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MENGER CURVES IN PEANO CONTINUA

BY

P. KRUPSKI (WROCLAW) axo H. PATKOWSKA (WARSZAWA)

1. Preliminaries. By a continuum we mean a metric compact con-
nected space. A curve is a one-dimensional continuum. We denote by M;
the Menger universal curve. It is topologically characterized as a Peano
curve with no local separating points and no nonempty open planar subsets
[1, 2] (this and other facts about M; as well as related notions can be found
in [8]).

A metric space (X, g) has the disjoint arcs property (DAP) if any two
paths in X can be approximated by disjoint paths, i.e., if for each ¢ > 0 and
for any two continuous maps f,g : I = [0,1] — X there exist continuous
maps f’, ¢ : I — X such that f'(I)Ng'(I) =0 and o(f, ') <e, 0(g,9") < ¢,
where ¢ denotes the sup-norm metric induced by p.

There is another characterization of M; as a Peano curve with the
DAP [3].

Let OA denote the set of end-points of an arc A. An arc A in a Peano
continuum X is said to be approxzimately non-locally-separating if for any
region (i.e., open connected set) V' C X such that VN A = A\ JA there
exists an arc B such that VN B = B\ 0B, 0A = 0B and V \ B is
connected. An arc with end-points a and b ordered from a to b will be
denoted by ab.

Recall that if X is a Peano continuum with no local separating points
and no nonempty open planar subsets, then each open nonempty subset of
X contains a complete five-point graph [8, Corollary 3.9.2].

The hyperspace of all subcontinua of a continuum X with the Hausdorff
metric is denoted by C'(X). We shall consider the subspace M C C(X)
consisting of all topological copies of M7 in X.

If U is a collection of sets, then St(A,U) = {U e U : UN A # 0}, U*
denotes the union of U, and St*(A,U) = (St(A,U))*.
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Results

THEOREM 1. Let X be a Peano continuum. Then the following conditions
are equivalent.

(i) X has no local separating points and no open nonempty subset of X
is planar;
(ii) Any curve in X is contained in some M € M,
(iii) M is dense in C(X);
(iv) X has the DAP;
(v) Any arc in X has empty interior in X and is approzimately non-
locally-separating.

Proof. (i)=(ii). Let C C X be a curve. We are going to construct
inductively the following three sequences: {C),}5% of curves in X, {U, }5° 4
of finite families of regions in X and {e,, }72; of positive numbers such that

(1,) Cy>C,C, D> Ch_q forn > 1, U, is an irreducible covering of C),
and if U, U’ € U,, and UNU’ # 0, then some arc in C,, N (U UT’)
intersects both U \ U’ and U’ \ U,

(2,) C, NU contains a nonplanar graph for any U € U,

(3,) meshl, <e, <1/n and the family of closures of elements of U, is
of order 2,

(4,) U, is a star closure refinement of U,,_y for n > 1,

(5,) UV, V' el,, U€eUy,_1,n>1,and cl(VUV') C U, then there is a
chain A in U,, joining V' to V' such that cl A* C U,

(6,) if Vo,Vi,Va €Uy, V;NChr_y # 0 for i =0,1,2, dist(Vy, Vi) > €1,
dist(Vp, Va) > g1 and Vo U VL UV, C U, where U € U, i <n — 1,
then there is a chain A in U,, joining Vi to V5 and such that cl A* C
St (U, U;) \ cl V.

Let e1 = 1 and let U; be an irreducible covering of C' by regions in X
with meshif; < 1 such that the family of closures of elements of U, is of
order 2. For any U € U; find a complete five-point graph Ky C U and an
arc Jy C U joining Ky to a point of U N C. Also, for any U,U’ € U; such
that U N U’ # () choose an arc Jygy» C U U U’ joining U \ U’ to U' \ U and
an arc Ly C U intersecting both C' and Jyy/. Define C; as the union of C'
and of all the arcs Jy, Jyys, Ly and graphs Ky .

Assume now that C;, U; = {Ui,. .., U,z} and ¢; have been constructed
for ¢ < n. In order to find €,4+1 and U,4+1 choose first a family D, =
{D{,... ,Dgﬂ} of closed subsets of €, such that D7 C U;" and D;, = C,.
Let

F =St*(U},D,) and F;={F{,...,F.} fori<n.

J
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Observe that

(1) Cn,NU; C Fj C Cp NU, NS (U, Us).

Next, we construct, for i < n, a family G; = {G%,..., G}%} of regions in X
such that

(2) F; C G C U, NSt (Uj,Uy).

Define Ej = St"(U;,U,). The set E} is an open subset of X satisfying
(2) with G;- replaced by E7. The sets E7 are also connected, so we put
G;-L = E7. However, E} need not be connected for i < n. Therefore, to
obtain a region G D Ej satisfying (2) observe that

(3) if V,V' e St(U},Uy), i < n, then there is a chain A in U, joining V
to V' such that cl A* C St™(U},U;).
Indeed, because of (4,,), (4n—-1),--.,(4i3+1), there are V,, = V,V,_1,...,V;
and V) =V’ V!_, ..., V/ such that
Vk,l,Vk’_l € Ux_1, ClSt*(Vk,Uk) C Vi1 and St*(Vé,Uk) C Vk/—l
fori+1<k<n.

Since VNU; # 0 # V' NU}, we have V;, V/ € St(U7,U;). By (1;) and (4i41),
there exist W, W' € U;,1 such that W C V; N U; and W' C V/ N U; It
follows from (5;41) that there is a chain A;41 in Uyy from Vi to Vi
(through W and W’) such that cl Af,, C St™(U},U;). Observe further that
W+1, V;l_i_l S St(U;,Z/{iH). Again, using conditions (12‘—1—1)7 (4i+2) and (51‘4_2)
we get a chain A;1 in Uio from Viys to V5 (through some elements of
Ui o lying in the intersections of elements of A;1) such that cl A7 , C
St* (U ;, U;). Proceeding that way we finally get the required chain A in U,
so that (3) is satisfied.

The existence of G’ immediately follows from (3).

Let 0 <€), < &p. For each x € FJ’ there exists a neighborhood V,, of x in
G’ of diameter less than (e, —¢/,)/2 such that if y,z € F} and o(z,y) > €},
o(z,z) > e, then there is an arc J = yz C G; \ clV,.

In fact, cover the compact set {p € FJZ : o(p,x) > el } by a finite number
of regions whose closures are contained in G%\{z}. Since & does not separate
Gé-, one can join these regions by arcs in Gé- \{z} and then find a suitable V.

Let X’ > 0 be a Lebesgue number for the covering { V, : x € F} } of F}.
Let W be an open covering of C,, which is a star closure refinement of U,
and each element of which intersects at most two elements of U,,; denote by

A > 0 its Lebesgue number. Put
/

& _gn 7 . .
- ,A,)\jIZ:L...,TL,.]Zl,...,ki>.

En+1 = 1IN (n—l—l’ 9
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Find an irreducible covering V of C}, by regions in X such that the family
of closures of elements of V is of order 2 and meshV < ¢,4;. Consider
Vo, V1, Vo € V such that

(4)  dist(Vo, Vi) > &n, dist(Vo,V2) > &, and VoUWV UVL C UJ,

where 7 < n.

Since meshV < A;, there is a V, € {V,, : p € F;} such that V, D V.
Let y € C, NVy C Fj and z € C, NV, C F} (see (1)). Then o(x,y) >
en —2meshV > e, and o(x, z) > €}, so there is an arc

Jvovive =Yz C G4\ eV, CUy NSE (U7 U) \ el Vg (cf. (2)).

Define a curve C), C U} as the union of C,, and the arcs Jy,y, v, for all triples
(Vo, V1, Vo) satisfying (4). Now, one can easily construct an irreducible cov-
ering V' of C/, by regions in X whose closures form an order two family such
that

mesh V' < e,41, cl(V')* C U,

each element of V is contained in exactly one element of V',

elements of V' not containing elements of V are disjoint from C,,,

for any Vp,V1,Va € V' intersecting C, with dist(Vp, V1) > e,
dist(Vp, Vo) > e, and Vo U V3 UV, C U}, i < n, there is a chain A’ in
V' from Vi to Va such that cl(A)* C Uy N St™(US,U;) \ cl Vp.

Next, we define a new curve C]/ by adding some arcs to C},. Namely, for
any V.V’ € V' contained in U € U,, choose an arc Ay, C U joining C/, NV
to C/,NV’. Then C) is the union of C/, and all such arcs Ayy-.

Now, one can construct (similarly to V') an irreducible covering U,, 1 of
C!' by regions in X such that

e the family of closures of elements of U, is of order 2,

° meshun+1 < Ep+1, clu,jH C U:;,

e cach element of V' is contained in exactly one element of U, 1,

e clements of U,,1 not containing elements of V' are disjoint from CJ,.

It is easily seen that U, 11 satisfies conditions (3,,4+1)—(6,+1); in particular,
(6,,+1) follows from the properties of V', because elements of U, 11 intersect-
ing (), contain elements of V.

Finally, the desired curve Cy,11 C U}, can be constructed (similarly to
the case n = 1) by adding to C}/ complete five-point graphs and some arcs
to fulfil all the conditions (1,41)(6p41).

Define

M= (it = ﬁclu;;:cl([j Cn)-
n=1 n=1

n=1
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It is clear that M is a curve (by (3,) and (4,,)) and M has no nonempty
open planar subsets (by (2,)). Conditions (1,) and (5,), for n = 1,2,...,
imply that M is locally connected (cf. (3)). To see that M has no local
separating points, suppose x,y, 2z € U € U; are distinct points of M. Let

y=limy,, z=Ilimz,, wherey,,z, € C,.

It follows from (1,,), (6,) and the local connectedness of M that there exists
a continuum

F c (M\{z})nSt"(U,U;)
containing y and z. Such an F' can be constructed as the union of three
continua joining, respectively, y to y,, Yy, to z, and z, to z, for sufficiently
great n. Thus, no point x € M locally separates M. Consequently, M € M
and C' C M as required.

(ii)=-(iii). Any subcontinuum K of X can be approximated by a con-
nected finite union of arcs in X. To see this, consider an arbitrary finite
irreducible cover U = {Uy,...,U,} of K by regions in X. Choose a point
z; € U; for i = 1,...,n. For each pair (4, j) such that U; N U; # 0 there is
an arc z;x; C U; UU;. If Ay is the union of such arcs and mesh/ — 0, then
dist(Ay, K) — 0. Now, Ay is contained in some M, € M. It easily follows
from the properties of M7 (it is a fractal!) that M, can be chosen so that
My C U*. Thus, dist(K, My) — 0.

(iii)=(v). Clearly, any arc in X has empty interior. Assume A =ab C X
is an arc and V' C X is a region such that VN A = A\ {a,b}. It is easy to
find an M € M and two disjoint arcs aa’ and bb’ such that

(aa’ UbBY U M)\ {a,b} CV
and
ad’ "M ={d'}, b'NM={V}

Indeed, let ¢,d be two different points of A \ {a, b} such that ¢ € ad C A.
There are two regions C, D containing the points ¢, d, respectively, such that
cdCneclD =0 and clCUclD C V. It follows from (3) that there exists
an M € M so close to the arc ¢d C Athat M CV, MNC # 0 # M N D,
acNM C Cand bdN M C D. If acn M # (), then let a’ be the first point
of the arc ac (in its order from a to c¢) that belongs to M. Similarly define
b € bd in case bdN M # 0. Iif acn M =0 (bd N M = ), then take an arc
ca’ C C (db' C D) such that ca’ "M = {a'} (db' "M = {V'}). Thus the
required arc aa’ C acU ca’ (bb' C bd U db') exists.

There are a simple closed curve S C M \ {da/,0’} (contained in the “ir-
rational” part of M) and an uncountable family {L;};cr of arcs in M with
end-points a’,b" such that Ly N Ly = {a’,b'} for t # t’ and with the one-
point intersection L; NS for each t € T. Then there is a tg € T such that
V\ (ad’ U Ly, U bb') is connected. In fact, suppose V' \ (aa’ U L; U bY') is
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not connected for all ¢ € T'. There is a component C; of V' \ (aa’ U Ly U bb')
disjoint from the connected set

(S\ L) U | J{ad' ULy UBY'}\ {a,b}.
£t
Observe that since X is locally connected, each component C; is an open
subset of X and C; N Cy = () for t # ¢'. This is impossible in a separable
space.
Thus the arc B = aa’ U Ly, U b’ satisfies

VNB=B\0B, 0A=0B and V \ B is connected.

(v)=(i). Suppose a point p € U C X separates a region U. Let C,D
be two different components of U \ {p} and let ¢d be an arc in U from a
point ¢ € C' to some d € D. We have p € cd. Take a region V such that
peV CclV CU\/{ed}. Then there is a subarc ab C cd such that

acebdVNnC, bebdVND and peab\{a,b} CV.
By (v), there exists an arc B C clV such that
0B ={a,b}, B\OBCV and V\ B is connected nonempty.

Observe that p € B. Since C is open in X, we have C N (V \ B) # 0;
otherwise C' C (X \ V)U B and int B # (), which contradicts (v). Similarly,
DN (V\B) #0, hence CU(V\ B)UD is a connected subset of U omitting
p, a contradiction. Thus X is a Peano continuum with no local separating
points.

Suppose X contains an open nonempty planar subset U. Then either U
contains a disk or U is one-dimensional. In the latter case it is well known
that U contains an open nonempty subset homeomorphic to an open subset
of the Sierpinski universal planar curve (see, e.g., [6, Lemma 1.1]). In both
cases U contains an arc which is not approximately non-locally-separating.

(ii)=(iv). Assume two mappings f,g: [ — X are given. One can easily
approximate f and g by f’ and ¢’ such that f’(I) and ¢'(I) are connected
finite unions of arcs. If the images f/(I) and ¢'(I) intersect, their union, by
(ii), embeds in some M € M and we use the DAP for M [3] to get mappings
f"”,g" : I — M that approximate f’ and ¢’ and have disjoint images.

(iv)=-(i). Suppose a point p separates a region U C X and let C, D be
two distinct components of U \ {p}. Choose points ¢ € C and d € D and
join them by an arc c¢d C U parametrized by a homeomorphism f : I — cd.
Since p belongs to each continuum in U that meets both C' and D which are
open subsets of X, it is impossible to approximate f, arbitrarily closely, by
two mappings with disjoint images. Thus, X is a Peano continuum without
local separating points.
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An argument that X contains no open nonempty planar subsets is similar
to that of the proof of (v)=-(i) (both a planar disk and an open nonempty
subset homeomorphic to an open subset of the Sierpinski curve exclude the
DAP). =

There is yet another property of Peano continua, the so-called cross-
connectedness, which is equivalent to (i) and studied in [2] and [8, 3.11-
3.13]. The equivalence of conditions (i) and (iv) can also be derived from
that property.

Implicitly contained in [3] is the fact that an LC™™! compactum X
has the disjoint n-disks property (DD™P) if and only if any continuous
mapping from an arbitrary at most n-dimensional compactum into X can
be approximated by embeddings (see [4, p. 40]). It follows (similarly to
the proof of (ii)=-(iii)) that for any LC™! compactum X satisfying the
DD™P the space of all topological copies of the universal n-dimensional
Menger compactum is dense in C(X). For n = 1 this gives the implication
(iv)=-(iii). Yet, Theorem 1 does not require such an elaborate theory; in
its proof we only use the classical Anderson characterization of M; and
standard point-set topology methods.

THEOREM 2. If X is a homogeneous Peano continuum, then X is not
an n-manifold for n < 2 if and only if X satisfies either of the conditions

(1)~(v)-

Proof. Assume X is not an n-manifold, n < 2. The easiest condition
to show is (i). To this end, suppose X contains a local separating point.
Then each point of X has this property and it follows from [9, (9.2), p. 61]
that all points of X are of order two, so X is a simple closed curve [7, p.
294], contrary to the assumption on X. Hence, X is a Peano continuum
without local separating points and we can further argue as in the proofs of
(v)=(i) and (iv)=(i) of Theorem 1. If X contains a planar open disk which
is open in X, then X is a 2-manifold; if X contains an open nonempty subset
homeomorphic to an open subset of the Sierpinski curve, then X cannot be
homogeneous. So, condition (i) is satisfied.

The converse implication is clear. m

Theorem 2 is particularly welcome if dim X = 2, when it contributes
to understanding homogeneous 2-dimensional Peano continua. Higher-di-
mensional cases were known to be local Cantor manifolds; in such spaces
arcs cannot separate regions (hence, arcs are approximately non-locally-
separating) and the DAP holds [5].

As another consequence we get the following topological characterization
of M3.
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THEOREM 3. A Peano curve X is homeomorphic to M3 if and only if
each arc in X is approximately non-locally-separating and has empty interior
m X.
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