
COLLOQU IUM MATHEMAT ICUM
VOL. LXX 1996 FASC. 1

MENGER CURVES IN PEANO CONTINUA

BY

P. K R U P S K I (WROC LAW) AND H. P A T K O W S K A (WARSZAWA)

1. Preliminaries. By a continuum we mean a metric compact con-
nected space. A curve is a one-dimensional continuum. We denote by M3

1

the Menger universal curve. It is topologically characterized as a Peano
curve with no local separating points and no nonempty open planar subsets
[1, 2] (this and other facts about M3

1 as well as related notions can be found
in [8]).

A metric space (X, %) has the disjoint arcs property (DAP) if any two
paths in X can be approximated by disjoint paths, i.e., if for each ε > 0 and
for any two continuous maps f, g : I = [0, 1] → X there exist continuous
maps f ′, g′ : I → X such that f ′(I)∩g′(I) = ∅ and %̃(f, f ′) < ε, %̃(g, g′) < ε,
where %̃ denotes the sup-norm metric induced by %.

There is another characterization of M3
1 as a Peano curve with the

DAP [3].
Let ∂A denote the set of end-points of an arc A. An arc A in a Peano

continuum X is said to be approximately non-locally-separating if for any
region (i.e., open connected set) V ⊂ X such that V ∩ A = A \ ∂A there
exists an arc B such that V ∩ B = B \ ∂B, ∂A = ∂B and V \ B is
connected. An arc with end-points a and b ordered from a to b will be
denoted by ab.

Recall that if X is a Peano continuum with no local separating points
and no nonempty open planar subsets, then each open nonempty subset of
X contains a complete five-point graph [8, Corollary 3.9.2].

The hyperspace of all subcontinua of a continuum X with the Hausdorff
metric is denoted by C(X). We shall consider the subspace M ⊂ C(X)
consisting of all topological copies of M3

1 in X.
If U is a collection of sets, then St(A,U) = {U ∈ U : U ∩ A 6= ∅}, U∗

denotes the union of U , and St∗(A,U) = (St(A,U))∗.
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Results

Theorem 1. Let X be a Peano continuum. Then the following conditions
are equivalent.

(i) X has no local separating points and no open nonempty subset of X
is planar ;

(ii) Any curve in X is contained in some M ∈ M;
(iii) M is dense in C(X);
(iv) X has the DAP ;
(v) Any arc in X has empty interior in X and is approximately non-

locally-separating.

P r o o f. (i)⇒(ii). Let C ⊂ X be a curve. We are going to construct
inductively the following three sequences: {Cn}∞n=1 of curves in X, {Un}∞n=1

of finite families of regions in X and {εn}∞n=1 of positive numbers such that

(1n) C1 ⊃ C, Cn ⊃ Cn−1 for n > 1, Un is an irreducible covering of Cn

and if U,U ′ ∈ Un and U ∩ U ′ 6= ∅, then some arc in Cn ∩ (U ∪ U ′)
intersects both U \ U ′ and U ′ \ U ,

(2n) Cn ∩ U contains a nonplanar graph for any U ∈ Un,

(3n) meshUn < εn < 1/n and the family of closures of elements of Un is
of order 2,

(4n) Un is a star closure refinement of Un−1 for n > 1,

(5n) if V, V ′ ∈ Un, U ∈ Un−1, n > 1, and cl(V ∪ V ′) ⊂ U , then there is a
chain A in Un joining V to V ′ such that clA∗ ⊂ U ,

(6n) if V0, V1, V2 ∈ Un, Vi ∩ Cn−1 6= ∅ for i = 0, 1, 2, dist(V0, V1) > εn−1,
dist(V0, V2) > εn−1 and V0 ∪ V1 ∪ V2 ⊂ U , where U ∈ Ui, i < n− 1,
then there is a chain A in Un joining V1 to V2 and such that clA∗ ⊂
St∗(U,Ui) \ cl V0.

Let ε1 = 1 and let U1 be an irreducible covering of C by regions in X
with meshU1 < 1 such that the family of closures of elements of U1 is of
order 2. For any U ∈ U1 find a complete five-point graph KU ⊂ U and an
arc JU ⊂ U joining KU to a point of U ∩ C. Also, for any U,U ′ ∈ U1 such
that U ∩ U ′ 6= ∅ choose an arc JUU ′ ⊂ U ∪ U ′ joining U \ U ′ to U ′ \ U and
an arc LU ⊂ U intersecting both C and JUU ′ . Define C1 as the union of C
and of all the arcs JU , JUU ′ , LU and graphs KU .

Assume now that Ci, Ui = {U i
1, . . . , U

i
ki

}
and εi have been constructed

for i ≤ n. In order to find εn+1 and Un+1 choose first a family Dn =
{Dn

1 , . . . , Dn
kn

}
of closed subsets of Cn such that Dn

j ⊂ Un
j and D∗n = Cn.

Let
F i

j = St∗(U i
j ,Dn) and Fi = {F i

1, . . . , F
i
ki
} for i ≤ n.
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Observe that

(1) Cn ∩ U i
j ⊂ F i

j ⊂ Cn ∩ U∗n ∩ St∗(U i
j ,Ui).

Next, we construct, for i ≤ n, a family Gi = {Gi
1, . . . , G

i
ki
} of regions in X

such that

(2) F i
j ⊂ Gi

j ⊂ U∗n ∩ St∗(U i
j ,Ui).

Define Ei
j = St∗(U i

j ,Un). The set Ei
j is an open subset of X satisfying

(2) with Gi
j replaced by Ei

j . The sets En
j are also connected, so we put

Gn
j = En

j . However, Ei
j need not be connected for i < n. Therefore, to

obtain a region Gi
j ⊃ Ei

j satisfying (2) observe that

(3) if V, V ′ ∈ St(U i
j ,Un), i < n, then there is a chain A in Un joining V

to V ′ such that clA∗ ⊂ St∗(U i
j ,Ui).

Indeed, because of (4n), (4n−1), . . . , (4i+1), there are Vn = V, Vn−1, . . . , Vi

and V ′
n = V ′, V ′

n−1, . . . , V
′
i such that

Vk−1, V
′
k−1 ∈ Uk−1, cl St∗(Vk,Uk) ⊂ Vk−1 and cl St∗(V ′

k,Uk) ⊂ V ′
k−1

for i + 1 ≤ k ≤ n.

Since V ∩U i
j 6= ∅ 6= V ′∩U i

j , we have Vi, V
′
i ∈ St(U i

j ,Ui). By (1i) and (4i+1),
there exist W,W ′ ∈ Ui+1 such that W ⊂ Vi ∩ U i

j and W ′ ⊂ V ′
i ∩ U i

j . It
follows from (5i+1) that there is a chain Ai+1 in Ui+1 from Vi+1 to V ′

i+1

(through W and W ′) such that clA∗i+1 ⊂ St∗(U i
j ,Ui). Observe further that

Vi+1, V
′
i+1 ∈ St(U i

j ,Ui+1). Again, using conditions (1i+1), (4i+2) and (5i+2)
we get a chain Ai+2 in Ui+2 from Vi+2 to V ′

i+2 (through some elements of
Ui+2 lying in the intersections of elements of Ai+1) such that clA∗i+2 ⊂
St∗(U i

j ,Ui). Proceeding that way we finally get the required chain A in Un,
so that (3) is satisfied.

The existence of Gi
j immediately follows from (3).

Let 0 < ε′n < εn. For each x ∈ F i
j there exists a neighborhood Vx of x in

Gi
j of diameter less than (εn− ε′n)/2 such that if y, z ∈ F i

j and %(x, y) ≥ ε′n,
%(x, z) ≥ ε′n, then there is an arc J = yz ⊂ Gi

j \ cl Vx.
In fact, cover the compact set {p ∈ F i

j : %(p, x) ≥ ε′n} by a finite number
of regions whose closures are contained in Gi

j\{x}. Since x does not separate
Gi

j , one can join these regions by arcs in Gi
j \{x} and then find a suitable Vx.

Let λi
j > 0 be a Lebesgue number for the covering {Vx : x ∈ F i

j } of F i
j .

Let W be an open covering of Cn which is a star closure refinement of Un

and each element of which intersects at most two elements of Un; denote by
λ > 0 its Lebesgue number. Put

εn+1 = min
(

1
n + 1

,
εn − ε′n

2
, λ, λi

j : i = 1, . . . , n, j = 1, . . . , ki

)
.
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Find an irreducible covering V of Cn by regions in X such that the family
of closures of elements of V is of order 2 and meshV < εn+1. Consider
V0, V1, V2 ∈ V such that

(4) dist(V0, V1) > εn, dist(V0, V2) > εn and V0 ∪ V1 ∪ V2 ⊂ U i
j ,

where i < n.

Since meshV < λi
j , there is a Vx ∈ {Vp : p ∈ F i

j} such that Vx ⊃ V0.
Let y ∈ Cn ∩ V1 ⊂ F i

j and z ∈ Cn ∩ V2 ⊂ F i
j (see (1)). Then %(x, y) >

εn − 2 meshV ≥ ε′n and %(x, z) ≥ ε′n, so there is an arc

JV0V1V2 = yz ⊂ Gi
j \ cl Vx ⊂ U∗n ∩ St∗(U i

j ,Ui) \ cl V0 (cf. (2)).

Define a curve C ′
n ⊂ U∗n as the union of Cn and the arcs JV0V1V2 for all triples

(V0, V1, V2) satisfying (4). Now, one can easily construct an irreducible cov-
ering V ′ of C ′

n by regions in X whose closures form an order two family such
that

• meshV ′ < εn+1, cl(V ′)∗ ⊂ U∗n,
• each element of V is contained in exactly one element of V ′,
• elements of V ′ not containing elements of V are disjoint from Cn,
• for any V0, V1, V2 ∈ V ′ intersecting Cn with dist(V0, V1) > εn,

dist(V0, V2) > εn and V0 ∪ V1 ∪ V2 ⊂ U i
j , i < n, there is a chain A′ in

V ′ from V1 to V2 such that cl(A′)∗ ⊂ U∗n ∩ St∗(U i
j ,Ui) \ cl V0.

Next, we define a new curve C ′′
n by adding some arcs to C ′

n. Namely, for
any V, V ′ ∈ V ′ contained in U ∈ Un choose an arc AV V ′ ⊂ U joining C ′

n ∩V
to C ′

n ∩ V ′. Then C ′′
n is the union of C ′

n and all such arcs AV V ′ .
Now, one can construct (similarly to V ′) an irreducible covering Un+1 of

C ′′
n by regions in X such that

• the family of closures of elements of Un is of order 2,
• meshUn+1 < εn+1, clU∗n+1 ⊂ U∗n,
• each element of V ′ is contained in exactly one element of Un+1,
• elements of Un+1 not containing elements of V ′ are disjoint from C ′

n.

It is easily seen that Un+1 satisfies conditions (3n+1)–(6n+1); in particular,
(6n+1) follows from the properties of V ′, because elements of Un+1 intersect-
ing Cn contain elements of V.

Finally, the desired curve Cn+1 ⊂ U∗n+1 can be constructed (similarly to
the case n = 1) by adding to C ′′

n complete five-point graphs and some arcs
to fulfil all the conditions (1n+1)–(6n+1).

Define

M =
∞⋂

n=1

U∗n =
∞⋂

n=1

clU∗n = cl
( ∞⋃

n=1

Cn

)
.
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It is clear that M is a curve (by (3n) and (4n)) and M has no nonempty
open planar subsets (by (2n)). Conditions (1n) and (5n), for n = 1, 2, . . .,
imply that M is locally connected (cf. (3)). To see that M has no local
separating points, suppose x, y, z ∈ U ∈ Ui are distinct points of M . Let

y = lim yn, z = lim zn, where yn, zn ∈ Cn.

It follows from (1n), (6n) and the local connectedness of M that there exists
a continuum

F ⊂ (M \ {x}) ∩ St∗(U,Ui)
containing y and z. Such an F can be constructed as the union of three
continua joining, respectively, y to yn, yn to zn and zn to z, for sufficiently
great n. Thus, no point x ∈ M locally separates M . Consequently, M ∈ M
and C ⊂ M as required.

(ii)⇒(iii). Any subcontinuum K of X can be approximated by a con-
nected finite union of arcs in X. To see this, consider an arbitrary finite
irreducible cover U = {U1, . . . , Un} of K by regions in X. Choose a point
xi ∈ Ui for i = 1, . . . , n. For each pair (i, j) such that Ui ∩ Uj 6= ∅ there is
an arc xixj ⊂ Ui∪Uj . If AU is the union of such arcs and meshU → 0, then
dist(AU ,K) → 0. Now, AU is contained in some MU ∈ M. It easily follows
from the properties of M3

1 (it is a fractal!) that MU can be chosen so that
MU ⊂ U∗. Thus, dist(K, MU ) → 0.

(iii)⇒(v). Clearly, any arc in X has empty interior. Assume A = ab ⊂ X
is an arc and V ⊂ X is a region such that V ∩ A = A \ {a, b}. It is easy to
find an M ∈ M and two disjoint arcs aa′ and bb′ such that

(aa′ ∪ bb′ ∪M) \ {a, b} ⊂ V

and
aa′ ∩M = {a′}, bb′ ∩M = {b′}.

Indeed, let c, d be two different points of A \ {a, b} such that c ∈ ad ⊂ A.
There are two regions C,D containing the points c, d, respectively, such that
cl C ∩ cl D = ∅ and cl C ∪ cl D ⊂ V . It follows from (3) that there exists
an M ∈ M so close to the arc cd ⊂ A that M ⊂ V , M ∩ C 6= ∅ 6= M ∩D,
ac ∩M ⊂ C and bd ∩M ⊂ D. If ac ∩M 6= ∅, then let a′ be the first point
of the arc ac (in its order from a to c) that belongs to M . Similarly define
b′ ∈ bd in case bd ∩M 6= ∅. If ac ∩M = ∅ (bd ∩M = ∅), then take an arc
ca′ ⊂ C (db′ ⊂ D) such that ca′ ∩M = {a′} (db′ ∩M = {b′}). Thus the
required arc aa′ ⊂ ac ∪ ca′ (bb′ ⊂ bd ∪ db′) exists.

There are a simple closed curve S ⊂ M \ {a′, b′} (contained in the “ir-
rational” part of M) and an uncountable family {Lt}t∈T of arcs in M with
end-points a′, b′ such that Lt ∩ Lt′ = {a′, b′} for t 6= t′ and with the one-
point intersection Lt ∩ S for each t ∈ T . Then there is a t0 ∈ T such that
V \ (aa′ ∪ Lt0 ∪ bb′) is connected. In fact, suppose V \ (aa′ ∪ Lt ∪ bb′) is



84 P. KRUPSKI AND H. PATKOWSKA

not connected for all t ∈ T . There is a component Ct of V \ (aa′ ∪Lt ∪ bb′)
disjoint from the connected set

(S \ Lt) ∪
⋃
t′ 6=t

{aa′ ∪ Lt′ ∪ bb′} \ {a, b}.

Observe that since X is locally connected, each component Ct is an open
subset of X and Ct ∩ Ct′ = ∅ for t 6= t′. This is impossible in a separable
space.

Thus the arc B = aa′ ∪ Lt0 ∪ bb′ satisfies

V ∩B = B \ ∂B, ∂A = ∂B and V \B is connected.

(v)⇒(i). Suppose a point p ∈ U ⊂ X separates a region U . Let C,D
be two different components of U \ {p} and let cd be an arc in U from a
point c ∈ C to some d ∈ D. We have p ∈ cd. Take a region V such that
p ∈ V ⊂ cl V ⊂ U \ {c, d}. Then there is a subarc ab ⊂ cd such that

a ∈ bd V ∩ C, b ∈ bd V ∩D and p ∈ ab \ {a, b} ⊂ V.

By (v), there exists an arc B ⊂ cl V such that

∂B = {a, b}, B \ ∂B ⊂ V and V \B is connected nonempty.

Observe that p ∈ B. Since C is open in X, we have C ∩ (V \ B) 6= ∅;
otherwise C ⊂ (X \ V ) ∪B and int B 6= ∅, which contradicts (v). Similarly,
D∩ (V \B) 6= ∅, hence C ∪ (V \B)∪D is a connected subset of U omitting
p, a contradiction. Thus X is a Peano continuum with no local separating
points.

Suppose X contains an open nonempty planar subset U . Then either U
contains a disk or U is one-dimensional. In the latter case it is well known
that U contains an open nonempty subset homeomorphic to an open subset
of the Sierpiński universal planar curve (see, e.g., [6, Lemma 1.1]). In both
cases U contains an arc which is not approximately non-locally-separating.

(ii)⇒(iv). Assume two mappings f, g : I → X are given. One can easily
approximate f and g by f ′ and g′ such that f ′(I) and g′(I) are connected
finite unions of arcs. If the images f ′(I) and g′(I) intersect, their union, by
(ii), embeds in some M ∈ M and we use the DAP for M [3] to get mappings
f ′′, g′′ : I → M that approximate f ′ and g′ and have disjoint images.

(iv)⇒(i). Suppose a point p separates a region U ⊂ X and let C,D be
two distinct components of U \ {p}. Choose points c ∈ C and d ∈ D and
join them by an arc cd ⊂ U parametrized by a homeomorphism f : I → cd.
Since p belongs to each continuum in U that meets both C and D which are
open subsets of X, it is impossible to approximate f , arbitrarily closely, by
two mappings with disjoint images. Thus, X is a Peano continuum without
local separating points.
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An argument that X contains no open nonempty planar subsets is similar
to that of the proof of (v)⇒(i) (both a planar disk and an open nonempty
subset homeomorphic to an open subset of the Sierpiński curve exclude the
DAP).

There is yet another property of Peano continua, the so-called cross-
connectedness, which is equivalent to (i) and studied in [2] and [8, 3.11–
3.13]. The equivalence of conditions (i) and (iv) can also be derived from
that property.

Implicitly contained in [3] is the fact that an LCn−1 compactum X
has the disjoint n-disks property (DDnP ) if and only if any continuous
mapping from an arbitrary at most n-dimensional compactum into X can
be approximated by embeddings (see [4, p. 40]). It follows (similarly to
the proof of (ii)⇒(iii)) that for any LCn−1 compactum X satisfying the
DDnP the space of all topological copies of the universal n-dimensional
Menger compactum is dense in C(X). For n = 1 this gives the implication
(iv)⇒(iii). Yet, Theorem 1 does not require such an elaborate theory; in
its proof we only use the classical Anderson characterization of M3

1 and
standard point-set topology methods.

Theorem 2. If X is a homogeneous Peano continuum, then X is not
an n-manifold for n ≤ 2 if and only if X satisfies either of the conditions
(i)–(v).

P r o o f. Assume X is not an n-manifold, n ≤ 2. The easiest condition
to show is (i). To this end, suppose X contains a local separating point.
Then each point of X has this property and it follows from [9, (9.2), p. 61]
that all points of X are of order two, so X is a simple closed curve [7, p.
294], contrary to the assumption on X. Hence, X is a Peano continuum
without local separating points and we can further argue as in the proofs of
(v)⇒(i) and (iv)⇒(i) of Theorem 1. If X contains a planar open disk which
is open in X, then X is a 2-manifold; if X contains an open nonempty subset
homeomorphic to an open subset of the Sierpiński curve, then X cannot be
homogeneous. So, condition (i) is satisfied.

The converse implication is clear.

Theorem 2 is particularly welcome if dim X = 2, when it contributes
to understanding homogeneous 2-dimensional Peano continua. Higher-di-
mensional cases were known to be local Cantor manifolds; in such spaces
arcs cannot separate regions (hence, arcs are approximately non-locally-
separating) and the DAP holds [5].

As another consequence we get the following topological characterization
of M3

1 .
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Theorem 3. A Peano curve X is homeomorphic to M3
1 if and only if

each arc in X is approximately non-locally-separating and has empty interior
in X.

REFERENCES

[1] R. D. Anderson, A characterization of the universal curve and a proof of its homo-
geneity , Ann. of Math. 67 (1958), 33–324.

[2] —, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958),
1–16.

[3] M. Bestv ina, Characterizing k-dimensional universal Menger compacta, Mem.
Amer. Math. Soc. 380 (1988).

[4] A. Chigog idze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in:
Continua with the Houston Problem Book, H. Cook, W. T. Ingram, K. T. Kuperberg,
A. Lelek and P. Minc (eds.), Marcel Dekker, 1995, 37–88.

[5] P. Krupsk i, Recent results on homogeneous curves and ANR’s, Topology Proc. 16
(1991), 109–118.

[6] —, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995),
159–169.

[7] K. Kuratowsk i, Topology II , Academic Press, New York, and PWN–Polish Sci.
Publ., Warszawa, 1968.

[8] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve.
Characterization and extension of homeomorphisms of non-locally-separating closed
subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986).

[9] G. T. Whyburn, Analytic Topology , Amer. Math. Soc. Colloq. Publ. 28, Providence,
R.I., 1942.

MATHEMATICAL INSTITUTE INSTITUTE OF MATHEMATICS

WROC LAW UNIVERSITY WARSAW UNIVERSITY

PL. GRUNWALDZKI 2/4 BANACHA 2

50-384 WROC LAW, POLAND 02-097 WARSZAWA, POLAND

E-mail: KRUPSKI@MATH.UNI.WROC.PL
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