| VOL. LXX | 1996 | FASC. 1 |
| :--- | :---: | :---: |

THE POLYNOMIAL HULL OF UNIONS OF CONVEX SETS IN $\mathbb{C}^{n}$
By
ULF BACKLUND and ANDERS FÄLLSTRÖM (UMEA)
We prove that three pairwise disjoint, convex sets can be found, all congruent to a set of the form $\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2 m} \leq\right.$ $1\}$, such that their union has a non-trivial polynomial convex hull. This shows that not all holomorphic functions on the interior of the union can be approximated by polynomials in the open-closed topology.
I. In this paper we study polynomial convexity of unions of compact convex sets in $\mathbb{C}^{n}$. The polynomial convex hull $\widehat{K}$ of a compact set $K$ in $\mathbb{C}^{n}$ is defined by

$$
\widehat{K}=\left\{z \in \mathbb{C}^{n}:|p(z)| \leq \sup _{\zeta \in K}|p(\zeta)| \text { for all polynomials } p\right\}
$$

Furthermore, if $K=\widehat{K}$, then $K$ is said to be polynomially convex.
The notion of polynomial convexity arises naturally in the theory of Banach algebras and is of importance in the area of polynomial approximation in $\mathbb{C}^{n}$. One reason to study polynomial convexity is that if $K \subset \mathbb{C}^{n}$ is a compact set, then the closure $\mathcal{P}(K)$ of the polynomials on $K$ in the uniform norm is a Banach algebra and its maximal ideal space is homeomorphic to the polynomial convex hull of $K$. In fact, any finitely generated semisimple commutative Banach algebra $\mathcal{B}$ with unit is, via the Gelfand representation, isomorphic to $\mathcal{P}(K)$ for some polynomially convex compact $K$ in $\mathbb{C}^{N}$, where $N$ is the number of generators in $\mathcal{B}$. Moreover, the problem of determining whether every holomorphic function on an open set in $\mathbb{C}^{n}$ can be approximated by polynomials in the open-closed topology is linked to the problem of finding the polynomial convex hull of the closure of the given set.

In the complex plane polynomial convexity turns out to be a purely topological notion. Using the maximum modulus principle and the Runge approximation theorem, one proves that a compact set $K$ is polynomially convex if and only if $\mathbb{C} \backslash K$ is connected. In higher dimensions the situation is in many ways different. That the complement of a polynomially convex set in

[^0]$\mathbb{C}^{n}$ is connected is still a necessary condition but there are other obstructions to polynomial convexity making the theory considerably richer. For instance, there exist [Wer1] arcs with non-trivial polynomial convex hulls. Furthermore, the notion of polynomial convexity is not invariant under biholomorphic mappings. This phenomenon was first observed by J. Wermer in [Wer2].

Evidently, compact convex sets are polynomially convex. Using the following lemma (see e.g. [Kal]) one deduces that the union of two disjoint compact convex sets is also polynomially convex.

Lemma 1.1. If $X_{1}$ and $X_{2}$ are compact sets in $\mathbb{C}^{n}$ and $p$ a polynomial such that $p\left(X_{1}\right)^{\wedge} \cap p\left(X_{2}\right)^{\wedge}=\emptyset$, then $\left(X_{1} \cup X_{2}\right)^{\wedge}=\widehat{X}_{1} \cup \widehat{X}_{2}$.

This leads one to consider the following general problem: Let $K_{1}, \ldots, K_{q}$ be pairwise disjoint compact convex sets in $\mathbb{C}^{n}$. Is the union $\bigcup_{i=1}^{q} K_{i}$ polynomially convex?

Remark 1. If the sets are far enough apart, for instance if they have disjoint projections on some complex line, then the union is polynomially convex.

Remark 2. It is obvious that if $n=1$, then the union is always polynomially convex.

Recall that an open set $\Omega$ in $\mathbb{C}^{n}$ is said to be Runge if every holomorphic function on $\Omega$ can be approximated by polynomials in the open-closed topology. This is equivalent to saying that for every compact subset $K$ of $\Omega$ the intersection of the polynomial convex hull $\widehat{K}$ with $\Omega$ is relatively compact in $\Omega$. As a consequence, the interior of the set $\bigcup_{i=1}^{q} K_{i}$ is Runge if and only if it is polynomially convex.

The first results when $q>2$ in higher dimension were obtained by E. Kallin in 1964 and show that the answer is no longer independent of the geometry of the sets.

Theorem 1.1 (E. Kallin [Kal]). If $B_{1}, B_{2}$ and $B_{3}$ are pairwise disjoint closed balls in $\mathbb{C}^{n}$, then $B_{1} \cup B_{2} \cup B_{3}$ is polynomially convex.

Theorem 1.2 (E. Kallin [Kal]). There exist three congruent, pairwise disjoint, closed polydisks $P_{1}, P_{2}$ and $P_{3}$ in $\mathbb{C}^{3}$ such that $P_{1} \cup P_{2} \cup P_{3}$ is not polynomially convex.

Remark 3. It is an open problem whether Theorem 1.1 still holds if the number of balls is larger than three. However, by a result of G. Khudaiberganov [Khud], Theorem 1.1 holds for any finite number of balls if the centers of the balls are situated on $\mathbb{R}^{n} \subset \mathbb{C}^{n}$.

Remark 4. In the proof of Theorem 1.2 Kallin actually constructed polydisks parallel to the coordinate axes. This is, however, not possible in $\mathbb{C}^{2}$ (see Rosay [Ros]).

The following theorem was proved by A. M. Kytmanov and G. Khudaŭberganov:

Theorem 1.3 (A. M. Kytmanov and G. Khudaĭberganov [KyKh]). There exist three congruent, pairwise disjoint, closed complex ellipsoids $E_{1}, E_{2}$ and $E_{3}$ in $\mathbb{C}^{3}$ such that $E_{1} \cup E_{2} \cup E_{3}$ is not polynomially convex.

The first example of three pairwise disjoint compact convex sets in $\mathbb{C}^{2}$ whose union has a non-trivial polynomial convex hull was published by J.-P. Rosay in 1989.

Theorem 1.4 (J.-P. Rosay [Ros]). There exist three congruent, pairwise disjoint, convex closed limited tubes $T_{1}, T_{2}$ and $T_{3}$ in $\mathbb{C}^{2}$ such that $T_{1} \cup T_{2} \cup T_{3}$ is not polynomially convex.

Here the limited tube in $\mathbb{C}^{2}$ with base domain $B \subset \mathbb{R}^{2}$ and height $M$ is the domain $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left(\operatorname{Re} z_{1}, \operatorname{Re} z_{2}\right) \in B,\left|\operatorname{Im} z_{1}\right|<M,\left|\operatorname{Im} z_{2}\right|<M\right\}$.
II. We prove the existence of three pairwise disjoint convex sets all congruent to a set of the form $\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2 m} \leq 1\right\}, m$ a positive integer, such that their union has a non-trivial polynomial convex hull.

Such domains have been studied by E. Bedford and S. Pinchuk [BePi]. One of their results is that any bounded pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$ of finite type whose boundary is smooth such that the Levi form has rank at least $n-2$ at each point of the boundary is biholomorphically equivalent to the domain $\left\{z \in \mathbb{C}^{n}:\left|z_{1}\right|^{2}+\ldots+\left|z_{n-1}\right|^{2}+\left|z_{n}\right|^{2 m}<1\right\}$ for some integer $m \geq 1$ if the automorphism group $\operatorname{Aut}(\Omega)$ is non-compact.

Theorem 2.1. There exist a positive integer $m$ and three pairwise disjoint, closed sets $S_{1}, S_{2}$ and $S_{3}$ in $\mathbb{C}^{3}$ all congruent to

$$
\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2 m} \leq 1\right\}
$$

such that $S_{1} \cup S_{2} \cup S_{3}$ is not polynomially convex.
Proof. Let $M>2$. Furthermore, let

$$
D_{1}=\left\{z \in \mathbb{C}:|z|<M^{-1}\right\}, \quad D_{2}=\left\{z \in \mathbb{C}:|z-1|<M^{-1}\right\}
$$

and

$$
D_{3}=\{z \in \mathbb{C}:|z|<M\}
$$

and define $D \subset \mathbb{C}$ to be the domain $D=D_{3} \backslash\left(\bar{D}_{1} \cup \bar{D}_{2}\right)$. Define the mapping $\psi: D \rightarrow \mathbb{C}^{3}$ by

$$
\psi(\xi)=\left(\xi, \frac{1}{\xi}, \frac{1}{1-\xi}\right)
$$

and denote by $\gamma_{1}, \gamma_{2}, \gamma_{3}$ the components of the boundary of $D$, i.e. $\gamma_{1}=$ $\partial D_{1}, \gamma_{2}=\partial D_{2}, \gamma_{3}=\partial D_{3}$.

For a positive integer $m$ we define the sets $\widetilde{S}_{1}, \widetilde{S}_{2}$ and $\widetilde{S}_{3}$ as

$$
\begin{aligned}
& \widetilde{S}_{1}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\right. \\
& \left.\quad\left|\frac{z_{1}-\left(-M+\frac{1}{M}\right)}{M+\delta}\right|^{2}+\left|\frac{z_{2}}{M+\delta}\right|^{2}+\left|\frac{z_{3}-\left(M+\frac{M}{M+1}\right)}{M+\delta}\right|^{2 m} \leq 1\right\} \\
& \widetilde{S}_{2}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\right. \\
& \left.\quad\left|\frac{z_{1}-\left(M+1-\frac{1}{M}\right)}{M+\delta}\right|^{2}+\left|\frac{z_{2}-\left(M+\frac{M}{M+1}\right)}{M+\delta}\right|^{2}+\left|\frac{z_{3}}{M+\delta}\right|^{2 m} \leq 1\right\}, \\
& \widetilde{S}_{3}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\right. \\
& \left.\left|\frac{z_{1}}{M+\delta}\right|^{2}+\left|\frac{z_{2}-\left(-M+\frac{1}{M}\right)}{M+\delta}\right|^{2}+\left|\frac{z_{3}-\left(-M+\frac{1}{M+1}\right)}{M+\delta}\right|^{2 m} \leq 1\right\}
\end{aligned}
$$

We make the following estimates:

$$
\begin{aligned}
& \left|\frac{M^{-1} e^{i \theta}-M^{-1}+M}{M+\delta}\right|^{2}+\left|\frac{M e^{-i \theta}}{M+\delta}\right|^{2} \\
& +\left|\frac{M\left(M-e^{i \theta}\right)^{-1}-M-M(M+1)^{-1}}{M+\delta}\right|^{2 m} \\
& \leq 2\left|\frac{M}{M+\delta}\right|^{2}+\left|\frac{M}{M+\delta}\right|^{2 m}, \\
& \left|\frac{\left.1+M^{-1} e^{i \theta}-M-1+M^{-1}\right)}{M+\delta}\right|^{2}+\left|\frac{\left.M\left(M+e^{i \theta}\right)^{-1}-M-M(M+1)^{-1}\right)}{M+\delta}\right|^{2} \\
& +\left|\frac{-M e^{-i \theta}}{M+\delta}\right|^{2 m} \\
& \leq 2\left|\frac{M}{M+\delta}\right|^{2}+\left|\frac{M}{M+\delta}\right|^{2 m}, \\
& \left|\frac{M e^{i \theta}}{M+\delta}\right|^{2}+\left|\frac{M^{-1} e^{-i \theta}+M-M^{-1}}{M+\delta}\right|^{2}+\left|\frac{\left(1-M e^{i \theta}\right)^{-1}+M-(1+M)^{-1}}{M+\delta}\right|^{2 m} \\
& \leq 2\left|\frac{M}{M+\delta}\right|^{2}+\left|\frac{M}{M+\delta}\right|^{2 m} .
\end{aligned}
$$

We can choose the positive integer $m$ and the constants $M$ and $\delta$ so that

$$
2\left|\frac{M}{M+\delta}\right|^{2}+\left|\frac{M}{M+\delta}\right|^{2 m} \leq 1
$$

and so that the sets $\widetilde{S}_{i}$ are pairwise disjoint. This implies that the image of $\gamma_{i}$ under the mapping $\psi$ will be contained in $\widetilde{S}_{i}$.

It now follows from the maximum modulus theorem that the polynomial convex hull of $\widetilde{S}_{1} \cup \widetilde{S}_{2} \cup \widetilde{S}_{3}$ contains the analytic variety $\psi(D)$. Hence $\widetilde{S}_{1} \cup \widetilde{S}_{2} \cup \widetilde{S}_{3}$ is not polynomially convex. By applying the complex linear isomorphism $\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(z_{1}(M+\delta)^{-1}, z_{2}(M+\delta)^{-1}, z_{3}(M+\delta)^{-1}\right)$ to $\widetilde{S}_{1} \cup \widetilde{S}_{2} \cup \widetilde{S}_{3}$ we obtain the sets $S_{i}$ in the statement of the theorem.

Remark 5. This shows that not all holomorphic functions on the interior of $S_{1} \cup S_{2} \cup S_{3}$ can be approximated by polynomials in the open-closed topology.

## REFERENCES

[BePi] E. Bedford and S. Pinchuk, Domains in $\mathbb{C}^{n+1}$ with noncompact automorphism group, J. Geom. Anal. 1 (1991), 165-192.
[Kal] E. Kallin, Polynomial convexity: The three spheres problem, in: Proceedings of the Conference on Complex Analysis, Minneapolis 1964, H. Röhrl, A. Aeppli and E. Calabi (eds.), Springer, 1965, 301-304.
[Khud] G. Khudaĭberganov, On polynomial and rational convexity of unions of compacts in $\mathbb{C}^{n}$, Izv. Vuz. Mat. 2 (1987), 70-74 (in Russian).
[KyKh] A. M. Kytmanov and G. Khudaı̆berganov, An example of a nonp $\bar{p} o l y n o m-$ ially convex compact set consisting of three non-intersecting ellipsoids, Sibirsk. Mat. Zh. 25 (5) (1984), 196-198 (in Russian).
[Ros] J.-P. Rosay, The polynomial hull of non-connected tube domains, and an example of E. Kallin, Bull. London Math. Soc. 21 (1989), 73-78.
[Wer1] J. Wermer, Polynomial approximation on an arc in $\mathbb{C}^{3}$, Ann. of Math. 62 (1955), 269-270.
[Wer2] -, An example concerning polynomial convexity, Math. Ann. 139 (1959), 147150.

DEPARTMENT OF MATHEMATICS
UMEÅ UNIVERSITY
S-901 87 UMEÅ, SWEDEN
E-mail: ULF.BACKLUND@MATHDEPT.UMU.SE ANDERS.FALLSTROM@MATHDEPT.UMU.SE


[^0]:    1991 Mathematics Subject Classification: Primary 32E20.

