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NULL-FAMILIES OF SUBSETS
OF MONOTONICALLY NORMAL COMPACTA

BY

J. NIKIEL (BEIRUT) anp L.B. TREYBIG (COLLEGE STATION, TEXAS)

The paper deals with compacta satisfying high separation axioms: per-
fect normality and monotone normality. By a result of A. J. Ostaszewski, [4,
Theorem 1], each separable monotonically normal compactum is perfectly
normal.

With additional set-theoretic assumptions, like most often the Contin-
uum Hypothesis, one is able to construct a wide variety of perfectly normal
compacta. Yet another space in that class is obtained in Example 1. The
separable, perfectly normal, zero-dimensional and compact space X con-
structed there admits a (continuous) fully closed mapping f onto the Cantor
set C such that f~!(t) consists of exactly three points for all but countably
many points ¢ € C'. The reader may find more information and problems
concerning perfectly normal compacta and constructions of spaces in survey
papers [3] and [6].

In contrast, no set-theoretic conditions are known (so far?) under which
there would exist a separable monotonically normal compactum not being
the continuous image of the double arrow space. Our main result implies
that the space X of Example 1 is not monotonically normal. More gener-
ally, no separable space obtained by “resolving” uncountably many points
of a compact space into at least three-point spaces can be monotonically
normal.

Let A be a collection of subsets of a compact space X. We shall say that
A is a null-family in X if, for each open covering U of X, the subcollection
of all F' € A which are contained in no V € U is finite. By the compactness
of X, it is possible to show that A is a null-family in X if and only if for
every two disjoint closed subsets G and H of X the pair of inequalities
FNG#0+#FNH is valid for finitely many F € A only.

An easy proof of the following lemma is left to the reader.
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LEMMA. If A is a null-family of finite subsets of a compact space X,
F is an open subset of X and x € F, then the set

Gz{x}U(F—U{BEA:BgZF})
is an open subset of X.

We shall say that a continuous mapping f : X — Y of a compactum X
onto a Hausdorff space Y is fully closed if the collection {f~!(y):y € Y} is
a null-family in X.

Since the terminology concerning monotone normality is not fixed, we
need to introduce the following definition: Let X be a Ti-space and M be
an operator which assigns an open subset M (z,U) of X to each ordered pair
(x,U) consisting of a point € X and its open neighbourhood U in X. We
shall say that M is a monotone normality operator on X if

(1) x € M(z,U) C U,
(2)if x € U C U’ then M(z,U) C M(x,U"), and
(3) if x # 2’ then M(x, X — {2'}) N M(2', X — {x}) = 0.

The following theorem solves a problem of the first-named author (see
[5, Problem 212]).

THEOREM 1. Let X be a compact, separable and monotonically normal
space. Suppose that A is a null-family of pairwise disjoint subsets of X such
that |A| > 3 for each A € A. Then A is at most countable.

Proof. Let M denote a monotone normality operator on X, and let .S
be a countable dense subset of X.

Let A € A. Let 2, 2% and 23 be distinct points of A and Ls =
{zY, 2%, 23}, Let B = M(z%y,{z%,} U (X — La)) for each i € {1,2,3}.
Then EY, i = 1,2,3, are open pairwise disjoint subsets of X.

Let i € {1,2,3}. Let F be an open neighbourhood of z%; such that
c(Fy) C EYy. Let G = {2}, }U(F}, — U{Lg: B€ A and Lg ¢ F}}). By
Lemma, G is an open subset of X, because {Lp : B € A} is a null-family
of finite subsets of X. Finally, let HYy = M(2%,GY). Thus, 2%, € HY C
GY C Fi C cl(FY) C EY,.

Since S is countable and dense, there exist s; € S and an uncountable
subcollection B of A such that s; € H} for each A € B. Similarly, there
exist s € S and an uncountable subcollection C of B such that s; € Hi
for each A € C, and there exist s3 € S and an uncountable subcollection D
of C such that s3 € H3 for each A € D.

Thus, D is an uncountable subfamily of A and s1, s2,s3 € S are points
such that s; € H for each A € D and i € {1,2,3}. Let B € D. Since D is
an infinite null-family, and the sets cl(F'), i = 1,2, 3, are pairwise disjoint,
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there exists C' € D such that C meets at most one of the sets cl(Fj). Say,
CNcl(F3)=0=Cncl(F}).

By the definition of the sets G4, i = 1,2,3, Lp meets at most one of
them. We assume that Lg N G%L = 0 (if Lp N G% = 0, the argument is
analogous with 3 replaced by 2 everywhere below). Then z% ¢ G%,, and so
HE = M(a%,G) C M(x, X —{zh}).

Since CNG% C CNcl(FE) = 0, it follows that 23, ¢ G%. Therefore,
H} = M(2%,G%) C M(2%,X — {zL}). Since M is a monotone normality
operator, M(z%, X — {z2}) N M(x}, X — {z%}) = 0, which implies that
H}N Hg =0. But B,C € D, and so s3 € H3 N Hg, a contradiction which
concludes the proof.

A fairly general method of constructing perfectly normal compacta is due
to Filippov, [2]. A similar and more general method of constructing compact
spaces was introduced by Fedorchuk, [1]. A nice presentation of the method
can be found in [6] (see the subsections 3.1.32-3.1.37 and 3.4.1-3.4.10). The
construction of Example 1, below, is using Fedorchuk’s method.

Roughly speaking, in Fedorchuk’s method, one starts with a compact
space Z and an appropriate collection {Y, : z € Z} of compact spaces.
Then each point z € Z is “resolved” into a copy of Y,. The resulting
space X is compact and the natural projection 7 : X — Z is a fully closed
mapping.

Recall that a subset L of a compact metric space Z is said to be a Lusin
set in Z if L is uncountable and the intersection L N A is a countable set,
for each nowhere dense subset A of Z. It is well known that the Continuum
Hypothesis implies the existence of Lusin sets.

In Filippov’s method, the base space Z is an uncountable metric com-
pactum, and the set of resolved points L = {z € Z : Y, is non-degenerate}
is a Lusin set in Z, while each fiber Y, is a metric compactum and the
projection m : X — Z is an irreducible mapping. The obtained space X is
separable because Z is separable, and non-metrizable because L is uncount-
able. Perfect normality of X follows from the fact that L is a Lusin set in
Z (see [2, Example II] or [6, 3.3.6]). Indeed, if F' is a closed subset of X,
then F differs from 7=1(7(F)) on countably many fibers Y, only, where z
belongs to the nowhere dense subset bd(m(F')) of Z.

EXAMPLE 1. Let C denote the usual Cantor set, C' C [0,1],0,1 € C. Let
A denote the set of all points of C' which are left-isolated or right-isolated
in C.

If 2% = Xy, then there exists a perfectly normal, separable and zero-
dimensional compactum X which admits a fully closed map f onto C such

that |f~1(t)] =3 for each t € C — A and |f~1(t)| = 1 for each t € A.



90 J. NIKIEL AND L. B. TREYBIG

Since {f~1(t) : t € C — A} is a null-family of pairwise disjoint subsets of
X, Theorem 1 implies that X is not monotonically normal.

We remark that this example is related to a problem of S. Watson, [6,
3.4.10].

Let {Cy : @ < w1} be an enumeration of all closed subsets of C' which
have no isolated points, with Cy = C, and let {2z, : @ < w1} be an enumer-
ation of all points of C'— A. For each a < wy, let F1 = C N0, 2,) and let
A, denote the set of all points of C,, which are left-isolated or right-isolated
in C,.

Let v < wy. Let (D,,)52 be a sequence of sets such that

(a) each D,, coincides with Cg for some § < a such that z, € Cg — Ag,
(b) if B < o and z, € C3 — Ag, then the set {n : D,, = Cg} is infinite.

Now, it is easy to construct by induction points s, s, ..., t1,t2,... € (24, 1]
— C such that s,+1 < tn < Spn, Sp — 20 < 1/n and (Sp41,tn) N D, #
0 # (tn,sn) N D, for n = 1,2,... Let F?2 = CnN Uo— (Snt1,tn) and
F3=CnUy_ (tn,spn). It follows that

(i) F2UE3 =C N (24,1],
(ii) cl(F2) A cl(F3) = {za}, and
(iii) if e > 0, B < o and z, € C5 — Ag, then (24,24 +e]NFLNCs # 0
for i = 2, 3.

Let 2%, be a collection of new points, where i = 1,2,3 and o < wy. Let
X = Au{zl : i =1,2,3, @ < wi}. Define f : X — C by the rules
f(xl) = 24 and f(z) = z if x € A. Topologize X by taking all the sets
FUF) U {2%} and all the sets f~1(U), where U is an open subset of C,
to be a subbasis of open sets in X. By (i) and (ii), it follows that X is
compact (and Hausdorff) (see [6, 3.1.33]), separable (see [6, 3.1.37]) and
zero-dimensional, and f is continuous and irreducible (see [6, 3.1.35]), and
fully closed.

It remains to prove that X is perfectly normal. It is enough to show that
each decreasing family {G, : @ < w1} of closed subsets of X is eventually
constant. In fact, observe that X has 2% closed subsets and each closed
subset of X is the intersection of all its closed-open neighbourhoods. Sup-
pose that H is a closed set in X and let {H, : o < w1} be the collection
of all closed-open sets which contain H. Let Go = (\;<, Hp for each a.
Then {G, : @ < wi} is a decreasing collection of closed subsets of X and
H =g, G- If there exists a such that Gy = G, when o < 8 < wy,
then H = ;.. Gp =(\s<, Hp, and so H is a Gs-set in X.

Suppose that G,, o < wq, are closed subsets of X and Gg D G, if
B < a Let G =, Ga Clearly, {f(Ga) : @ < w1} is a decreasing
collection of closed subsets of C. Since C' is compact and metric, there
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exists 79 < wy such that f(G,) = f(G,,) for each a > vy. Let P = f(G,,).
Then f(G,) = P and G, C f~(P) for each a > 7. Also, f(G) = P. We
are going to prove that the set f~1(P) — G is countable.

If P is countable then f~!(P) is also countable. Suppose that P is
uncountable. Let ) denote the unique closed subset of P such that () has
no isolated points and P — @ is countable. Then there is ag < w; such
that @ = Cqo,. If & > o and zo € Cy, — Aq,, then the property (iii) of
the sets F! implies that xl, 22,23 € H for each closed subset H of X such
that Q C f(H). Therefore, f~'(P) — G is contained in the countable set
7Y (P—Q)U{z5 : B < ap}). Hence, there exists 1 such that vo <1 < wy
and G, = G, for each a > 7. This concludes the proof of perfect normality
of X.

The following remark gives some extra information about X: Let B
denote the collection of all two-point sets each of which consists of the end-
points of a component of [0, 1]—C'. Clearly, B is a null-family in C. However,
the collection of two-point sets { f~(G) : G € B} is not a null-family in X.

EXAMPLE 2. Let Y denote the disjoint union of two points, [0, 1] and the
double arrow space. Then Y is a monotonically normal compactum which
admits a mapping h onto [0,1] such that |h=1(t)] = 3 for each t € [0,1].
Obviously, h is not a fully closed map. It is rather easy to modify the
construction and get a zero-dimensional space Z which has all the properties
of Y which are listed here.

PROBLEM 1. Suppose that X is a separable monotonically normal com-
pactum which admits a fully closed map f into [0, 1] such that |f~1(¢)| < 2
for each ¢ € [0, 1]. Does it follow that X is a continuous image of the double
arrow space?

PROBLEM 2. Does each monotonically normal compactum admit a fully
closed map into a metric space? What happens in the cases when the
compactum is also separable? zero-dimensional? both?
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