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THE DUALITY CORRESPONDENCE

OF INFINITESIMAL CHARACTERS

BY

TOMASZ PRZEB INDA (NORMAN, OKLAHOMA)

We determine the correspondence of infinitesimal characters of repre-
sentations which occur in Howe’s Duality Theorem. In the appendix we
identify the lowest K-types, in the sense of Vogan, of the unitary highest
weight representations of real reductive dual pairs with at least one member
compact.

0. Introduction. Let (W, 〈 , 〉) be a finite-dimensional, real or complex,
symplectic vector space. Let Sp(W, 〈 , 〉) = Sp denote the isometry group
of the form 〈 , 〉, and let sp be its Lie algebra.

Definition 0.1 [8, 10]. A pair of subgroups G,G′ of Sp is called a
reductive dual pair if

(0.2) G′ is the centralizer of G in Sp and vice versa; and
(0.3) both G, G′ act reductively on W .

These pairs have been classified [7, 9]. For a real reductive dual pair
G,G′ (contained in Sp) let its complexification

(0.4) G,G′ be the smallest complex reductive dual pair in the complexi-
fication of the algebraic group Sp such that G contains G, and G′

contains G′.

We will use bold letters to denote complexifications.
Suppose W = W1 ⊕ W2 is an orthogonal direct sum decomposition of

W and each Wj is invariant by G and G′. Let Gj be the restriction of G to
Wj . Define G′

j similarly. Then G = G1 ×G2 and G′ = G′

1 ×G′

2 and Gj , G
′

j

is a reductive dual pair in Sp(Wj), j = 1, 2.

Definition 0.5 [8, 10]. We say that the reductive dual pair G,G′

is irreducible if it has no non-trivial direct sum decomposition like that
described above.
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By the metaplectic group S̃p one understands the unique connected two-
fold covering group of the real symplectic group Sp. For any reductive Lie
subgroup E of Sp let

(0.6) Ẽ be its preimage in the metaplectic group S̃p.

Denote by R(Ẽ) the set of infinitesimal equivalence classes ([19, 0.3.9]) of

continuous irreducible admissible representations of Ẽ on locally convex
topological vector spaces. The group S̃p has a unitary representation ω
called the oscillator representation [1, 10, 15, . . .]. Let ω∞ be the smooth
representation associated with ω. Denote by

(0.7) R(Ẽ, ω) the set of elements of R(Ẽ) which can be realized as ω∞(Ẽ)-
invariant quotients by closed subspaces of the space ω∞.

The following theorem of Roger Howe reveals a very special character of the
oscillator representation.

Theorem 0.8 [7]. The set R(G · G′, ω) is the graph of a bijection be-

tween (all of ) R(G,ω) and (all of ) R(G′, ω). In other words, for each

Π ∈ R(G,ω) there is a unique Π ′ ∈ R(G′, ω) such that

(0.9) Π ⊗ Π ′ ∈ R(G · G′, ω),

and vice versa.

Here ⊗ means the outer tensor product. The topology of ⊗ is not unique-
ly determined but the infinitesimal equivalence class is. Moreover,

(0.10) dim HomG̃·G̃′(ω
∞,Π ⊗ Π ′) = 1.

We will call the (bijective) function

(0.11) R(G,ω) ∋ Π → Π ′ ∈ R(G′, ω),

defined by (0.9), the Duality Correspondence.
It is not easy to describe this function in terms of any known parameters

classifying R(G̃) and R(G̃′). In this paper we determine the correspondence
of infinitesimal characters (see [19, 0.3.18]) of Π and Π ′ induced by (0.11)
(Theorems 1.8, 1.13, and 1.19).

The point is that this correspondence does not depend on the real form
G,G′ of G,G′ (0.4). Moreover, for any real reductive dual pair G,G′ one
can find another pair G1, G

′

1 with the same complexification and at least
one member compact. For such pairs the Duality Correspondence (0.11) is
known explicitly (see [2, 4, 15] and the Appendix).

1. The Duality Correspondence. Let G,G′ be a real reductive dual
pair (Def. (0.1)) with Lie algebras g, g′. The group S̃p acts by conjugation on
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the space ω(U(sp)), the image under ω of the universal enveloping algebra
U(sp) of the Lie algebra sp. One of the fundamental properties of the
oscillator representation is that this action factorizes to an action of the
group Sp and even extends to an action of the complexification Sp (see [10,
Section 3]). In this sense Sp acts by conjugation on ω(U(sp)).

Since the group G acts reductively on the universal enveloping algebra
U(g), we have

(1.1) ω(Z(g)G) = ω(Z(g))G,

where XG is the space of G-invariants in X, Z(g) denotes the center of the
universal enveloping algebra U(g) and the action of G on the right hand
side of (1.1) is by conjugation (as explained above). Let us notice that some
members of dual pairs are disconnected. It may indeed happen that Z(g)G

is strictly contained in Z(g).

A statement similar to (1.1) holds for G′ and for the product G · G′. It
follows from [6, Theorem 7] (see also [10, Theorem 4.1]) that

(1.2) ω(U(sp))G
′

= ω(U(g))

and therefore that

ω(Z(g′)G
′

) ⊆ ω(U(sp)G·G
′

)(1.3)

= ω(U(sp))G·G
′

= ω(U(g))G = ω(Z(g))G,

where the inclusion is obvious, the first equality follows from (1.1), the
second from (1.2) and the third from (1.1). By permuting G and G′ in (1.3)
we get a known

Theorem 1.4. If G,G′ is a real reductive dual pair , then

ω(Z(g)G) = ω(U(sp)G·G
′

) = ω(Z(g′)G
′

) = ω(Z(g))G

= ω(U(sp))G·G
′

= ω(Z(g′))G
′

.

Let Π, Π ′ be as in (0.9) and let χΠ : Z(g) → C be the infinitesimal
character of Π and let χΠ′ : Z(g′) → C be the infinitesimal character of Π ′.
By (0.10) there is a non-zero operator

(1.5) T ∈ HomG̃·G̃′(ω
∞,Π ⊗ Π ′).

It satisfies

Tω(a) = χΠ(a)T, Tω(a′) = χΠ′(a′)T

for a ∈ Z(g) and a′ ∈ Z(g′).

We restrict χΠ to Z(g)G and χΠ′ to Z(g′)G
′

. It follows from (1.5) that

(1.6) Ker(χΠ) = Ker(ω|Z(g)G ) and the same for χΠ′ ,
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where ω|Z(g)G is the restriction of ω to Z(g)G. Therefore both χΠ and χΠ′

define the same character

χ : ω(U(sp)G·G
′

) → C

and we get the following commuting diagram of surjections:

(1.7)

Z(g)G ω(U(sp)G·G
′

) Z(g′)G
′

C C C

χΠ

��

ω //

χ

��

ωoo

χ′

Π

��__________________________ __________________________
An immediate consequence of (1.7) is the following theorem:

Theorem 1.8. Let G,G′ be a reductive dual pair and let Πj ⊗ Π ′

j ∈
R(G · G′, ω), j = 1, 2. Then χΠ1

= χΠ2
implies χΠ′

1
= χΠ′

2
.

Assume that G,G′ ⊆ Sp and G1, G
′

1 ⊆ Sp are two real reductive dual
pairs with isomorphic complexifications G,G′ ⊆ Sp and G1,G

′

1 ⊆ Sp. It
follows from the classification of such pairs [7, 9] that there is an element
g ∈ Sp such that

(1.8) Int g(G) = G1 and Int g(G′) = G′

1.

Since all the complexified Lie algebras gC, g′
C
, g1C, g′1C

are contained in
spC, their universal enveloping algebras are contained in U(sp). Let Ad ω(g)
denote the action by conjugation of g on the algebra ω(U(sp)). It is apparent
that the following diagram is commutative:

(1.9)

Z(g)G ω(U(sp)G·G
′

) Z(g′)G
′

Z(g1)
G1 ω(U(sp)G1·G

′

1) Z(g′1)
G

′

1

Ad g

��

ω //

Ad ω(g)

��

Ad g

��

ωoo

ω // ωoo

and that the vertical arrows are isomorphisms.

Theorem 1.10. Let G,G′ be a real irreducible dual pair. Assume that

rankG ≤ rankG′. Then the oscillator representation ω maps Z(g)G injec-

tively into ω(U(sp)).

P r o o f. By inspection of the list of all possible G,G′ ([7], [10, 4.1, 4.2])
we see that there is a reductive dual pair G1, G

′

1 with at least one member
compact and the same complexification as G,G′.

The diagram (1.9) reduces the verification of this theorem to the case
of pairs like G1, G

′

1. They are either irreducible (Def. (0.5)) or double of
irreducible pairs. We may therefore assume that G or G′ is compact. In this
situation this theorem is an immediate consequence of (1.6) and Lemma A.7
(in the Appendix).
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Under the assumptions of Theorem 1.10, the diagram (1.7) defines a
surjective homomorphism

(1.11) Z(g′)G
′

→ Z(g)G,

which, by dualization, defines an injection

(1.12) D : max specZ(g)G → max specZ(g′)G
′

.

Theorem 1.13. Under the assumptions of Theorem 1.10,

(1.14) the map D does not depend on the real form G,G′ of G,G′; and

(1.15) if Π ⊗ Π ′ ∈ R(G · G′, ω), then D(χΠ) = χΠ′ .

P r o o f. The first statement follows immediately from the commutation
of the diagram (1.9) and the second from (1.7).

The statement (1.14) reduces the problem of understanding the map D
(1.12) to the case when G,G′ is an irreducible complex dual pair.

Choose a Cartan subalgebra hC of gC and h′
C

of g′
C
. Let e1, e2, . . . be the

standard orthonormal coordinatization of h∗
C

and let e′1, e
′

2, . . . be the stan-
dard orthonormal coordinatization of h′∗

C
as in (A.4)–(A.6), or [3]. Define

an embedding

(1.16) E : h∗ → h′∗ by E(ej) = e′j (j = 1, 2, . . . , rankG).

Let

(1.17) τ =





∑n
j=m+1((m + 1 + n)/2 − j)e′j

if G = GL(m, C), G′ = GL(n, C),∑[m/2]
j=n+1(m/2 − j)e′j if G = Sp(n, C), G′ = O(m, C),∑n
j=[m/2]+1(n + 1 + [m/2] − m/2 − j)e′j

if G = O(m, C), G′ = Sp(n, C).

Here we use the convention that
∑q

j=p = 0 if q < p. Define a map F from
h∗

C
to h′∗

C
by

(1.18) F (γ) = E(γ) + τ (γ ∈ h∗C).

Theorem 1.19. Let G,G′ be a real irreducible dual pair whose complex-

ification G,G′ is an irreducible complex dual pair. Then the map D (1.12)
coincides with the map F (1.18) via the Harish-Chandra isomorphism

(1.20) max specZ(g)G → (h∗C)W (and the same for G′).

Here W is the Weyl group of type A (permutations of the ej’s) if G =
GL(m, C); and of type C (permutations and all sign changes of the ej ’s)) if

G = Sp(n, C) or G = O(m, C) (and the same for W′).
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P r o o f. By Theorem 1.13 we may assume that G or G′ is compact. For
such pairs the representations Π and Π ′ (0.11) are highest weight modules
(see the Appendix). One obtains the infinitesimal character of such a module
by adding half the sum of positive roots to its highest weight. Therefore a
straightforward calculation using (A.4)–(A.6) verifies this theorem.

Appendix. The Duality Correspondence for real irreducible
dual pairs with at least one member compact. Let G,G′ be such a
pair. Assume that G′ is compact. In this case the Duality Correspondence
(0.11) is known explicitly [2, 4, 15]. The point is that both representations
Π and Π ′ which occur in (0.11) are unitary highest weight modules. We
will describe them here.

Let K be a maximal compact subgroup of G with Lie algebra k, and let
g = k ⊕ p be a Cartan decomposition of g. Let h be a Cartan subalgebra of
k. Our assumptions on G imply that h is also a Cartan subalgebra of g. Fix
a Borel subalgebra b ⊆ gC containing hC. Let

(A.1) ∆ denote the root system of (gC, hC), and ∆+ the positive root
system determined by b.

Since (G,K) is a hermitian symmetric pair [5], we may assume that b is
chosen so that kC ⊕ b is a parabolic subalgebra of gC. Let

(A.2) ∆+ denote the set of positive compact roots and ∆+
n be the re-

maining roots of ∆+.

Similarly we choose a Cartan subalgebra h′
C

of g′
C
, a Borel subalgebra b′ ⊆

g′
C

containing h′
C
,

(A.3) the root system ∆′ of (g′
C
, g′

C
) and the positive root system ∆′+

determined by b′.

Let H be the centralizer of h in G and let H ′ be the centralizer of h′ in G′.
Also let n ⊆ b and n′ ⊆ b′ be the nilradicals determined by ∆+ and ∆′+

respectively.

The representations Π, Π ′ (0.11) are uniquely determined by the irre-
ducible representations Λ, Λ′ of H,H ′ on the annihilators of n ⊆ b, n′ ⊆ b′

in the Harish-Chandra modules of Π and Π ′ respectively. The representa-
tion Λ is always one-dimensional with derivative λ ∈ h∗

C
, but Λ′ is either

one- or two-dimensional. In any case the derivative dΛ′ of Λ′ has only one
∆′+-dominant component λ′ ∈ h′∗

C
. We are going to list all pairs λ, λ′ de-

fined above. We will use the standard coordinate expressions of the root
systems as in [3].
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(A.4) G = Sp(n, R), G′ = O(c) (n, c ≥ 1).

(A.4.1)

∆+
c = {ei − ej : 1 ≤ i < j ≤ n},

∆+
n = {ei + ej : 1 ≤ i ≤ j ≤ n},

∆′+ =





{e′i ± e′j : 1 ≤ i < j ≤ l} ∪ {e′i : 1 ≤ i ≤ l}
if c = 2l + 1 ≥ 3,

{e′i ± e′j : 1 ≤ i < j ≤ l} if c = 2l ≥ 4.

Here g′ = 0, λ′ = 0 if c = 1, and e′1 is the standard basis element of h′∗
C

= g′∗
C

if c = 2.

(A.4.2) The corresponding pairs of highest weights:

(A.4.2.1) λ = −

n∑

a=1

c

2
ea −

k∑

a=1

λaen+1−a, λ′ =

k∑

a=1

λae′a

for 0 ≤ k ≤ l, n and integers λ1 ≥ . . . ≥ λk > 0;

(A.4.2.2) λ = −

n∑

a=1

c

2
ea −

c−k∑

a=1

λaen+1−a, λ′ =

k∑

a=1

λae′a

for c − n ≤ k ≤ l and integers λ1 ≥ . . . ≥ λk > λk+1 = . . . = λc−k = 1.

(A.5) G = U(p, q), G′ = U(c) (p, q ≥ 0; p + q ≥ 1, c ≥ 1, p ≤ q).

(A.5.1)

∆+
c = {ei − ej : 1 ≤ i < j ≤ p or p + 1 ≤ i < j ≤ p + q},

∆+
n = {ei − ep+j : 1 ≤ i ≤ p and 1 ≤ j ≤ q} for p + q ≥ 2,

∆′+ = {e′i − e′j : 1 ≤ i < j ≤ c} for c ≥ 2,

and e1 (resp. e′1) is the standard basis element of h∗
C

= g∗
C

if p = 0, q = 1
(resp. of h′∗

C
= g′∗

C
if c = 1).

(A.5.2) The corresponding pairs of highest weights:

λ = −

p∑

a=1

c

2
ea +

q∑

a=p+1

c

2
ea −

r∑

a=1

νaep+1−a +

s∑

a=1

µaep+a,

λ′ =

c∑

a=1

q − p

2
e′a −

r∑

a=1

νae′c+1−a +

s∑

a=1

µae
′

a

for 0 ≤ r ≤ p; 0 ≤ s ≤ q; r + s ≤ c; and integers ν1 ≥ . . . ≥ νr > 0,
µ1 ≥ . . . ≥ µs > 0.

(A.6) G = O∗

2n, G′ = Sp(c), (n ≥ 2, c ≥ 1).

(A.6.1)

∆+
c = {ei − ej : 1 ≤ i < j ≤ n},

∆+
n = {ei + ej : 1 ≤ i < j ≤ n},

∆′+ = {e′i ± e′j : 1 ≤ i < j ≤ c} ∪ {2e′i : 1 ≤ i ≤ c}.
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(A.6.2) The corresponding pairs of highest weights:

λ = −
n∑

a=1

cea −
k∑

a=1

λaen+1−a, λ′ =
k∑

a=1

λae′a

for k = min{n, c} and integers λ1 ≥ . . . ≥ λk ≥ 0.

Using this list we verify the following.

Lemma A.7. Let G,G′ be a real irreducible dual pair with G′ compact.

Denote by S (resp. S′) the set of all infinitesimal characters of represen-

tations Π ∈ R(G,ω) (resp. Π ′ ∈ R(G′, ω)) (see (1.7)). Then S (resp.
S′) is a Zariski dense subset of max specZ(g)G (resp. max specZ(g′)G

′

) if

rankG ≤ rankG′ (resp. rankG′ ≤ rankG).

P r o o f. Using Harish-Chandra’s isomorphism (1.20), we obtain the set
S (resp. S′) from (A.4.2), (A.5.2), (A.6.2) via a translation by the half sum
of the positive roots ∆+ (resp. ∆′+). By inspection of these formulas we
see that there is no non-zero polynomial function on h∗

C
(resp. h′∗

C
) which

could vanish on S (resp. S′) if dimh ≤ dim h′ (resp. dim h′ ≤ dim h).

We conclude this paper with an easy observation about the K̃-types of
Π (0.11). Let

(A.8) A(Π) be the set of lowest K̃-types of Π in the sense of Vogan

(see [20, Def. 3.2]).

Theorem A.9. Let G,G′ be a real irreducible pair with G′ compact.

Assume that Π ⊗ Π ′ ∈ R(G · G′, ω). Then A(Π) = {π}, where π is the

unique K̃-type of Π with highest weight equal to the highest weight λ of Π.

P r o o f. Let p+ (resp. p−) be the span of root spaces for roots from ∆+
n

(resp. −∆+
n ). Let

(A.10) ωΠ′ = the Π ′-isotypic component of ω considered as a G̃′-module,

and HΠ′ = {v ∈ ωΠ′ : ω(p+)v = 0}. Here ωΠ′ is isomorphic to Π ⊗ Π ′ as

a G̃ · G̃′-module. Howe ([7, (3.9) c) and d)]) has shown that

(A.11) ωΠ′ = ω(U(p−))HΠ′

and that

HΠ′ = π ⊗ Π ′ as a K̃ × G̃′ -module.

Here U(p−) denotes the subalgebra of U(g) generated by p−. It follows
from [12, 2.4.4, exercise 12] and from (A.11) that

(A.13) if πµ ∈ K̃∧, with highest weight µ ∈ h∗
C
, is a K̃-type of Π,

then
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(A.13.1) µ = ν + λ, where ν is a non-positive integral combination of
roots from ∆+

n .

Let 2̺ (resp. 2̺c) be the sum of roots from ∆+ (resp.∆+
c ). Parthasarathy

[18] has shown that

(A.14) ‖µ + ̺‖ > ‖λ + ̺‖ for µ 6= λ as in (A.13.1).

(For a short proof see [4, Proof 3.9].) We prove that

(A.15) ‖µ + 2̺c‖
2 − ‖λ + 2̺c‖

2 is positive for µ 6= λ ([20, Def. 3.2]).

It follows from (A.14) that (A.15) is strictly greater than

(A.16) 2(ν, 2̺c − ̺) where ν is as in (A.13.1).

Here ( , ) denotes the inner product on h∗
C
. Therefore it will suffice to verify

(A.17) (−α, 2̺c − ̺) ≥ 0 for α ∈ ∆+
n .

We check it case by case:

2̺c − ̺ = −

n∑

a=1

aea, α = ei + ej , (−α, 2̺c − ̺) = i + j > 0;(A.4)′

2̺c − ̺ =

p∑

a=1

(
p + 1 − q

2
− a

)
ea +

p∑

a=1

(
p + 1 + q

2
− a

)
ep+a,(A.5)′

α = ei − ep+j , (−α, 2̺c − ̺) = q + i − j > 0;

2̺c − ̺ =
n∑

a=1

(1 − a)ea, α = ei + ej ,(A.6)′

(−α, 2̺c − ̺) = i + j − 2 ≥ 0.
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Birkhäuser, Boston, 1983, 97–143.

[5] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[6] R. Howe, Remarks on classical invariant theory , Trans. Amer. Math. Soc. 313

(1989), 539–570.
[7] —, Transcending the classical invariant theory , J. Amer. Math. Soc. 74 (1989),

449–475.
[8] —, θ-series and invariant theory , in: Proc. Sympos. Pure Math. 33, Amer. Math.

Soc., Providence, R.I., 1979, 275–285.
[9] —, manuscript in preparation on dual pairs.
[10] —, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons,

in: Lectures in Appl. Math. 21, Amer. Math. Soc., Providence, R.I., 1985, 179–207.
[11] —, On a notion of rank for unitary representations of the classical groups, in: Har-

monic Analysis and Group Representations, Liguori, Napoli, 1982, 223–331.
[12] J. Humphreys, Introduction to Lie Algebras and Representation Theory , Springer,

Berlin, 1972.
[13] N. Jacobson, Basic Algebra I , W. H. Freeman, 1974.
[14] —, Basic Algebra II , W. H. Freeman, 1980.
[15] M. Kash iwara and M. Vergne, On the Segal–Shale–Weil representation and har-

monic polynomials, Invent. Math. 44 (1978), 1–97.
[16] A. Knapp, Representation Theory of Semisimple Groups—an Overview Based on

Examples, Princeton University Press, Princeton, N.J., 1986.
[17] A. Knapp and D. Vogan, Jr., Duality theorems in the relative Lie algebra coho-

mology , preprint.
[18] R. Parthasarathy, Criteria for the unitarizability of some highest weight modules,

Proc. Indian Acad. Sci. 89 (1980), 1–24.
[19] D. Vogan, Jr., Representation Theory of Real Reductive Lie Groups, Birkhäuser,
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