p, a contradiction. Thus X is a Peano continuum with no local separating points.

Suppose X contains an open nonempty planar subset U. Then either U contains a disk or U is one-dimensional. In the latter case it is well known that U contains an open nonempty subset homeomorphic to an open subset of the Sierpiński universal planar curve (see, e.g., [6, Lemma 1.1]). In both cases U contains an arc which is not approximately non-locally-separating.
$($ ii $) \Rightarrow$ (iv). Assume two mappings $f, g: I \rightarrow X$ are given. One can easily approximate f and g by f^{\prime} and g^{\prime} such that $f^{\prime}(I)$ and $g^{\prime}(I)$ are connected finite unions of arcs. If the images $f^{\prime}(I)$ and $g^{\prime}(I)$ intersect, their union, by (ii), embeds in some $M \in \mathbf{M}$ and we use the DAP for $M[3]$ to get mappings $f^{\prime \prime}, g^{\prime \prime}: I \rightarrow M$ that approximate f^{\prime} and g^{\prime} and have disjoint images.
(iv) $\Rightarrow(\mathrm{i})$. Suppose a point p separates a region $U \subset X$ and let C, D be two distinct components of $U \backslash\{p\}$. Choose points $c \in C$ and $d \in D$ and join them by an arc $c d \subset U$ parametrized by a homeomorphism $f: I \rightarrow c d$. Since p belongs to each continuum in U that meets both C and D which are open subsets of X, it is impossible to approximate f, arbitrarily closely, by two mappings with disjoint images. Thus, X is a Peano continuum without local separating points.

An argument that X contains no open nonempty planar subsets is similar to that of the proof of $(\mathrm{v}) \Rightarrow(\mathrm{i})$ (both a planar disk and an open nonempty subset homeomorphic to an open subset of the Sierpinski curve exclude the DAP).

There is yet another property of Peano continua, the so-called crossconnectedness, which is equivalent to (i) and studied in $[2]$ and $[8,3.11-$ 3.13]. The equivalence of conditions (i) and (iv) can also be derived from that property.

Implicitly contained in [3] is the fact that an $L C^{n-1}$ compactum X has the disjoint n-disks property $\left(D D^{n} P\right)$ if and only if any continuous mapping from an arbitrary at most n-dimensional compactum into X can be approximated by embeddings (see [4, p. 40]). It follows (similarly to the proof of $(\mathrm{ii}) \Rightarrow(\mathrm{iii})$) that for any $L C^{n-1}$ compactum X satisfying the $D D^{n} P$ the space of all topological copies of the universal n-dimensional Menger compactum is dense in $C(X)$. For $n=1$ this gives the implication (iv) \Rightarrow (iii). Yet, Theorem 1 does not require such an elaborate theory; in its proof we only use the classical Anderson characterization of M_{1}^{3} and standard point-set topology methods.

Theorem 2. If X is a homogeneous Peano continuum, then X is not an n-manifold for $n \leq 2$ if and only if X satisfies either of the conditions (i)-(v).

Proof. Assume X is not an n-manifold, $n \leq 2$. The easiest condition to show is (i). To this end, suppose X contains a local separating point. Then each point of X has this property and it follows from [9, (9.2), p. 61] that all points of X are of order two, so X is a simple closed curve [7, p. 294], contrary to the assumption on X. Hence, X is a Peano continuum without local separating points and we can further argue as in the proofs of $(\mathrm{v}) \Rightarrow(\mathrm{i})$ and (iv) $\Rightarrow(\mathrm{i})$ of Theorem 1 . If X contains a planar open disk which is open in X, then X is a 2-manifold; if X contains an open nonempty subset homeomorphic to an open subset of the Sierpiński curve, then X cannot be homogeneous. So, condition (i) is satisfied.

The converse implication is clear.
Theorem 2 is particularly welcome if $\operatorname{dim} X=2$, when it contributes to understanding homogeneous 2-dimensional Peano continua. Higher-dimensional cases were known to be local Cantor manifolds; in such spaces arcs cannot separate regions (hence, arcs are approximately non-locallyseparating) and the DAP holds [5].

As another consequence we get the following topological characterization of M_{1}^{3}.

Theorem 3. A Peano curve X is homeomorphic to M_{1}^{3} if and only if each arc in X is approximately non-locally-separating and has empty interior in X.

REFERENCES

[1] R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 33-324.
[2] -, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958), 1-16.
[3] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
[4] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua with the Houston Problem Book, H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek and P. Minc (eds.), Marcel Dekker, 1995, 37-88.
[5] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118.
[6] -, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995), 159-169.
[7] K. Kuratowski, Topology II, Academic Press, New York, and PWN-Polish Sci. Publ., Warszawa, 1968.
[8] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986).
[9] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.

MATHEMATICAL INSTITUTE
INSTITUTE OF MATHEMATICS
WROCEAW UNIVERSITY
PL. GRUNWALDZKI 2/4 WARSAW UNIVERSITY BANACHA 2
50-384 WROCEAW, POLAND
02-097 WARSZAWA, POLAND
E-mail: KRUPSKI@MATH.UNI.WROC.PL

[^0]: 1991 Mathematics Subject Classification: 54F15, 54F65.
 Key words and phrases: Peano continuum, Menger universal curve, disjoint arcs property, homogeneous continuum.

