COLLOQUIUM MATHEMATICUM

THE DUALITY CORRESPONDENCE
 OF INFINITESIMAL CHARACTERS

BY
TOMASZ PRZEBINDA (NORMAN, OKLAHOMA)
We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.
0. Introduction. Let (W,\langle,$\rangle) be a finite-dimensional, real or complex,$ symplectic vector space. Let $\operatorname{Sp}(W,\langle\rangle)=,\operatorname{Sp}$ denote the isometry group of the form \langle,$\rangle , and let \mathfrak{s p}$ be its Lie algebra.

Definition $0.1[8,10]$. A pair of subgroups G, G^{\prime} of Sp is called a reductive dual pair if
(0.2) $\quad G^{\prime}$ is the centralizer of G in Sp and vice versa; and
(0.3) both G, G^{\prime} act reductively on W.

These pairs have been classified $[7,9]$. For a real reductive dual pair G, G^{\prime} (contained in Sp) let its complexification
(0.4) $\mathbf{G}, \mathbf{G}^{\prime}$ be the smallest complex reductive dual pair in the complexification of the algebraic group Sp such that \mathbf{G} contains G, and \mathbf{G}^{\prime} contains G^{\prime}.
We will use bold letters to denote complexifications.
Suppose $W=W_{1} \oplus W_{2}$ is an orthogonal direct sum decomposition of W and each W_{j} is invariant by G and G^{\prime}. Let G_{j} be the restriction of G to W_{j}. Define G_{j}^{\prime} similarly. Then $G=G_{1} \times G_{2}$ and $G^{\prime}=G_{1}^{\prime} \times G_{2}^{\prime}$ and G_{j}, G_{j}^{\prime} is a reductive dual pair in $\operatorname{Sp}\left(W_{j}\right), j=1,2$.

Definition $0.5[8,10]$. We say that the reductive dual pair G, G^{\prime} is irreducible if it has no non-trivial direct sum decomposition like that described above.

1991 Mathematics Subject Classification: 22E46, 17 B 10.
Research partially supported by NSF grants.

By the metaplectic group $\widetilde{\text { Sp }}$ one understands the unique connected twofold covering group of the real symplectic group Sp . For any reductive Lie subgroup E of Sp let
(0.6) \widetilde{E} be its preimage in the metaplectic group $\widetilde{\mathrm{Sp}}$.

Denote by $R(\widetilde{E})$ the set of infinitesimal equivalence classes ([19, 0.3.9]) of continuous irreducible admissible representations of \widetilde{E} on locally convex topological vector spaces. The group $\widetilde{\mathrm{Sp}}$ has a unitary representation ω called the oscillator representation $[1,10,15, \ldots]$. Let ω^{∞} be the smooth representation associated with ω. Denote by $\mathcal{R}(\widetilde{E}, \omega)$ the set of elements of $\mathcal{R}(\widetilde{E})$ which can be realized as $\omega^{\infty}(\widetilde{E})$ invariant quotients by closed subspaces of the space ω^{∞}.

The following theorem of Roger Howe reveals a very special character of the oscillator representation.

Theorem $0.8[7]$. The set $\mathcal{R}\left(G \cdot G^{\prime}, \omega\right)$ is the graph of a bijection between (all of) $\mathcal{R}(G, \omega)$ and (all of) $\mathcal{R}\left(G^{\prime}, \omega\right)$. In other words, for each $\Pi \in \mathcal{R}(G, \omega)$ there is a unique $\Pi^{\prime} \in \mathcal{R}\left(G^{\prime}, \omega\right)$ such that

$$
\begin{equation*}
\Pi \otimes \Pi^{\prime} \in \mathcal{R}\left(G \cdot G^{\prime}, \omega\right) \tag{0.9}
\end{equation*}
$$

and vice versa.
Here \otimes means the outer tensor product. The topology of \otimes is not uniquely determined but the infinitesimal equivalence class is. Moreover,

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{\tilde{G} \cdot \tilde{G}^{\prime}}\left(\omega^{\infty}, \Pi \otimes \Pi^{\prime}\right)=1 \tag{0.10}
\end{equation*}
$$

We will call the (bijective) function

$$
\begin{equation*}
\mathcal{R}(G, \omega) \ni \Pi \rightarrow \Pi^{\prime} \in \mathcal{R}\left(G^{\prime}, \omega\right) \tag{0.11}
\end{equation*}
$$

defined by (0.9), the Duality Correspondence.
It is not easy to describe this function in terms of any known parameters classifying $\mathcal{R}(\widetilde{G})$ and $\mathcal{R}\left(\widetilde{G}^{\prime}\right)$. In this paper we determine the correspondence of infinitesimal characters (see [19, 0.3.18]) of Π and Π^{\prime} induced by (0.11) (Theorems 1.8, 1.13, and 1.19).

The point is that this correspondence does not depend on the real form G, G^{\prime} of $\mathbf{G}, \mathbf{G}^{\prime}(0.4)$. Moreover, for any real reductive dual pair G, G^{\prime} one can find another pair G_{1}, G_{1}^{\prime} with the same complexification and at least one member compact. For such pairs the Duality Correspondence (0.11) is known explicitly (see [2, 4, 15] and the Appendix).

1. The Duality Correspondence. Let G, G^{\prime} be a real reductive dual pair (Def. (0.1)) with Lie algebras $\mathfrak{g}, \mathfrak{g}^{\prime}$. The group $\widetilde{\mathrm{Sp}}$ acts by conjugation on
the space $\omega(U(\mathfrak{s p}))$, the image under ω of the universal enveloping algebra $U(\mathfrak{s p})$ of the Lie algebra $\mathfrak{s p}$. One of the fundamental properties of the oscillator representation is that this action factorizes to an action of the group $S p$ and even extends to an action of the complexification $\mathbf{S p}$ (see [10, Section 3]). In this sense $\mathbf{S p}$ acts by conjugation on $\omega(U(\mathfrak{s p}))$.

Since the group G acts reductively on the universal enveloping algebra $U(\mathfrak{g})$, we have

$$
\begin{equation*}
\omega\left(Z(\mathfrak{g})^{\mathbf{G}}\right)=\omega(Z(\mathfrak{g}))^{\mathbf{G}} \tag{1.1}
\end{equation*}
$$

where X^{G} is the space of G-invariants in $X, Z(\mathfrak{g})$ denotes the center of the universal enveloping algebra $U(\mathfrak{g})$ and the action of G on the right hand side of (1.1) is by conjugation (as explained above). Let us notice that some members of dual pairs are disconnected. It may indeed happen that $Z(\mathfrak{g})^{\mathbf{G}}$ is strictly contained in $Z(\mathfrak{g})$.

A statement similar to (1.1) holds for G^{\prime} and for the product $G \cdot G^{\prime}$. It follows from [6, Theorem 7] (see also [10, Theorem 4.1]) that

$$
\begin{equation*}
\omega(U(\mathfrak{s p}))^{\mathbf{G}^{\prime}}=\omega(U(\mathfrak{g})) \tag{1.2}
\end{equation*}
$$

and therefore that

$$
\begin{align*}
\omega\left(Z\left(\mathfrak{g}^{\prime}\right)^{\mathbf{G}^{\prime}}\right) & \subseteq \omega\left(U(\mathfrak{s p})^{\mathbf{G} \cdot \mathbf{G}^{\prime}}\right) \tag{1.3}\\
& =\omega(U(\mathfrak{s p}))^{\mathbf{G} \cdot \mathbf{G}^{\prime}}=\omega(U(\mathfrak{g}))^{\mathbf{G}}=\omega(Z(\mathfrak{g}))^{\mathbf{G}}
\end{align*}
$$

where the inclusion is obvious, the first equality follows from (1.1), the second from (1.2) and the third from (1.1). By permuting G and G^{\prime} in (1.3) we get a known

Theorem 1.4. If G, G^{\prime} is a real reductive dual pair, then

$$
\begin{aligned}
\omega\left(Z(\mathfrak{g})^{\mathbf{G}}\right) & =\omega\left(U(\mathfrak{s p})^{\mathbf{G} \cdot \mathbf{G}^{\prime}}\right)=\omega\left(Z\left(\mathfrak{g}^{\prime}\right)^{\mathbf{G}^{\prime}}\right)=\omega(Z(\mathfrak{g}))^{\mathbf{G}} \\
& =\omega(U(\mathfrak{s p}))^{\mathbf{G} \cdot \mathbf{G}^{\prime}}=\omega\left(Z\left(\mathfrak{g}^{\prime}\right)\right)^{\mathbf{G}^{\prime}} .
\end{aligned}
$$

Let Π, Π^{\prime} be as in (0.9) and let $\chi_{\Pi}: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ be the infinitesimal character of Π and let $\chi_{\Pi^{\prime}}: Z\left(\mathfrak{g}^{\prime}\right) \rightarrow \mathbb{C}$ be the infinitesimal character of Π^{\prime}. By (0.10) there is a non-zero operator

$$
\begin{equation*}
T \in \operatorname{Hom}_{\tilde{G} \cdot \tilde{G}^{\prime}}\left(\omega^{\infty}, \Pi \otimes \Pi^{\prime}\right) \tag{1.5}
\end{equation*}
$$

It satisfies

$$
T \omega(a)=\chi_{\Pi}(a) T, \quad T \omega\left(a^{\prime}\right)=\chi_{\Pi^{\prime}}\left(a^{\prime}\right) T
$$

for $a \in Z(\mathfrak{g})$ and $a^{\prime} \in Z\left(\mathfrak{g}^{\prime}\right)$.
We restrict χ_{Π} to $Z(\mathfrak{g})^{\mathbf{G}}$ and $\chi_{\Pi^{\prime}}$ to $Z\left(\mathfrak{g}^{\prime}\right)^{\mathbf{G}^{\prime}}$. It follows from (1.5) that

$$
\begin{equation*}
\operatorname{Ker}\left(\chi_{\Pi}\right)=\operatorname{Ker}\left(\left.\omega\right|_{Z(\mathfrak{g})^{\mathbf{G}}}\right) \quad \text { and the same for } \chi_{\Pi^{\prime}} \tag{1.6}
\end{equation*}
$$

where $\left.\omega\right|_{Z(\mathfrak{g})^{\text {G }}}$ is the restriction of ω to $Z(\mathfrak{g})^{\mathbf{G}}$. Therefore both χ_{Π} and $\chi_{\Pi^{\prime}}$ define the same character

$$
\chi: \omega\left(U(\mathfrak{s p})^{\mathbf{G} \cdot \mathbf{G}^{\prime}}\right) \rightarrow \mathbb{C}
$$

and we get the following commuting diagram of surjections:

An immediate consequence of (1.7) is the following theorem:
Theorem 1.8. Let G, G^{\prime} be a reductive dual pair and let $\Pi_{j} \otimes \Pi_{j}^{\prime} \in$ $\mathcal{R}\left(G \cdot G^{\prime}, \omega\right), j=1,2$. Then $\chi_{\Pi_{1}}=\chi_{\Pi_{2}}$ implies $\chi_{\Pi_{1}^{\prime}}=\chi_{\Pi_{2}^{\prime}}$.

Assume that $G, G^{\prime} \subseteq$ Sp and $G_{1}, G_{1}^{\prime} \subseteq$ Sp are two real reductive dual pairs with isomorphic complexifications $\mathbf{G}, \mathbf{G}^{\prime} \subseteq \mathbf{S p}$ and $\mathbf{G}_{1}, \mathbf{G}_{1}^{\prime} \subseteq \mathbf{S p}$. It follows from the classification of such pairs [7, 9] that there is an element $g \in \mathbf{S p}$ such that

$$
\begin{equation*}
\operatorname{Int} g(\mathbf{G})=\mathbf{G}_{1} \quad \text { and } \quad \operatorname{Int} g\left(\mathbf{G}^{\prime}\right)=\mathbf{G}_{1}^{\prime} \tag{1.8}
\end{equation*}
$$

Since all the complexified Lie algebras $\mathfrak{g}_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}}^{\prime}, \mathfrak{g}_{1 \mathbb{C}}, \mathfrak{g}_{1 \mathbb{C}}^{\prime}$ are contained in $\mathfrak{s p}_{\mathbb{C}}$, their universal enveloping algebras are contained in $U(\mathfrak{s p})$. Let $\operatorname{Ad} \omega(g)$ denote the action by conjugation of g on the algebra $\omega(U(\mathfrak{s p}))$. It is apparent that the following diagram is commutative:

and that the vertical arrows are isomorphisms.
Theorem 1.10. Let G, G^{\prime} be a real irreducible dual pair. Assume that $\operatorname{rank} G \leq \operatorname{rank} G^{\prime}$. Then the oscillator representation ω maps $Z(\mathfrak{g})^{\mathbf{G}}$ injectively into $\omega(U(\mathfrak{s p}))$.

Proof. By inspection of the list of all possible $G, G^{\prime}([7],[10,4.1,4.2])$ we see that there is a reductive dual pair G_{1}, G_{1}^{\prime} with at least one member compact and the same complexification as G, G^{\prime}.

The diagram (1.9) reduces the verification of this theorem to the case of pairs like G_{1}, G_{1}^{\prime}. They are either irreducible (Def. (0.5)) or double of irreducible pairs. We may therefore assume that G or G^{\prime} is compact. In this situation this theorem is an immediate consequence of (1.6) and Lemma A. 7 (in the Appendix).

Under the assumptions of Theorem 1.10, the diagram (1.7) defines a surjective homomorphism

$$
\begin{equation*}
Z\left(\mathfrak{g}^{\prime}\right)^{\mathbf{G}^{\prime}} \rightarrow Z(\mathfrak{g})^{\mathbf{G}} \tag{1.11}
\end{equation*}
$$

which, by dualization, defines an injection

$$
\begin{equation*}
D: \text { max spec } Z(\mathfrak{g})^{\mathbf{G}} \rightarrow \max \operatorname{spec} Z\left(\mathfrak{g}^{\prime}\right)^{\mathbf{G}^{\prime}} \tag{1.12}
\end{equation*}
$$

Theorem 1.13. Under the assumptions of Theorem 1.10,
(1.14) the map D does not depend on the real form G, G^{\prime} of $\mathbf{G}, \mathbf{G}^{\prime}$; and (1.15) if $\Pi \otimes \Pi^{\prime} \in \mathcal{R}\left(G \cdot G^{\prime}, \omega\right)$, then $D\left(\chi_{\Pi}\right)=\chi_{\Pi^{\prime}}$.

Proof. The first statement follows immediately from the commutation of the diagram (1.9) and the second from (1.7).

The statement (1.14) reduces the problem of understanding the map D (1.12) to the case when $\mathbf{G}, \mathbf{G}^{\prime}$ is an irreducible complex dual pair.

Choose a Cartan subalgebra $\mathfrak{h}_{\mathbb{C}}$ of $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{h}_{\mathbb{C}}^{\prime}$ of $\mathfrak{g}_{\mathbb{C}}^{\prime}$. Let e_{1}, e_{2}, \ldots be the standard orthonormal coordinatization of $\mathfrak{h}_{\mathbb{C}}^{*}$ and let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be the standard orthonormal coordinatization of $\mathfrak{h}_{\mathbb{C}}^{* *}$ as in (A.4)-(A.6), or [3]. Define an embedding

$$
\begin{equation*}
E: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{\prime *} \quad \text { by } \quad E\left(e_{j}\right)=e_{j}^{\prime} \quad(j=1,2, \ldots, \operatorname{rank} G) \tag{1.16}
\end{equation*}
$$

Let

$$
\tau=\left\{\begin{array}{l}
\begin{array}{l}
\sum_{j=m+1}^{n}((m+1+n) / 2-j) e_{j}^{\prime} \\
\\
\text { if } \mathbf{G}=\mathrm{GL}(m, \mathbb{C}), \mathbf{G}^{\prime}=\mathrm{GL}(n, \mathbb{C}) \\
\sum_{j=n+1}^{[m / 2]}(m / 2-j) e_{j}^{\prime} \\
\quad \text { if } \mathbf{G}=\operatorname{Sp}(n, \mathbb{C}), \mathbf{G}^{\prime}=O(m, \mathbb{C}) \\
\sum_{j=[m / 2]+1}^{n}(n+1+[m / 2]-m / 2-j) e_{j}^{\prime}
\end{array} \tag{1.17}\\
\quad \text { if } \mathbf{G}=O(m, \mathbb{C}), \mathbf{G}^{\prime}=\operatorname{Sp}(n, \mathbb{C})
\end{array}\right.
$$

Here we use the convention that $\sum_{j=p}^{q}=0$ if $q<p$. Define a map F from $\mathfrak{h}_{\mathbb{C}}^{*}$ to $\mathfrak{h}_{\mathbb{C}}^{\prime *}$ by

$$
\begin{equation*}
F(\gamma)=E(\gamma)+\tau \quad\left(\gamma \in \mathfrak{h}_{\mathbb{C}}^{*}\right) \tag{1.18}
\end{equation*}
$$

Theorem 1.19. Let G, G^{\prime} be a real irreducible dual pair whose complexification $\mathbf{G}, \mathbf{G}^{\prime}$ is an irreducible complex dual pair. Then the map D (1.12) coincides with the map F (1.18) via the Harish-Chandra isomorphism
$\max \operatorname{spec} Z(\mathfrak{g})^{\mathbf{G}} \rightarrow\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)^{\mathbf{W}} \quad$ (and the same for $\left.G^{\prime}\right)$.
Here \mathbf{W} is the Weyl group of type A (permutations of the e_{j} 's) if $G=$ $\mathrm{GL}(m, \mathbb{C})$; and of type C (permutations and all sign changes of the e_{j} 's $\left.s\right)$) if $\mathbf{G}=\operatorname{Sp}(n, \mathbb{C})$ or $\mathbf{G}=O(m, \mathbb{C})$ (and the same for $\left.\mathbf{W}^{\prime}\right)$.

Proof. By Theorem 1.13 we may assume that G or G^{\prime} is compact. For such pairs the representations Π and $\Pi^{\prime}(0.11)$ are highest weight modules (see the Appendix). One obtains the infinitesimal character of such a module by adding half the sum of positive roots to its highest weight. Therefore a straightforward calculation using (A.4)-(A.6) verifies this theorem.

Appendix. The Duality Correspondence for real irreducible dual pairs with at least one member compact. Let G, G^{\prime} be such a pair. Assume that G^{\prime} is compact. In this case the Duality Correspondence (0.11) is known explicitly $[2,4,15]$. The point is that both representations Π and Π^{\prime} which occur in (0.11) are unitary highest weight modules. We will describe them here.

Let K be a maximal compact subgroup of G with Lie algebra \mathfrak{k}, and let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition of \mathfrak{g}. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{k}. Our assumptions on G imply that \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g}. Fix a Borel subalgebra $\mathbf{b} \subseteq \mathfrak{g}_{\mathbb{C}}$ containing $\mathfrak{h}_{\mathbb{C}}$. Let
(A.1) Δ denote the root system of $\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}}\right)$, and Δ^{+}the positive root system determined by b.

Since (G, K) is a hermitian symmetric pair [5], we may assume that \mathbf{b} is chosen so that $\mathfrak{k}_{\mathbb{C}} \oplus \mathbf{b}$ is a parabolic subalgebra of $\mathfrak{g}_{\mathbb{C}}$. Let
(A.2) Δ^{+}denote the set of positive compact roots and Δ_{n}^{+}be the remaining roots of Δ^{+}.

Similarly we choose a Cartan subalgebra $\mathfrak{h}_{\mathbb{C}}^{\prime}$ of $\mathfrak{g}_{\mathbb{C}}^{\prime}$, a Borel subalgebra $\mathbf{b}^{\prime} \subseteq$ $\mathfrak{g}_{\mathbb{C}}^{\prime}$ containing $\mathfrak{h}_{\mathbb{C}}^{\prime}$,
(A.3) the root system Δ^{\prime} of $\left(\mathfrak{g}_{\mathbb{C}}^{\prime}, \mathfrak{g}_{\mathbb{C}}^{\prime}\right)$ and the positive root system $\Delta^{\prime+}$ determined by \mathbf{b}^{\prime}.

Let H be the centralizer of \mathfrak{h} in G and let H^{\prime} be the centralizer of \mathfrak{h}^{\prime} in G^{\prime}. Also let $\mathbf{n} \subseteq \mathbf{b}$ and $\mathbf{n}^{\prime} \subseteq \mathbf{b}^{\prime}$ be the nilradicals determined by Δ^{+}and $\Delta^{\prime+}$ respectively.

The representations $\Pi, \Pi^{\prime}(0.11)$ are uniquely determined by the irreducible representations $\Lambda, \Lambda^{\prime}$ of H, H^{\prime} on the annihilators of $\mathbf{n} \subseteq \mathbf{b}, \mathbf{n}^{\prime} \subseteq \mathbf{b}^{\prime}$ in the Harish-Chandra modules of Π and Π^{\prime} respectively. The representation Λ is always one-dimensional with derivative $\lambda \in \mathfrak{h}_{\mathbb{C}}^{*}$, but Λ^{\prime} is either one- or two-dimensional. In any case the derivative $d \Lambda^{\prime}$ of Λ^{\prime} has only one $\Delta^{\prime+}$-dominant component $\lambda^{\prime} \in \mathfrak{h}_{\mathbb{C}}^{\prime *}$. We are going to list all pairs $\lambda, \lambda^{\prime}$ defined above. We will use the standard coordinate expressions of the root systems as in [3].
(A.4) $G=\operatorname{Sp}(n, \mathbb{R}), G^{\prime}=O(c)(n, c \geq 1)$.

$$
\begin{aligned}
\Delta_{c}^{+} & =\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\}, \\
\Delta_{n}^{+} & =\left\{e_{i}+e_{j}: 1 \leq i \leq j \leq n\right\}, \\
\Delta^{\prime+} & = \begin{cases}\left\{e_{i}^{\prime} \pm e_{j}^{\prime}: 1 \leq i<j \leq l\right\} \cup\left\{e_{i}^{\prime}: 1 \leq i \leq l\right\} \\
\left\{e_{i}^{\prime} \pm e_{j}^{\prime}: 1 \leq i<j \leq l\right\} & \text { if } c=2 l+1 \geq 3,\end{cases}
\end{aligned}
$$

Here $\mathfrak{g}^{\prime}=0, \lambda^{\prime}=0$ if $c=1$, and e_{1}^{\prime} is the standard basis element of $\mathfrak{h}_{\mathbb{C}}^{* *}=\mathfrak{g}_{\mathbb{C}}^{\prime *}$ if $c=2$.
(A.4.2) The corresponding pairs of highest weights:

$$
\begin{equation*}
\lambda=-\sum_{a=1}^{n} \frac{c}{2} e_{a}-\sum_{a=1}^{k} \lambda_{a} e_{n+1-a}, \quad \lambda^{\prime}=\sum_{a=1}^{k} \lambda_{a} e_{a}^{\prime} \tag{A.4.2.1}
\end{equation*}
$$

for $0 \leq k \leq l, n$ and integers $\lambda_{1} \geq \ldots \geq \lambda_{k}>0$;

$$
\begin{equation*}
\lambda=-\sum_{a=1}^{n} \frac{c}{2} e_{a}-\sum_{a=1}^{c-k} \lambda_{a} e_{n+1-a}, \quad \lambda^{\prime}=\sum_{a=1}^{k} \lambda_{a} e_{a}^{\prime} \tag{A.4.2.2}
\end{equation*}
$$

for $c-n \leq k \leq l$ and integers $\lambda_{1} \geq \ldots \geq \lambda_{k}>\lambda_{k+1}=\ldots=\lambda_{c-k}=1$.
(A.5) $G=U(p, q), G^{\prime}=U(c)(p, q \geq 0 ; p+q \geq 1, c \geq 1, p \leq q)$.

$$
\begin{align*}
\Delta_{c}^{+} & =\left\{e_{i}-e_{j}: 1 \leq i<j \leq p \text { or } p+1 \leq i<j \leq p+q\right\} \\
\Delta_{n}^{+} & =\left\{e_{i}-e_{p+j}: 1 \leq i \leq p \text { and } 1 \leq j \leq q\right\} \text { for } p+q \geq 2, \tag{A.5.1}\\
\Delta^{\prime+} & =\left\{e_{i}^{\prime}-e_{j}^{\prime}: 1 \leq i<j \leq c\right\} \text { for } c \geq 2
\end{align*}
$$

and e_{1} (resp. e_{1}^{\prime}) is the standard basis element of $\mathfrak{h}_{\mathbb{C}}^{*}=\mathfrak{g}_{\mathbb{C}}^{*}$ if $p=0, q=1$ (resp. of $\mathfrak{h}_{\mathbb{C}}^{* *}=\mathfrak{g}_{\mathbb{C}}^{* *}$ if $c=1$).
(A.5.2) The corresponding pairs of highest weights:

$$
\begin{aligned}
\lambda & =-\sum_{a=1}^{p} \frac{c}{2} e_{a}+\sum_{a=p+1}^{q} \frac{c}{2} e_{a}-\sum_{a=1}^{r} \nu_{a} e_{p+1-a}+\sum_{a=1}^{s} \mu_{a} e_{p+a}, \\
\lambda^{\prime} & =\sum_{a=1}^{c} \frac{q-p}{2} e_{a}^{\prime}-\sum_{a=1}^{r} \nu_{a} e_{c+1-a}^{\prime}+\sum_{a=1}^{s} \mu_{a} e_{a}^{\prime}
\end{aligned}
$$

for $0 \leq r \leq p ; 0 \leq s \leq q ; r+s \leq c ;$ and integers $\nu_{1} \geq \ldots \geq \nu_{r}>0$, $\mu_{1} \geq \ldots \geq \mu_{s}>0$.
(A.6) $G=O_{2 n}^{*}, G^{\prime}=\operatorname{Sp}(c),(n \geq 2, c \geq 1)$.
$\Delta_{c}^{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\}$,
(A.6.1)

$$
\Delta_{n}^{+}=\left\{e_{i}+e_{j}: 1 \leq i<j \leq n\right\},
$$

$$
\Delta^{\prime+}=\left\{e_{i}^{\prime} \pm e_{j}^{\prime}: 1 \leq i<j \leq c\right\} \cup\left\{2 e_{i}^{\prime}: 1 \leq i \leq c\right\} .
$$

(A.6.2) The corresponding pairs of highest weights:

$$
\lambda=-\sum_{a=1}^{n} c e_{a}-\sum_{a=1}^{k} \lambda_{a} e_{n+1-a}, \quad \lambda^{\prime}=\sum_{a=1}^{k} \lambda_{a} e_{a}^{\prime}
$$

for $k=\min \{n, c\}$ and integers $\lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0$.
Using this list we verify the following.
Lemma A.7. Let G, G^{\prime} be a real irreducible dual pair with G^{\prime} compact. Denote by S (resp. S^{\prime}) the set of all infinitesimal characters of representations $\Pi \in \mathcal{R}(G, \omega)$ (resp. $\Pi^{\prime} \in \mathcal{R}\left(G^{\prime}, \omega\right)$) (see (1.7)). Then S (resp. S^{\prime}) is a Zariski dense subset of max spec $Z(\mathfrak{g})^{\mathbf{G}}\left(\right.$ resp. max spec $Z\left(\mathfrak{g}^{\prime}\right)^{\mathbf{G}^{\prime}}$) if $\operatorname{rank} G \leq \operatorname{rank} G^{\prime}\left(\right.$ resp. $\left.\operatorname{rank} G^{\prime} \leq \operatorname{rank} G\right)$.

Proof. Using Harish-Chandra's isomorphism (1.20), we obtain the set S (resp. S^{\prime}) from (A.4.2), (A.5.2), (A.6.2) via a translation by the half sum of the positive roots Δ^{+}(resp. $\Delta^{\prime+}$). By inspection of these formulas we see that there is no non-zero polynomial function on $\mathfrak{h}_{\mathbb{C}}^{*}$ (resp. $\mathfrak{h}_{\mathbb{C}}^{\prime *}$) which could vanish on $S\left(\right.$ resp. $\left.S^{\prime}\right)$ if $\operatorname{dim} \mathfrak{h} \leq \operatorname{dim} \mathfrak{h}^{\prime}\left(\right.$ resp. $\left.\operatorname{dim} \mathfrak{h}^{\prime} \leq \operatorname{dim} \mathfrak{h}\right)$.

We conclude this paper with an easy observation about the \widetilde{K}-types of Π (0.11). Let
(A.8) $\quad A(\Pi)$ be the set of lowest \widetilde{K}-types of Π in the sense of Vogan (see [20, Def. 3.2]).

Theorem A.9. Let G, G^{\prime} be a real irreducible pair with G^{\prime} compact. Assume that $\Pi \otimes \Pi^{\prime} \in \mathcal{R}\left(G \cdot G^{\prime}, \omega\right)$. Then $A(\Pi)=\{\pi\}$, where π is the unique \widetilde{K}-type of Π with highest weight equal to the highest weight λ of Π.

Proof. Let $\mathbf{p}^{+}\left(\right.$resp. $\left.\mathbf{p}^{-}\right)$be the span of root spaces for roots from Δ_{n}^{+} (resp. $-\Delta_{n}^{+}$). Let
(A.10) $\quad \omega_{\Pi^{\prime}}=$ the Π^{\prime}-isotypic component of ω considered as a \widetilde{G}^{\prime}-module, and $H_{\Pi^{\prime}}=\left\{v \in \omega_{\Pi^{\prime}}: \omega\left(\mathbf{p}^{+}\right) v=0\right\}$. Here $\omega_{\Pi^{\prime}}$ is isomorphic to $\Pi \otimes \Pi^{\prime}$ as a $\widetilde{G} \cdot \widetilde{G}^{\prime}$-module. Howe $([7,(3.9)$ c) and d)]) has shown that

$$
\begin{equation*}
\omega_{\Pi^{\prime}}=\omega\left(U\left(\mathbf{p}^{-}\right)\right) H_{\Pi^{\prime}} \tag{A.11}
\end{equation*}
$$

and that

$$
H_{\Pi^{\prime}}=\pi \otimes \Pi^{\prime} \quad \text { as a } \widetilde{K} \times \widetilde{G}^{\prime}-\text { module }
$$

Here $U\left(\mathbf{p}^{-}\right)$denotes the subalgebra of $U(\mathfrak{g})$ generated by \mathbf{p}^{-}. It follows from [12, 2.4.4, exercise 12] and from (A.11) that

$$
\begin{equation*}
\text { if } \pi_{\mu} \in \widetilde{K}^{\wedge}, \text { with highest weight } \mu \in \mathfrak{h}_{\mathbb{C}}^{*}, \text { is a } \widetilde{K} \text {-type of } \Pi \tag{A.13}
\end{equation*}
$$

then
(A.13.1) $\quad \mu=\nu+\lambda$, where ν is a non-positive integral combination of roots from Δ_{n}^{+}.

Let $2 \varrho\left(\right.$ resp. $\left.2 \varrho_{c}\right)$ be the sum of roots from $\Delta^{+}\left(\right.$resp. $\left.\Delta_{c}^{+}\right)$. Parthasarathy [18] has shown that

$$
\begin{equation*}
\|\mu+\varrho\|>\|\lambda+\varrho\| \quad \text { for } \mu \neq \lambda \text { as in (A.13.1). } \tag{A.14}
\end{equation*}
$$

(For a short proof see [4, Proof 3.9].) We prove that
(A.15) $\quad\left\|\mu+2 \varrho_{c}\right\|^{2}-\left\|\lambda+2 \varrho_{c}\right\|^{2}$ is positive for $\mu \neq \lambda([20$, Def. 3.2]).

It follows from (A.14) that (A.15) is strictly greater than

$$
\begin{equation*}
2\left(\nu, 2 \varrho_{c}-\varrho\right) \quad \text { where } \nu \text { is as in (A.13.1). } \tag{A.16}
\end{equation*}
$$

Here (,) denotes the inner product on $\mathfrak{h}_{\mathbb{C}}^{*}$. Therefore it will suffice to verify

$$
\begin{equation*}
\left(-\alpha, 2 \varrho_{c}-\varrho\right) \geq 0 \quad \text { for } \alpha \in \Delta_{n}^{+} . \tag{A.17}
\end{equation*}
$$

We check it case by case:

$$
\begin{array}{ll}
(\mathrm{A} .4)^{\prime} & 2 \varrho_{c}-\varrho=-\sum_{a=1}^{n} a e_{a}, \quad \alpha=e_{i}+e_{j}, \quad\left(-\alpha, 2 \varrho_{c}-\varrho\right)=i+j>0 ; \\
(\mathrm{A} .5)^{\prime} & 2 \varrho_{c}-\varrho=\sum_{a=1}^{p}\left(\frac{p+1-q}{2}-a\right) e_{a}+\sum_{a=1}^{p}\left(\frac{p+1+q}{2}-a\right) e_{p+a}, \\
& \alpha=e_{i}-e_{p+j}, \quad\left(-\alpha, 2 \varrho_{c}-\varrho\right)=q+i-j>0 ; \\
(\mathrm{A} .6)^{\prime} & 2 \varrho_{c}-\varrho=\sum_{a=1}^{n}(1-a) e_{a}, \quad \alpha=e_{i}+e_{j}, \tag{A.6}\\
& \left(-\alpha, 2 \varrho_{c}-\varrho\right)=i+j-2 \geq 0 .
\end{array}
$$

Acknowledgments. This paper is a part of the author's doctoral thesis research. I wish to thank my advisor, Roger Howe, for instructing me in the basics of representation theory, for employing me in his project and for guidance during its realization. I would like to thank Gregg Zuckerman and George Seligman for many interesting conversations and for supplying me with some not easily accessible literature.

In the context of this paper I am indebted to Roger Howe for suggesting the proof of Theorem 1.10 via (1.9).

REFERENCES

[1] J. D. Adams, Discrete spectrum of the reductive dual pair $(O(p, q), S p(2 m))$, Invent. Math. 74 (1983), 449-475.
[2] -, Unitary highest weight modules, preprint.
[3] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris, 1968.
[4] T. Y. Enright, R. Howe and N. R. Wallach, A classification of unitary highest weight modules, in: Representation Theory of Reductive Groups, P. C. Trombi (ed.), Birkhäuser, Boston, 1983, 97-143.
[5] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[6] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570.
[7] -, Transcending the classical invariant theory, J. Amer. Math. Soc. 74 (1989), 449-475.
[8] -, θ-series and invariant theory, in: Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979, 275-285.
[9] -, manuscript in preparation on dual pairs.
[10] -, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, in: Lectures in Appl. Math. 21, Amer. Math. Soc., Providence, R.I., 1985, 179-207.
[11] -, On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, Liguori, Napoli, 1982, 223-331.
[12] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin, 1972.
[13] N. Jacobson, Basic Algebra I, W. H. Freeman, 1974.
[14] -, Basic Algebra II, W. H. Freeman, 1980.
[15] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44 (1978), 1-97.
[16] A. Knapp, Representation Theory of Semisimple Groups-an Overview Based on Examples, Princeton University Press, Princeton, N.J., 1986.
[17] A. Knapp and D. Vogan, Jr., Duality theorems in the relative Lie algebra cohomology, preprint.
[18] R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24.
[19] D. Vogan, Jr., Representation Theory of Real Reductive Lie Groups, Birkhäuser, Boston, 1981.
[20] -, Classifying representations by lowest K-types, in: Lectures in Appl. Math. 21, Amer. Math. Soc., 1985, 179-207.
[21] H. Weyl, The Classical Groups, Princeton University Press, Princeton, N.J., 1946.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OKLAHOMA
NORMAN, OKLAHOMA 73019
U.S.A.

