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NULL-FAMILIES OF SUBSETS
OF MONOTONICALLY NORMAL COMPACTA

BY

J. N IK IEL (BEIRUT) AND L. B. TREYB IG (COLLEGE STATION, TEXAS)

The paper deals with compacta satisfying high separation axioms: per-
fect normality and monotone normality. By a result of A. J. Ostaszewski, [4,
Theorem 1], each separable monotonically normal compactum is perfectly
normal.

With additional set-theoretic assumptions, like most often the Contin-
uum Hypothesis, one is able to construct a wide variety of perfectly normal
compacta. Yet another space in that class is obtained in Example 1. The
separable, perfectly normal, zero-dimensional and compact space X con-
structed there admits a (continuous) fully closed mapping f onto the Cantor
set C such that f−1(t) consists of exactly three points for all but countably
many points t ∈ C. The reader may find more information and problems
concerning perfectly normal compacta and constructions of spaces in survey
papers [3] and [6].

In contrast, no set-theoretic conditions are known (so far?) under which
there would exist a separable monotonically normal compactum not being
the continuous image of the double arrow space. Our main result implies
that the space X of Example 1 is not monotonically normal. More gener-
ally, no separable space obtained by “resolving” uncountably many points
of a compact space into at least three-point spaces can be monotonically
normal.

Let A be a collection of subsets of a compact space X. We shall say that
A is a null-family in X if, for each open covering U of X, the subcollection
of all F ∈ A which are contained in no V ∈ U is finite. By the compactness
of X, it is possible to show that A is a null-family in X if and only if for
every two disjoint closed subsets G and H of X the pair of inequalities
F ∩G 6= ∅ 6= F ∩H is valid for finitely many F ∈ A only.

An easy proof of the following lemma is left to the reader.
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Lemma. If A is a null-family of finite subsets of a compact space X,
F is an open subset of X and x ∈ F , then the set

G = {x} ∪
(
F −

⋃
{B ∈ A : B 6⊂ F}

)
is an open subset of X.

We shall say that a continuous mapping f : X → Y of a compactum X
onto a Hausdorff space Y is fully closed if the collection {f−1(y) : y ∈ Y } is
a null-family in X.

Since the terminology concerning monotone normality is not fixed, we
need to introduce the following definition: Let X be a T1-space and M be
an operator which assigns an open subset M(x,U) of X to each ordered pair
(x,U) consisting of a point x ∈ X and its open neighbourhood U in X. We
shall say that M is a monotone normality operator on X if

(1) x ∈ M(x,U) ⊂ U ,
(2) if x ∈ U ⊂ U ′ then M(x,U) ⊂ M(x,U ′), and
(3) if x 6= x′ then M(x,X − {x′}) ∩M(x′, X − {x}) = ∅.

The following theorem solves a problem of the first-named author (see
[5, Problem 212]).

Theorem 1. Let X be a compact , separable and monotonically normal
space. Suppose that A is a null-family of pairwise disjoint subsets of X such
that |A| ≥ 3 for each A ∈ A. Then A is at most countable.

P r o o f. Let M denote a monotone normality operator on X, and let S
be a countable dense subset of X.

Let A ∈ A. Let x1
A, x2

A and x3
A be distinct points of A and LA =

{x1
A, x2

A, x3
A}. Let Ei

A = M(xi
A, {xi

A} ∪ (X − LA)) for each i ∈ {1, 2, 3}.
Then Ei

A, i = 1, 2, 3, are open pairwise disjoint subsets of X.
Let i ∈ {1, 2, 3}. Let F i

A be an open neighbourhood of xi
A such that

cl(F i
A) ⊂ Ei

A. Let Gi
A = {xi

A} ∪ (F i
A −

⋃
{LB : B ∈ A and LB 6⊂ F i

A}). By
Lemma, Gi

A is an open subset of X, because {LB : B ∈ A} is a null-family
of finite subsets of X. Finally, let Hi

A = M(xi
A, Gi

A). Thus, xi
A ∈ Hi

A ⊂
Gi

A ⊂ F i
A ⊂ cl(F i

A) ⊂ Ei
A.

Since S is countable and dense, there exist s1 ∈ S and an uncountable
subcollection B of A such that s1 ∈ H1

A for each A ∈ B. Similarly, there
exist s2 ∈ S and an uncountable subcollection C of B such that s2 ∈ H2

A

for each A ∈ C, and there exist s3 ∈ S and an uncountable subcollection D
of C such that s3 ∈ H3

A for each A ∈ D.
Thus, D is an uncountable subfamily of A and s1, s2, s3 ∈ S are points

such that si ∈ Hi
A for each A ∈ D and i ∈ {1, 2, 3}. Let B ∈ D. Since D is

an infinite null-family, and the sets cl(F i
B), i = 1, 2, 3, are pairwise disjoint,
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there exists C ∈ D such that C meets at most one of the sets cl(F i
B). Say,

C ∩ cl(F 2
B) = ∅ = C ∩ cl(F 3

B).
By the definition of the sets Gi

C , i = 1, 2, 3, LB meets at most one of
them. We assume that LB ∩ G3

C = ∅ (if LB ∩ G2
C = ∅, the argument is

analogous with 3 replaced by 2 everywhere below). Then x3
B 6∈ G3

C , and so
H3

C = M(x3
C , G3

C) ⊂ M(x3
C , X − {x3

B}).
Since C ∩ G3

B ⊂ C ∩ cl(F 3
B) = ∅, it follows that x3

C 6∈ G3
B . Therefore,

H3
B = M(x3

B , G3
B) ⊂ M

(
x3

B , X − {x3
C}

)
. Since M is a monotone normality

operator, M(x3
B , X − {x3

C}) ∩ M(x3
C , X − {x3

B}) = ∅, which implies that
H3

B ∩H3
C = ∅. But B,C ∈ D, and so s3 ∈ H3

B ∩H3
C , a contradiction which

concludes the proof.

A fairly general method of constructing perfectly normal compacta is due
to Filippov, [2]. A similar and more general method of constructing compact
spaces was introduced by Fedorchuk, [1]. A nice presentation of the method
can be found in [6] (see the subsections 3.1.32–3.1.37 and 3.4.1–3.4.10). The
construction of Example 1, below, is using Fedorchuk’s method.

Roughly speaking, in Fedorchuk’s method, one starts with a compact
space Z and an appropriate collection {Yz : z ∈ Z} of compact spaces.
Then each point z ∈ Z is “resolved” into a copy of Yz. The resulting
space X is compact and the natural projection π : X → Z is a fully closed
mapping.

Recall that a subset L of a compact metric space Z is said to be a Lusin
set in Z if L is uncountable and the intersection L ∩ A is a countable set,
for each nowhere dense subset A of Z. It is well known that the Continuum
Hypothesis implies the existence of Lusin sets.

In Filippov’s method, the base space Z is an uncountable metric com-
pactum, and the set of resolved points L = {z ∈ Z : Yz is non-degenerate}
is a Lusin set in Z, while each fiber Yz is a metric compactum and the
projection π : X → Z is an irreducible mapping. The obtained space X is
separable because Z is separable, and non-metrizable because L is uncount-
able. Perfect normality of X follows from the fact that L is a Lusin set in
Z (see [2, Example II] or [6, 3.3.6]). Indeed, if F is a closed subset of X,
then F differs from π−1(π(F )) on countably many fibers Yz only, where z
belongs to the nowhere dense subset bd(π(F )) of Z.

Example 1. Let C denote the usual Cantor set, C ⊂ [0, 1], 0, 1 ∈ C. Let
A denote the set of all points of C which are left-isolated or right-isolated
in C.

If 2ℵ0 = ℵ1, then there exists a perfectly normal, separable and zero-
dimensional compactum X which admits a fully closed map f onto C such
that |f−1(t)| = 3 for each t ∈ C −A and |f−1(t)| = 1 for each t ∈ A.
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Since {f−1(t) : t ∈ C −A} is a null-family of pairwise disjoint subsets of
X, Theorem 1 implies that X is not monotonically normal.

We remark that this example is related to a problem of S. Watson, [6,
3.4.10].

Let {Cα : α < ω1} be an enumeration of all closed subsets of C which
have no isolated points, with C0 = C, and let {zα : α < ω1} be an enumer-
ation of all points of C − A. For each α < ω1, let F 1

α = C ∩ [0, zα) and let
Aα denote the set of all points of Cα which are left-isolated or right-isolated
in Cα.

Let α < ω1. Let (Dn)∞n=1 be a sequence of sets such that

(a) each Dn coincides with Cβ for some β ≤ α such that zα ∈ Cβ −Aβ ,
(b) if β ≤ α and zα ∈ Cβ −Aβ , then the set {n : Dn = Cβ} is infinite.

Now, it is easy to construct by induction points s1, s2, . . . , t1, t2, . . . ∈ (zα, 1]
− C such that sn+1 < tn < sn, sn − zα < 1/n and (sn+1, tn) ∩ Dn 6=
∅ 6= (tn, sn) ∩ Dn for n = 1, 2, . . . Let F 2

α = C ∩
⋃∞

n=1(sn+1, tn) and
F 3

α = C ∩
⋃∞

n=1(tn, sn). It follows that

(i) F 2
α ∪ F 3

α = C ∩ (zα, 1],
(ii) cl(F 2

α) ∩ cl(F 3
α) = {zα}, and

(iii) if ε > 0, β ≤ α and zα ∈ Cβ − Aβ , then (zα, zα + ε] ∩ F i
α ∩ Cβ 6= ∅

for i = 2, 3.

Let xi
α be a collection of new points, where i = 1, 2, 3 and α < ω1. Let

X = A ∪ {xi
α : i = 1, 2, 3, α < ω1}. Define f : X → C by the rules

f(xi
α) = zα and f(x) = x if x ∈ A. Topologize X by taking all the sets

f−1(F i
α) ∪ {xi

α} and all the sets f−1(U), where U is an open subset of C,
to be a subbasis of open sets in X. By (i) and (ii), it follows that X is
compact (and Hausdorff) (see [6, 3.1.33]), separable (see [6, 3.1.37]) and
zero-dimensional, and f is continuous and irreducible (see [6, 3.1.35]), and
fully closed.

It remains to prove that X is perfectly normal. It is enough to show that
each decreasing family {Gα : α < ω1} of closed subsets of X is eventually
constant. In fact, observe that X has 2ℵ0 closed subsets and each closed
subset of X is the intersection of all its closed-open neighbourhoods. Sup-
pose that H is a closed set in X and let {Hα : α < ω1} be the collection
of all closed-open sets which contain H. Let Gα =

⋂
β≤α Hβ for each α.

Then {Gα : α < ω1} is a decreasing collection of closed subsets of X and
H =

⋂
β<ω1

Gβ . If there exists α such that Gβ = Gα when α ≤ β < ω1,
then H =

⋂
β≤α Gβ =

⋂
β≤α Hβ , and so H is a Gδ-set in X.

Suppose that Gα, α < ω1, are closed subsets of X and Gβ ⊃ Gα if
β ≤ α. Let G =

⋂
α<ω1

Gα. Clearly, {f(Gα) : α < ω1} is a decreasing
collection of closed subsets of C. Since C is compact and metric, there
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exists γ0 < ω1 such that f(Gα) = f(Gγ0) for each α ≥ γ0. Let P = f(Gγ0).
Then f(Gα) = P and Gα ⊂ f−1(P ) for each α ≥ γ0. Also, f(G) = P . We
are going to prove that the set f−1(P )−G is countable.

If P is countable then f−1(P ) is also countable. Suppose that P is
uncountable. Let Q denote the unique closed subset of P such that Q has
no isolated points and P − Q is countable. Then there is α0 < ω1 such
that Q = Cα0 . If α ≥ α0 and zα ∈ Cα0 − Aα0 , then the property (iii) of
the sets F i

α implies that x1
α, x2

α, x3
α ∈ H for each closed subset H of X such

that Q ⊂ f(H). Therefore, f−1(P ) − G is contained in the countable set
f−1((P −Q)∪{zβ : β < α0}). Hence, there exists γ1 such that γ0 ≤ γ1 < ω1

and Gα = Gγ1 for each α ≥ γ1. This concludes the proof of perfect normality
of X.

The following remark gives some extra information about X: Let B
denote the collection of all two-point sets each of which consists of the end-
points of a component of [0, 1]−C. Clearly, B is a null-family in C. However,
the collection of two-point sets {f−1(G) : G ∈ B} is not a null-family in X.

Example 2. Let Y denote the disjoint union of two points, [0, 1] and the
double arrow space. Then Y is a monotonically normal compactum which
admits a mapping h onto [0, 1] such that |h−1(t)| = 3 for each t ∈ [0, 1].
Obviously, h is not a fully closed map. It is rather easy to modify the
construction and get a zero-dimensional space Z which has all the properties
of Y which are listed here.

Problem 1. Suppose that X is a separable monotonically normal com-
pactum which admits a fully closed map f into [0, 1] such that |f−1(t)| ≤ 2
for each t ∈ [0, 1]. Does it follow that X is a continuous image of the double
arrow space?

Problem 2. Does each monotonically normal compactum admit a fully
closed map into a metric space? What happens in the cases when the
compactum is also separable? zero-dimensional? both?
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