VOL. LXX	1996	FASC. 2

CR-SUBMANIFOLDS OF LOCALLY CONFORMAL KaEHLER MANIFOLDS AND RIEMANNIAN SUBMERSIONS

BY
FUMIO NARITA (AKITA)

We consider a Riemannian submersion $\pi: M \rightarrow N$, where M is a CRsubmanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by $\omega=0$ and give a necessary and sufficient condition for M to be a Sasakian manifold.

1. Introduction. Let L be an almost Hermitian manifold with almost complex structure J. Let M be a real submanifold of L and $T M$ its tangent bundle. We set $T^{\mathrm{h}} M=T M \cap J(T M)$. Then we have
(a) $J T_{p}^{\mathrm{h}} M=T_{p}^{\mathrm{h}} M$ for each $p \in M$.

Let M be a CR-submanifold of an almost Hermitian manifold L such that the differentiable distribution $T^{\mathrm{h}} M: p \rightarrow T_{p}^{\mathrm{h}} M \subset T_{p} M$ on M satisfies the following conditions:
(b) $J T_{p}^{\mathrm{v}} M \subset T_{p} M^{\perp}$ for each $p \in M$, where $T^{\mathrm{v}} M$ is the complementary orthogonal distribution of $T^{\mathrm{h}} M$ in $T M$;
(c) J interchanges $T^{\mathrm{v}} M$ and $T M^{\perp}$;
(d) there is a Riemannian submersion $\pi: M \rightarrow N$ of M onto an almost Hermitian manifold N such that (i) $T^{\mathrm{v}} M$ is the kernel of π_{*} and (ii) π_{*} : $T_{p}^{\mathrm{h}} M \rightarrow T_{\pi(p)} N$ is a complex isometry for every $p \in M$.

This set up is similar to the set up of symplectic geometry. Indeed, one has the following analogue (due to S. Kobayashi) of the symplectic reduction theorem of Marsden-Weinstein.

Theorem 1 ([7]). Let L be a Kaehler manifold. Under the assumptions stated above, N is a Kaehler manifold. If H^{L} and H^{N} denote the holomorphic sectional curvatures of L and N, then, for any horizontal unit vector

[^0]$X \in T^{\mathrm{h}} M$, we have
$$
H^{L}(X)=H^{N}\left(\pi_{*} X\right)-4|\sigma(X, X)|^{2}
$$
where σ denotes the second fundamental form of M in L.
In the above theorem, L is a Kaehler manifold. In this paper, we consider the case where L is a locally conformal Kaehler manifold which is strongly non-Kaehler. Then $T^{\mathrm{v}} M$ is integrable [3]. Let $B^{\mathrm{h}}, B^{\mathrm{v}}$ and B^{\perp} be the horizontal part, the vertical part and the normal part of the Lee vector field B respectively. First, we show the following theorem:

THEOREM 2. Under the assumptions (a)-(d), assume further that L is a locally conformal Kaehler manifold. Then the Lee vector field $B \in T^{\mathrm{h}} M \oplus$ $T M^{\perp}$ and for any horizontal unit vector $X \in T^{\mathrm{h}} M$, we have

$$
H^{L}(X)=H^{N}\left(\pi_{*} X\right)-3\left|A_{X} J X\right|^{2}-|\sigma(X, X)|^{2}
$$

where σ is the second fundamental form of M in L and A is the integrability tensor with respect to π. Moreover, if we assume in addition that the horizontal component B^{h} of the Lee vector field B is basic and $\operatorname{dim} N \geq 4$ then N is also a locally conformal Kaehler manifold. In particular, if L is a generalized Hopf manifold and if the Lee vector field B is basic and horizontal then N is also a generalized Hopf manifold.

Next, we consider the case where the Lee vector field $B \in T M^{\perp}$.
ThEOREM 3. Under the assumptions (a)-(d), if L is a locally conformal Kaehler manifold and $B \in T M^{\perp}$, then N is a Kaehler manifold.

Theorem 4. Under the assumptions (a)-(d), if L is a $P_{0} K$-manifold and M is a totally umbilical submanifold whose mean curvature vector is parallel and $B \in T M^{\perp}$, then N is a locally symmetric Kaehler manifold and the holomorphic sectional curvature H^{N} of N is $H^{N}(\widetilde{X})>0$, where \widetilde{X} is any unit tangent vector.

Next, let L be a locally conformal Kaehler manifold which is strongly non-Kaehler, ω the Lee form and \mathcal{M} the distribution defined by $\omega=0$. Since $d \omega=0, \mathcal{M}$ is integrable. Let M be a maximal connected integral submanifold of \mathcal{M}, that is, M is an orientable hypersurface of L. Then M is a CR-submanifold satisfying (a)-(c) such that $T M^{\perp}=\{B\}$ and $T^{\mathrm{v}} M=$ $\{J B\}$. In the case where L is $P_{0} K$-manifold, we get the following theorem.

Theorem 5. Let L be a complete $P_{0} K$-manifold and M a maximal connected integral submanifold of \mathcal{M}. Let N be an almost Hermitian manifold and $\pi: M \rightarrow N$ be a Riemannian submersion satisfying the condition (d). Then N is isometric to the complex projective space $P_{m}(\mathbb{C})$.

It is known that every orientable hypersurface of an almost Hermitian manifold has an almost contact metric structure (ϕ, V, η, g) (see [2], [17]). We show the following theorem:

Theorem 6. Let L be a locally conformal Kaehler manifold and M a maximal connected integral submanifold of \mathcal{M}. Then (M, ϕ, V, η, g) is a Sasakian manifold if and only if

$$
k=\left(\frac{1}{2} \sqrt{\omega(B)}-1\right) g+\alpha \eta \otimes \eta,
$$

where k is the second fundamental form of M and α is a function.
Remark1. (I) In [17], I. Vaisman proved that if L is a locally conformal Kaehler manifold with parallel Lee form, then a maximal connected integral submanifold M of \mathcal{M} is a totally geodesic submanifold of L and M is a Sasakian manifold. In Theorem 6, we obtain a necessary and sufficient condition for M to be a Sasakian manifold without the assumption that the Lee form is parallel.
(II) It is known that if M is an orientable hypersurface of a Kaehler manifold L, then the induced almost contact metric structure (ϕ, V, η, g) is Sasakian if and only if $k=-g+\alpha \eta \otimes \eta$, where k is the second fundamental form of M and α is a function [14]. When L is a locally conformal Kaehler manifold, from Theorem 6 we obtain a similar result.
2. Preliminaries. Let L be an almost Hermitian manifold with metric g, complex structure J and fundamental 2-form Ω. The manifold L will be called a locally conformal Kaehler manifold if every $x \in L$ has an open neighborhood U with a differentiable function $\gamma: U \rightarrow \mathbb{R}$ such that $g_{U}^{\prime}=$ $\left.e^{-\gamma} g\right|_{U}$ is a Kaehler metric on U. The locally conformal Kaehler manifold L is characterized by

$$
\begin{equation*}
d \Omega=\omega \wedge \Omega, \quad d \omega=0 \tag{1}
\end{equation*}
$$

where ω is a globally defined 1-form on L. We call ω the Lee form. Since for $\operatorname{dim} L=2$ we have $d \Omega=0$, we may suppose $\operatorname{dim} L \geq 4$. Next we define the Lee vector field B by

$$
\begin{equation*}
g(X, B)=\omega(X) \tag{2}
\end{equation*}
$$

The Weyl connection ${ }^{\mathrm{W}} \nabla$ is the linear connection defined by

$$
\begin{equation*}
{ }^{\mathrm{w}} \nabla_{X} Y:=\nabla_{X} Y-\frac{1}{2} \omega(X) Y-\frac{1}{2} \omega(Y) X+\frac{1}{2} g(X, Y) B, \tag{3}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g. It is shown in [15] that an almost Hermitian manifold L is a locally conformal Kaehler if and only if there is a closed 1-form ω on L such that

$$
\begin{equation*}
{ }^{\mathrm{w}} \nabla_{X} J=0 . \tag{4}
\end{equation*}
$$

The equation (4) is equivalent to

$$
\begin{align*}
\nabla_{X} J Y-\frac{1}{2} \omega(J Y) X+\frac{1}{2} g(& X, J Y) B \tag{5}\\
& =J \nabla_{X} Y-\frac{1}{2} \omega(Y) J X+\frac{1}{2} g(X, Y) J B
\end{align*}
$$

where X and Y are vector fields on L.
The Riemannian curvature tensor field R^{L} of L is given by

$$
\begin{equation*}
R^{L}(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} . \tag{6}
\end{equation*}
$$

We set

$$
\begin{equation*}
R^{L}(W, Z, X, Y)=g\left(R^{L}(X, Y) Z, W\right) \tag{7}
\end{equation*}
$$

Let ${ }^{\mathrm{W}} R$ be the curvature tensor field of the Weyl connection ${ }^{\mathrm{W}} \nabla$. Then

$$
\begin{align*}
&{ }^{\mathrm{w}} R(X, Y) Z \tag{8}\\
&= R^{L}(X, Y) Z-\frac{1}{2}\left\{\left[\left(\nabla_{X} \omega\right) Z+\frac{1}{2} \omega(X) \omega(Z)\right] Y\right. \\
&-\left[\left(\nabla_{Y} \omega\right) Z+\frac{1}{2} \omega(Y) \omega(Z)\right] X-g(Y, Z)\left(\nabla_{X} B+\frac{1}{2} \omega(X) B\right) \\
&\left.\quad+g(X, Z)\left(\nabla_{Y} B+\frac{1}{2} \omega(Y) B\right)\right\}-\frac{1}{4}|\omega|^{2}(g(Y, Z) X-g(X, Z) Y),
\end{align*}
$$

where X, Y and Z are any vector fields on L [18].
A locally conformal Kaehler manifold (L, J, g) is said to be a generalized Hopf manifold if the Lee form is parallel, that is, $\nabla \omega=0(\omega \neq 0)$. A generalized Hopf manifold is called a $P_{0} K$-manifold if the Weyl curvature tensor is zero, that is, ${ }^{\mathrm{W}} R(X, Y)=0$. In this paper, we consider the case where L is a locally conformal Kaehler manifold which is strongly nonKaehler in the sense that $d \Omega \neq 0$ (and so $\omega \neq 0$) at every point of L.

The Hopf manifolds are defined as $H_{\lambda}^{n}=\left(\mathbb{C}^{n}-\{0\}\right) / \Delta_{\lambda}, n>1$, where \mathbb{C} is the complex plane, $\lambda \in \mathbb{C},|\lambda| \neq 0,1$ and Δ_{λ} is the group generated by the transformation $z \mapsto \lambda z, z \in \mathbb{C}^{n}-\{0\}$ (see [15]). On the manifold H_{λ}^{n}, we consider the Hermitian metric

$$
d s^{2}=\frac{1}{\sum_{k=1}^{n} z^{k} \bar{z}^{k}} \sum_{j=1}^{n} d z^{j} \otimes d \bar{z}^{j}
$$

where $z^{j}(j=1, \ldots, n)$ are complex Cartesian coordinates on \mathbb{C}^{n}. The Hopf manifold H_{λ}^{n} is an example of a $P_{0} K$-manifold which is strongly non-Kaehler.

Let M be a submanifold of a Riemannian manifold L. We denote by the same g the Riemannian metric tensor field induced on M from that of L. Let ∇^{M} denote covariant differentiation of M. Then the Gauss formula for M is written as

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X}^{M} Y+\sigma(X, Y) \tag{9}
\end{equation*}
$$

for any vector fields X, Y tangent to M, where σ denotes the second fundamental form of M in L. Let M be an n-dimensional submanifold of L.

The mean curvature vector ϱ of M is defined by $\varrho=\frac{1}{n} \operatorname{trace}(\sigma)$. A submanifold M is called totally umbilical if the second fundamental form σ satisfies $\sigma(X, Y)=g(X, Y) \varrho$. A submanifold M is called totally geodesic if the second fundamental form vanishes identically, that is, $\sigma=0$.

Let R^{M} be the Riemannian curvature tensor field of M. Then we have the equation of Gauss

$$
\begin{align*}
R^{L}(W, Z, X, Y)= & R^{M}(W, Z, X, Y)+g(\sigma(X, Z), \sigma(Y, W)) \tag{10}\\
& -g(\sigma(Y, Z), \sigma(X, W))
\end{align*}
$$

Let N be an almost Hermitian manifold with almost complex structure J^{\prime} and $\pi: M \rightarrow N$ a Riemannian submersion such that $T M \cap J(T M)$ is the horizontal part of $T M$ and, at each point $p \in M, \pi_{*}$ is a complex isometry of $T_{p}^{\mathrm{h}} M=T_{p} M \cap J\left(T_{p} M\right)$ onto $T_{\pi(p)} N$. Let X denote a tangent vector at $p \in M$. Then X decomposes as $\mathcal{V} X+\mathcal{H} X$, where $\mathcal{V} X$ is tangent to the fiber through p and $\mathcal{H} X$ is perpendicular to it. We define tensors T and A associated with the submersion by

$$
\begin{align*}
T_{X} Y & :=\mathcal{V} \nabla_{\mathcal{V} X}^{M} \mathcal{H} Y+\mathcal{H} \nabla_{\mathcal{V} X}^{M} \mathcal{V} Y, \tag{11}\\
A_{X} Y & :=\mathcal{V} \nabla_{\mathcal{H} X}^{M} \mathcal{H} Y+\mathcal{H} \nabla_{\mathcal{H} X}^{M} \mathcal{V} Y, \tag{12}
\end{align*}
$$

for any vector fields X, Y on M. Then T and A have the following properties [11].
(i) T_{X} and A_{X} are skew symmetric linear operators on the tangent space of M, and interchange the horizontal and vertical parts.
(ii) $T_{X}=T_{\mathcal{V} X}$ while $A_{X}=A_{\mathcal{H} X}$.
(iii) For V, W vertical, $T_{V} W$ is symmetric, that is, $T_{V} W=T_{W} V$. For X, Y horizontal, $A_{X} Y$ is skew symmetric, that is, $A_{X} Y=-A_{Y} X$.

A vector field X on M is said to be basic if X is horizontal and π-related to a vector field \widetilde{X} on N. Every vector field \widetilde{X} on N has a unique horizontal lift X to M, and X is basic. We denote it by $X=$ h.l. (\widetilde{X}).

Lemma 1 ([11]). Let X and Y be any basic vector fields on M. Then
(i) $g(X, Y)=\bar{g}(\widetilde{X}, \tilde{Y}) \circ \pi$;
(ii) $\mathcal{H}[X, Y]$ is the basic vector field corresponding to $[\tilde{X}, \tilde{Y}]$;
(iii) $\mathcal{H} \nabla_{X}^{M} Y$ is the basic vector field corresponding to $\nabla_{\tilde{X}}^{N} \widetilde{Y}$, where \bar{g} is the metric of N and ∇^{N} is the covariant differentiation on N.

Let R^{N} denote the curvature tensor field of N. The horizontal lift of the curvature tensor R^{N} of N will also be denoted by R^{N}. We recall the following curvature identity which will be needed in the sequel:

$$
\begin{align*}
R^{M}(W, Z, X, Y)= & R^{N}(\widetilde{W}, \widetilde{Z}, \widetilde{X}, \widetilde{Y})-g\left(A_{Y} Z, A_{X} W\right) \tag{13}\\
& +g\left(A_{X} Z, A_{Y} W\right)+2 g\left(A_{X} Y, A_{Z} W\right)
\end{align*}
$$

where X, Y, Z, W are any basic vector fields on M. As before, this result is proven in [11].

Let X and Y be any basic vector fields on M. We define the operator $\bar{\nabla}^{N}$ by

$$
\begin{equation*}
\bar{\nabla}_{X}^{N} Y:=\mathcal{H} \nabla_{X}^{M} Y \tag{14}
\end{equation*}
$$

Then, by Lemma 1 (iii), $\bar{\nabla}_{X}^{N} Y$ is a basic vector field and

$$
\begin{equation*}
\pi_{*}\left(\bar{\nabla}_{X}^{N} Y\right)=\nabla_{\tilde{X}}^{N} \tilde{Y} \tag{15}
\end{equation*}
$$

Next, we give the definition of a Sasakian manifold. A Riemannian manifold (M, g) is said to be a Sasakian manifold if there exist a tensor field ϕ of type $(1,1)$, a unit vector field V and a 1-form η such that

$$
\begin{align*}
& \phi V=0, \quad \eta(\phi X)=0, \quad \phi^{2} X=-X+\eta(X) V \\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{16}\\
& \left(\nabla_{X}^{M} \phi\right) Y=g(X, Y) V-\eta(Y) X
\end{align*}
$$

for any vector fields X, Y on M [2].
3. Proof of Theorem 2. We put $B=B^{\mathrm{h}}+B^{\mathrm{v}}+B^{\perp}$, where $B^{\mathrm{h}}, B^{\mathrm{v}}$ and B^{\perp} are the horizontal part, the vertical part and the normal part of the Lee vector field B respectively.

From (9) and (12), for any horizontal vector fields X and Y, we have

$$
\begin{equation*}
\nabla_{X} Y=\mathcal{H} \nabla_{X}^{M} Y+A_{X} Y+\sigma(X, Y) \tag{17}
\end{equation*}
$$

Since M is a CR-submanifold of L, using (5) and (17), we obtain
(18) $\mathcal{H} \nabla_{X}^{M} J Y-\frac{1}{2} \omega(J Y) X+\frac{1}{2} g(X, J Y) B^{\mathrm{h}}=J \mathcal{H} \nabla_{X}^{M} Y-\frac{1}{2} \omega(Y) J X$

$$
+\frac{1}{2} g(X, Y) J B^{\mathrm{h}} \in T^{\mathrm{h}} M
$$

$$
\begin{gather*}
A_{X} J Y+\frac{1}{2} g(X, J Y) B^{\mathrm{v}}=J \sigma(X, Y)+\frac{1}{2} g(X, Y) J B^{\perp} \in T^{\mathrm{v}} M \tag{19}\\
\sigma(X, J Y)+\frac{1}{2} g(X, J Y) B^{\perp}=J A_{X} Y+\frac{1}{2} g(X, Y) J B^{\mathrm{v}} \in T M^{\perp}
\end{gather*}
$$

where X and Y are any horizontal vector fields on M.
From (19) and (20), for any horizontal vector fields X and Y, we obtain

$$
\sigma(J X, J Y)=\sigma(X, Y)+g(J X, Y) J B^{\mathrm{v}}, \quad A_{J X} J Y=A_{X} Y-g(X, Y) B^{\mathrm{v}}
$$

because $A_{X} Y$ is skew symmetric. In the last equation, we set $X=Y$; then we have $A_{J X} J X=A_{X} X-g(X, X) B^{\mathrm{v}}$. Since $A_{X} X=0$, we obtain $B^{\mathrm{v}}=0$.

Since $B^{\mathrm{v}}=0$, for any horizontal vector fields X and Y, we obtain

$$
\begin{equation*}
\sigma(J X, J Y)=\sigma(X, Y), \quad A_{J X} J Y=A_{X} Y \tag{21}
\end{equation*}
$$

Next, we compare the holomorphic sectional curvatures of L and N. We set $Z=J W$ and $Y=J X$ in (10) and (13) to obtain
(22) $\quad R^{L}(W, J W, X, J X)$

$$
\begin{aligned}
= & R^{N}\left(\widetilde{W}, J^{\prime} \widetilde{W}, \widetilde{X}, J^{\prime} \widetilde{X}\right) \\
& -g\left(A_{J X} J W, A_{X} W\right)-g\left(A_{X} J W, A_{W} J X\right) \\
& -2 g\left(A_{X} J X, A_{W} J W\right)+g(\sigma(X, J W), \sigma(J X, W)) \\
& -g(\sigma(J X, J W), \sigma(X, W))
\end{aligned}
$$

where X and W are any basic vector fields on M.
Setting $X=W$ in the above equation, using (21), by $\sigma(X, J X)=0$, we obtain
(23) $R^{L}(X, J X, X, J X)=R^{N}\left(\widetilde{X}, J^{\prime} \tilde{X}, \widetilde{X}, J^{\prime} \widetilde{X}\right)-3\left|A_{X} J X\right|^{2}-|\sigma(X, X)|^{2}$.

Thus, for any horizontal unit vector X on M, we obtain

$$
\begin{equation*}
H^{L}(X)=H^{N}\left(\pi_{*} X\right)-3\left|A_{X} J X\right|^{2}-|\sigma(X, X)|^{2} \tag{24}
\end{equation*}
$$

Now, we assume that the horizontal component B^{h} of the Lee vector field B is basic and $\operatorname{dim} N \geq 4$. We put $\widetilde{B}:=\pi_{*}\left(B^{\mathrm{h}}\right)$. Let ω^{\prime} be the 1 -form on M induced by the Lee form ω on L. For any vector field \widetilde{X} on N, we set $\widetilde{\omega}(\widetilde{X}):=\bar{g}(\widetilde{X}, \widetilde{B})$. Then $\left(\pi^{*} \widetilde{\omega}\right)(X)=\omega^{\prime}(X)$, where X is any basic vector field. Since π^{*} commutes with d and π is a Riemannian submersion, $\widetilde{\omega}$ is closed.

From the definition of $\widetilde{\omega}$, we obtain

$$
\begin{equation*}
\bar{g}(\widetilde{X}, \widetilde{B}) \circ \pi=\widetilde{\omega}(\widetilde{X}) \circ \pi=\omega^{\prime}(X)=\omega(X)=g(X, B), \tag{25}
\end{equation*}
$$

where \widetilde{X} is any vector field on N and $X=$ h.l. (\widetilde{X}). We define the Weyl connection ${ }^{\mathrm{W}} \nabla^{N}$ of N by

$$
\begin{equation*}
{ }^{\mathrm{w}} \nabla_{\widetilde{X}}^{N} \widetilde{Y}=\nabla_{\widetilde{X}}^{N} \widetilde{Y}-\frac{1}{2} \widetilde{\omega}(\widetilde{X}) \widetilde{Y}-\frac{1}{2} \widetilde{\omega}(\widetilde{Y}) \widetilde{X}+\frac{1}{2} \bar{g}(\widetilde{X}, \widetilde{Y}) \widetilde{B} \tag{26}
\end{equation*}
$$

From Lemma 1, (18), (25) and (26), for any vector fields $\widetilde{X}, \widetilde{Y}$ and \widetilde{Z}, we obtain

$$
\begin{align*}
& \bar{g}\left(\left({ }^{\mathrm{W}} \nabla_{\tilde{X}}^{N} J^{\prime}\right) \widetilde{Y}, \widetilde{Z}\right) \circ \pi \tag{27}\\
&= \bar{g}\left({ }^{\mathrm{W}} \nabla_{\tilde{X}}^{N} J^{\prime} \widetilde{Y}, \widetilde{Z}\right) \circ \pi-\bar{g}\left(J^{\prime}\left({ }^{\mathrm{W}} \nabla_{\tilde{X}}^{N} \widetilde{Y}\right), \widetilde{Z}\right) \circ \pi \\
&= g\left(\mathcal{H} \nabla_{X}^{M} J Y-\frac{1}{2} \omega(J Y) X+\frac{1}{2} g(X, J Y) B\right. \\
&\left.\quad-J \mathcal{H} \nabla_{X}^{M} Y+\frac{1}{2} \omega(Y) J X-\frac{1}{2} g(X, Y) J B, Z\right)=0
\end{align*}
$$

where X, Y and Z are the horizontal lifts of $\widetilde{X}, \widetilde{Y}$ and \widetilde{Z} respectively. Therefore ${ }^{\mathrm{W}} \nabla_{\tilde{X}}^{N} J^{\prime}=0$, that is, N is a locally conformal Kaehler manifold.

Let L be a generalized Hopf manifold and let the Lee vector field B be basic and horizontal. Since the Lee form ω of L is parallel, for any vector field X tangent to M, we have $\nabla_{X} B=0$. Hence, by $\nabla_{X} B=\nabla_{X}^{M} B+\sigma(X, B)$,
we have $\nabla_{X}^{M} B=0$. From Lemma 1 and (25), we obtain

$$
\begin{aligned}
\bar{g}\left(\nabla_{\widetilde{X}}^{N} \widetilde{B}, \widetilde{Y}\right) \circ \pi & =\left(\widetilde{X} \bar{g}(\widetilde{B}, \widetilde{Y})-\bar{g}\left(\widetilde{B}, \nabla_{\tilde{X}}^{N} \widetilde{Y}\right)\right) \circ \pi \\
& =X g(B, Y)-g\left(B, \nabla_{X}^{M} Y\right)=g\left(\nabla_{X}^{M} B, Y\right)=0,
\end{aligned}
$$

where $\widetilde{X}, \widetilde{Y}$ are any vector fields tangent to N, and X, Y are their horizontal lifts. Hence we obtain $\nabla_{\tilde{X}}^{N} \widetilde{B}=0$, that is, N is a generalized Hopf manifold.

Remark 2. In this theorem, let L be a locally conformal Kaehler manifold and M a totally umbilical CR-submanifold of L and the Lee vector field $B \in T^{\mathrm{h}} M$. It is known that if B is tangent to M, then a totally umbilical proper CR-submanifold M of L is totally geodesic [6]. For $X, Y \in T^{\mathrm{h}} M$, we have $A_{X} Y=\frac{1}{2} \mathcal{V}[X, Y]$ (see [11]). Therefore, using (19), we see that the horizontal distribution $T^{\mathrm{h}} M$ is integrable and the integral submanifolds are totally geodesic.
4. Proof of Theorem 3. Since $B \in T M^{\perp}$, for any vector field X tangent to M, we have $\omega(X)=0$. Since M is a CR-submanifold of L, (5) implies

$$
\begin{equation*}
\nabla_{X} J Y+\frac{1}{2} g(X, J Y) B=J \nabla_{X} Y+\frac{1}{2} g(X, Y) J B \tag{28}
\end{equation*}
$$

where X and Y are horizontal vector fields. Using (17) and (28), we obtain

$$
\begin{gather*}
\mathcal{H} \nabla_{X}^{M} J Y=J \mathcal{H} \nabla_{X}^{M} Y \in T^{\mathrm{h}} M \tag{29}\\
A_{X} J Y=J \sigma(X, Y)+\frac{1}{2} g(X, Y) J B \in T^{\mathrm{v}} M \tag{30}\\
\sigma(X, J Y)+\frac{1}{2} g(X, J Y) B=J A_{X} Y \in T M^{\perp} \tag{31}
\end{gather*}
$$

where X and Y are any horizontal vector fields on M.
Since π_{*} is a complex isometry, we have $\pi_{*} \circ J=J^{\prime} \circ \pi_{*}$. Therefore, if X is a basic vector field, $J X$ is also a basic vector field. Using Lemma 1, (15) and (29), we have

$$
\nabla_{\tilde{X}}^{N} J^{\prime} \tilde{Y}=J^{\prime} \nabla_{\tilde{X}}^{N} \tilde{Y}
$$

Hence N is a Kaehler manifold.
5. Proof of Theorem 4. Since L is a $P_{0} K$-manifold, we have ${ }^{\mathrm{W}} R=0$ and $\nabla \omega=0$. We set $c:=|\omega| / 2$. Since $\nabla \omega=0$, we have $\nabla B=0$ and $c=$ constant (see [17]). From (8), we have

$$
\begin{align*}
R^{L}(X, Y) Z= & \frac{1}{4}\{[\omega(X) Y-\omega(Y) X] \omega(Z) \tag{32}\\
& +[g(X, Z) \omega(Y)-g(Y, Z) \omega(X)] B\} \\
& +c^{2}(g(Y, Z) X-g(X, Z) Y)
\end{align*}
$$

Using $\nabla \omega=0$ and $\nabla B=0$, we obtain $\nabla R^{L}=0$ (see [6]). Since $B \in T M^{\perp}$, using (10) and (32), for any vector fields X, Y, Z and W tangent to M, we
have

$$
\begin{align*}
R^{M}(W, Z, X, Y)= & c^{2}(g(Y, Z) g(X, W)-g(X, Z) g(Y, W)) \tag{33}\\
& +g(\sigma(Y, Z), \sigma(X, W))-g(\sigma(X, Z), \sigma(Y, W))
\end{align*}
$$

Since M is a totally umbilical submanifold of L and the mean curvature vector is parallel, the second fundamental form is parallel. Thus M is a locally symmetric space. Using (33) and $\sigma(X, Y)=g(X, Y) \varrho$, for $X, Y, Z \in$ $T^{\mathrm{h}} M$ and $V \in T^{\mathrm{v}} M$, we obtain $R^{M}(X, Y, Z, V)=0$. Moreover, since $\sigma(X, Y)=g(X, Y) \varrho$ and $B \in T M^{\perp}$, the fibers of π are totally geodesic [6]. Hence the reflections $\varphi_{\pi^{-1}(x)}$ with respect to the fibers are isometries [4]. Therefore N is a locally symmetric space [4], [9]. From Theorem $3, N$ is a Kaehler manifold. Using (32), for any horizontal unit vector X, we get $H^{L}(X)=c^{2}$. Thus, from (24), we have $H^{N}(\widetilde{X})>0$, where \widetilde{X} is any unit tangent vector.
6. Proof of Theorem 5. Since L is a $P_{0} K$-manifold, the maximal integral submanifold M of \mathcal{M} is a totally geodesic submanifold of L (see [17]). From (33), we have

$$
\begin{equation*}
R^{M}(W, Z, X, Y)=c^{2}(g(Y, Z) g(X, W)-g(X, Z) g(Y, W)) \tag{34}
\end{equation*}
$$

where X, Y, Z and W are any vector fields tangent to M and $c(=|\omega| / 2)$ is constant. Using (13) and (34), we obtain

$$
\begin{align*}
R^{N}(\tilde{X}, \tilde{Y}, \tilde{X}, \tilde{Y})= & c^{2}(g(Y, Y) g(X, X) \tag{35}\\
& -g(X, Y) g(X, Y))+3 g\left(A_{X} Y, A_{X} Y\right),
\end{align*}
$$

where \widetilde{X}, \tilde{Y} are vector fields on N and X, Y are their respective horizontal lifts. For each plane p in the tangent space $T_{x} N$, the sectional curvature $K^{N}(p)$ of N is

$$
\begin{equation*}
K^{N}(p)=c^{2}+3\left|A_{X} Y\right|^{2}, \tag{36}
\end{equation*}
$$

where $\widetilde{X}, \widetilde{Y}$ is an orthonormal basis for p. Let $\left\{\widetilde{X}_{i}, J^{\prime} \widetilde{X}_{i}\right\}(i=1, \ldots, m)$ be an orthonormal basis for $T_{x} N, \operatorname{dim}(N)=2 m$. We denote the Ricci tensor of N by Ric^{N}. Then

$$
\operatorname{Ric}^{N}(\widetilde{X}, \widetilde{X})=\sum_{i=1}^{m} R^{N}\left(\widetilde{X}_{i}, \widetilde{X}, \widetilde{X}_{i}, \widetilde{X}\right)+\sum_{i=1}^{m} R^{N}\left(J^{\prime} \widetilde{X}_{i}, \widetilde{X}, J^{\prime} \widetilde{X}_{i}, \widetilde{X}\right)
$$

From (30) and (31), we get $A_{X_{i}} X_{j}=0, A_{J X_{i}} X_{j}=0(i \neq j), A_{J X_{i}} X_{i}=$ $-\frac{1}{2} J B$ and $A_{J X_{i}} J X_{j}=0,(i, j=1, \ldots, m)$. Now, we compute the scalar curvature $s^{N}(x)$ of N :

$$
s^{N}(x)=\sum_{j=1}^{m} \operatorname{Ric}^{N}\left(\widetilde{X_{j}}, \widetilde{X_{j}}\right)+\sum_{j=1}^{m} \operatorname{Ric}^{N}\left(J^{\prime} \widetilde{X}_{j}, J^{\prime} \widetilde{X}_{j}\right)=c^{2}\left(4 m^{2}+6 m\right)
$$

Since L is complete and M is a totally geodesic submanifold of L, M is complete. Since M is complete and $\pi: M \rightarrow N$ is a Riemannian submersion, N is complete [11]. From Theorem 3, N is a Kaehler manifold.

It is known that a complete Kaehler manifold with constant scalar curvature and with positive sectional curvature is isometric to the complex projective space $P_{m}(\mathbb{C})$ (see [1]). Therefore N is isometric to $P_{m}(\mathbb{C})$.
7. Proof of Theorem 6. For the Lee vector field B, we set

$$
\begin{equation*}
C:=B / \sqrt{g(B, B)} \tag{37}
\end{equation*}
$$

We define a vector field V, a 1-form η and a tensor field ϕ of type $(1,1)$ on M by

$$
\begin{equation*}
V=J C, \quad \eta(X)=g(X, V), \quad J X=\phi X-\eta(X) C . \tag{38}
\end{equation*}
$$

Since L is a Hermitian manifold, (M, ϕ, V, η, g) admits an almost contact metric structure [2], [17].

Let $\mathcal{H} X$ and $\mathcal{V} X$ be the $T^{\mathrm{h}} M$ part and $T^{\mathrm{v}} M$ part of $X \in T M$ respectively. We set $\sigma(X, Y)=-k(X, Y) C$. From (5), for any vector field X in $T^{\mathrm{h}} M$, we obtain

$$
\begin{equation*}
\nabla_{V} J X=J \nabla_{V} X \tag{39}
\end{equation*}
$$

Using $\nabla_{V} X=\nabla_{V}^{M} X-k(V, X) C$, by (39), we have the following equations:

$$
\begin{align*}
\mathcal{H} \nabla_{V}^{M} J X & =J \mathcal{H} \nabla_{V}^{M} X \in T^{\mathrm{h}} M \tag{40}\\
\mathcal{V} \nabla_{V}^{M} J X & =-k(V, X) V \in T^{\mathrm{v}} M \tag{41}\\
-k(V, J X) C & =J \mathcal{V} \nabla_{V}^{M} X \in T M^{\perp} \tag{42}
\end{align*}
$$

where X is any vector field in $T^{\mathrm{h}} M$. From (38) and (40), for any vector fields X and Y in $T^{\mathrm{h}} M$, we obtain

$$
\begin{align*}
g\left(\left(\nabla_{V}^{M} \phi\right) X, Y\right) & =g\left(\nabla_{V}^{M} \phi X-\phi \nabla_{V}^{M} X, Y\right) \tag{43}\\
& =g\left(\mathcal{H} \nabla_{V}^{M} J X-J \mathcal{H} \nabla_{V}^{M} X, Y\right)=0 .
\end{align*}
$$

From the $T^{\mathrm{h}} M$ part of (5) and (38), for any vector fields X and Y in $T^{\mathrm{h}} M$, we obtain

$$
\begin{equation*}
\mathcal{H} \nabla_{X}^{M} \phi Y=\phi \mathcal{H} \nabla_{X}^{M} Y \tag{44}
\end{equation*}
$$

Now, for any vector fields X and Y tangent to M, we assume $k(X, Y)=$ $\left(\frac{1}{2} \sqrt{\omega(B)}-1\right) g(X, Y)+\alpha \eta(X) \eta(Y)$. Let V and W be any vector fields in $T^{\mathrm{v}} M$ and X be any vector field in $T^{\mathrm{h}} M$. From (42), we obtain $\mathcal{V} \nabla_{V}^{M} X=0$, because $k(X, V)=0$. Using (5), we obtain $g\left(J \mathcal{H} \nabla_{V}^{M} W, X\right)=g\left(\mathcal{H} \nabla_{V} J W, X\right)$ $=-g(\sigma(V, X), J W)=0$. Hence, we get $\mathcal{H} \nabla_{V}^{M} W=0$.

We shall prove that (M, ϕ, V, η, g) admits a Sasakian structure. Let X, Y and Z be any vector fields tangent to M. Using (44) and the above result,
we have

$$
\begin{aligned}
& g\left(\left(\nabla_{X}^{M} \phi\right) Y, Z\right) \\
&= g\left(\left(\nabla_{X}^{M} \phi\right) Y, \mathcal{H} Z\right)+g\left(\left(\nabla_{X}^{M} \phi\right) Y, \mathcal{V} Z\right) \\
&= g\left(\nabla_{X}^{M} \phi Y, \mathcal{H} Z\right)-g\left(\phi \nabla_{X}^{M} Y, \mathcal{H} Z\right)+g\left(\nabla_{X}^{M} \phi Y, \mathcal{V} Z\right) \\
&-g\left(\phi \nabla_{X}^{M} Y, \mathcal{V} Z\right) \\
&= g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{H} Y, \mathcal{H} Z\right)+g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{V} Y, \mathcal{H} Z\right)+g\left(\nabla_{\mathcal{V} X}^{M} \phi \mathcal{H} Y, \mathcal{H} Z\right) \\
&+g\left(\nabla_{\mathcal{V} X}^{M} \phi \mathcal{V} Y, \mathcal{H} Z\right)-g\left(\phi \nabla_{\mathcal{H} X}^{M} \mathcal{H} Y, \mathcal{H} Z\right)-g\left(\phi \nabla_{\mathcal{H} X}^{M} \mathcal{V} Y, \mathcal{H} Z\right) \\
&- g\left(\phi \nabla_{\mathcal{V} X}^{M} \mathcal{H} Y, \mathcal{H} Z\right)-g\left(\phi \nabla_{\mathcal{V} X}^{M} \mathcal{V} Y, \mathcal{H} Z\right)+g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{H} Y, \mathcal{V} Z\right) \\
&+ g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{V} Y, \mathcal{V} Z\right)+g\left(\nabla_{\mathcal{V} X}^{M} \phi \mathcal{H} Y, \mathcal{V} Z\right)+g\left(\nabla_{\mathcal{V} X}^{M} \phi \mathcal{V} Y, \mathcal{V} Z\right) \\
&-g\left(\phi \nabla_{\mathcal{H} X}^{M} \mathcal{H} Y, \mathcal{V} Z\right)-g\left(\phi \nabla_{\mathcal{H} X}^{M} \mathcal{V} Y, \mathcal{V} Z\right)-g\left(\phi \nabla_{\mathcal{V} X}^{M} \mathcal{H} Y, \mathcal{V} Z\right) \\
&-g\left(\phi \nabla_{\mathcal{V} X}^{M} \mathcal{V} Y, \mathcal{V} Z\right) \\
&= g\left(\nabla_{\mathcal{V} X}^{M} \phi \mathcal{H} Y, \mathcal{H} Z\right)-g\left(\phi \nabla_{\mathcal{V} X}^{M} \mathcal{H} Y, \mathcal{H} Z\right)+g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{H} Y, \mathcal{V} Z\right) \\
&-g\left(\phi \nabla_{\mathcal{H} X}^{M} \mathcal{V} Y, \mathcal{H} Z\right) \\
&= g\left(\left(\nabla_{\mathcal{V} X}^{M} \phi\right) \mathcal{H} Y, \mathcal{H} Z\right)+g(V, \mathcal{V} Z) g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{H} Y, V\right) \\
&-g(V, \mathcal{V} Y) g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{H} Z, V\right) .
\end{aligned}
$$

Using the $T^{\mathrm{v}} M$ part of (5) and the assumption, we obtain

$$
\begin{align*}
g\left(\nabla_{\mathcal{H} X}^{M} \phi \mathcal{H} Y, V\right) & =g\left(\mathcal{V} \nabla_{\mathcal{H} X}^{M} J \mathcal{H} Y, V\right) \tag{45}\\
& =-k(\mathcal{H} X, \mathcal{H} Y)+\frac{1}{2} g(\mathcal{H} X, \mathcal{H} Y) \sqrt{\omega(B)} \\
& =g(\mathcal{H} X, \mathcal{H} Y) .
\end{align*}
$$

Thus, by (43) and (45),
(46) $\quad g\left(\left(\nabla_{X}^{M} \phi\right) Y, Z\right)=g(V, \mathcal{V} Z) g(\mathcal{H} X, \mathcal{H} Y)-g(V, \mathcal{V} Y) g(\mathcal{H} X, \mathcal{H} Z)$.

On the other hand,

$$
\begin{aligned}
g(g(X, Y) V-\eta(Y) X, Z)= & g(\mathcal{H} X, \mathcal{H} Y) g(V, \mathcal{V} Z)+g(\mathcal{V} X, \mathcal{V} Y) g(V, \mathcal{V} Z) \\
& -g(\mathcal{H} X, \mathcal{H} Z) g(V, \mathcal{V} Y)-g(\mathcal{V} X, \mathcal{V} Z) g(V, \mathcal{V} Y) \\
= & g(V, \mathcal{V} Z) g(\mathcal{H} X, \mathcal{H} Y)-g(V, \mathcal{V} Y) g(\mathcal{H} X, \mathcal{H} Z)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left(\nabla_{X}^{M} \phi\right) Y=g(X, Y) V-\eta(Y) X \tag{47}
\end{equation*}
$$

Hence (M, ϕ, V, η, g) is a Sasakian manifold.

Conversely, assume that (M, ϕ, V, η, g) is a Sasakian manifold. Let X and Y be any vector fields tangent to M. From (9) and (38), we obtain

$$
\begin{aligned}
\nabla_{X} J Y-J \nabla_{X} Y= & \nabla_{X}(\phi Y-\eta(Y) C)-J\left(\nabla_{X}^{M} Y+\sigma(X, Y)\right) \\
= & \nabla_{X} \phi Y-\nabla_{X}(\eta(Y) C)-\phi \nabla_{X}^{M} Y+\eta\left(\nabla_{X}^{M} Y\right) C-J \sigma(X, Y) \\
= & \left(\nabla_{X}^{M} \phi\right) Y-k(X, \phi Y) C-X \eta(Y) C \\
& -\eta(Y) \nabla_{X} C+\eta\left(\nabla_{X}^{M} Y\right) C+k(X, Y) V .
\end{aligned}
$$

On the other hand, by (5),

$$
\begin{aligned}
\nabla_{X} J Y-J \nabla_{X} Y & =\frac{1}{2} \omega(J Y) X-\frac{1}{2} g(X, J Y) B+\frac{1}{2} g(X, Y) J B \\
& =-\frac{1}{2} \sqrt{\omega(B)} \eta(Y) X-\frac{1}{2} g(X, \phi Y) B+\frac{1}{2} \sqrt{\omega(B)} g(X, Y) V
\end{aligned}
$$

From these equations and (47), we have

$$
\begin{aligned}
g(X, Y) V- & \eta(Y) X-k(X, \phi Y) C-X \eta(Y) C \\
& -\eta(Y) \nabla_{X} C+\eta\left(\nabla_{X}^{M} Y\right) C+k(X, Y) V \\
= & -\frac{1}{2} \sqrt{\omega(B)} \eta(Y) X-\frac{1}{2} g(X, \phi Y) B+\frac{1}{2} \sqrt{\omega(B)} g(X, Y) V .
\end{aligned}
$$

The V component of this equation is

$$
\begin{aligned}
g(X, Y)-\eta(Y) \eta(X)-\eta(Y) & g\left(\nabla_{X} C, V\right)+k(X, Y) \\
& =-\frac{1}{2} \sqrt{\omega(B)} \eta(Y) \eta(X)+\frac{1}{2} \sqrt{\omega(B)} g(X, Y)
\end{aligned}
$$

Thus

$$
\begin{aligned}
k(X, Y)= & \left(\frac{1}{2} \sqrt{\omega(B)}-1\right) g(X, Y) \\
& -\left(\frac{1}{2} \sqrt{\omega(B)}-1\right) \eta(X) \eta(Y)+\eta(Y) g\left(\nabla_{X} C, V\right)
\end{aligned}
$$

Since $k(X, Y)$ is symmetric, we have $\eta(Y) g\left(\nabla_{X} C, V\right)=\eta(X) g\left(\nabla_{Y} C, V\right)$. This equation shows that $g\left(\nabla_{X} C, V\right)=\beta \eta(X)$, where β is a function. We set $\alpha=-\frac{1}{2} \sqrt{\omega(B)}+1+\beta$; then we have

$$
k(X, Y)=\left(\frac{1}{2} \sqrt{\omega(B)}-1\right) g(X, Y)+\alpha \eta(X) \eta(Y)
$$

8. Examples. (I) Let (M, ϕ, V, η, g) be a Sasakian manifold and S^{1} the circle with length element $\omega=d t$. Then $S^{1} \times M$ is a generalized Hopf manifold with metric $\omega^{2}+g$ and Lee form ω (see [17]).

Let \mathbb{C}^{n+m} be the complex vector space of all $(n+m)$-tuples of complex numbers $z=\left(z_{1}, \ldots, z_{n+m}\right)$ and $a_{k j}$ be positive integers and $\alpha_{k j}$ be real numbers, $k=1, \ldots, m, j=1, \ldots, n+m$. Let

$$
f_{k}\left(z_{1}, \ldots, z_{n+m}\right)=\sum_{j=1}^{n+m} \alpha_{k j} z_{j}^{a_{k j}}, \quad k=1, \ldots, m
$$

be a collection of complex polynomials. Let $F=\bigcap_{k=1}^{m} f_{k}^{-1}(0)$. Let $d_{k}=$ $\operatorname{LCM}\left(a_{k 1}, a_{k 2}, \ldots, a_{k, n+m}\right), q_{k j}=d_{k} / a_{k j}$. Suppose that
(i) F is a complete intersection of the $f_{k}^{-1}(0)$.
(ii) F has an isolated singularity at the origin.
(iii) $q_{k j}$ is independent of k (let $q_{j}=q_{k j}$).

Let $B^{2 n-1}=F \cap S^{2(n+m)-1} \subset \mathbb{C}^{n+m}$. Then $B^{2 n-1}$ is called a generalized Brieskorn manifold [12]. It is a $(2 n-1)$-dimensional submanifold in $S^{2(n+m)-1}$. Let $\left(S^{2(n+m)-1}, \phi, V, \eta, g\right)$ be the unit sphere with the standard Sasakian structure and imbedded in \mathbb{C}^{n+m}. Denoting by $x_{1}, y_{1}, \ldots, x_{n+m}$, y_{n+m} the real coordinates of \mathbb{C}^{n+m} such that $z_{j}=x_{j}+\sqrt{-1} y_{j}(j=$ $1, \ldots, n+m)$, we define a real vector field \widetilde{V} on \mathbb{C}^{n+m} by

$$
\widetilde{V}=\sum_{j=1}^{n+m} A_{j}\left(x_{j} \partial / \partial y_{j}-y_{j} \partial / \partial x_{j}\right)
$$

where $A_{j}=\gamma q_{j}$ for a positive constant $\gamma(j=1, \ldots, n+m)$. We set

$$
\begin{gathered}
\mu=\widetilde{V}-V, \quad \widetilde{\eta}=(1+\eta(\mu))^{-1} \eta, \quad \widetilde{\phi}(X)=\phi(X-\widetilde{\eta}(X) \widetilde{V}) \\
\widetilde{g}(X, Y)=(1+\eta(\mu))^{-1} g(X-\widetilde{\eta}(X) \widetilde{V}, Y-\widetilde{\eta}(Y) \widetilde{V})+\widetilde{\eta}(X) \widetilde{\eta}(Y)
\end{gathered}
$$

where X and Y are vector fields on $S^{2(n+m)-1}$. Then, by the theorem of Takahashi [13], $\left(S^{2(n+m)-1}, \widetilde{\phi}, \widetilde{V}, \widetilde{\eta}, \widetilde{g}\right)$ is also a Sasakian manifold. Let $\iota: B^{2 n-1} \rightarrow S^{2(n+m)-1}$ be the inclusion mapping. We define four tensor fields $(\widehat{\phi}, \widehat{V}, \widehat{\eta}, \widehat{g})$ on $B^{2 n-1}$ by

$$
\widehat{\phi}=\widetilde{\phi}_{\mid B^{2 n-1}}, \quad \widehat{V}=\widetilde{V}_{\mid B^{2 n-1}}, \quad \widehat{\eta}=\iota^{*} \widetilde{\eta}, \quad \widehat{g}=\iota^{*} \widetilde{g}
$$

Using calculations similar to those of [13], we can prove that every generalized Brieskorn manifold ($B^{2 n-1}, \widehat{\phi}, \widehat{V}, \widehat{\eta}, \widehat{g}$) admits many Sasakian structures. Therefore, $S^{1} \times B^{2 n-1}$ is a generalized Hopf submanifold of the generalized Hopf manifold $S^{1} \times S^{2(n+m)-1}$.
(II) Let $E^{2 n-1}(-3)$ be the Sasakian space form with constant ϕ-sectional curvature -3 with standard Sasakian structure in a Euclidean space. Let $S^{1}\left(r_{i}\right)$ be a circle of radius $r_{i}, i=1, \ldots, p$. A pythagorean product $E^{2(n-p)-1}(-3) \times S^{1}\left(r_{1}\right) \times \ldots \times S^{1}\left(r_{p}\right)$ is a pseudo-umbilical generic submanifold of $E^{2 n-1}(-3)(p \geq 2)$ (see [20]). Let S^{1} be the circle with length element ω. Then ω is the Lee form of the generalized Hopf manifold $S^{1} \times E^{2 n-1}(-3)$. Hence $S^{1} \times E^{2(n-p)-1}(-3) \times S^{1}\left(r_{1}\right) \times \ldots \times S^{1}\left(r_{p}\right)$ is a CR-submanifold of $S^{1} \times E^{2 n-1}(-3)$ satisfying the conditions (a)-(c) and $S^{1} \times E^{2(n-p)-1}(-3)$ is tangent to the Lee vector field of $S^{1} \times E^{2 n-1}(-3)$. The projection

$$
\pi: S^{1} \times E^{2(n-p)-1}(-3) \times S^{1}\left(r_{1}\right) \times \ldots \times S^{1}\left(r_{p}\right) \rightarrow S^{1} \times E^{2(n-p)-1}(-3)
$$

is a Riemannian submersion satisfying (d). $S^{1} \times E^{2(n-p)-1}(-3)$ is also a generalized Hopf manifold.
(III) The Hopf manifold $H_{e^{2}}^{n}$ is isometric to $S^{1}(1 / \pi) \times S^{2 n-1}$ (see [17]). $S^{2 n-1}$ is a real hypersurface of $H_{e^{2}}^{n}$ and the Lee vector field of $H_{e^{2}}^{n}$ is
normal to $S^{2 n-1}$. $S^{2 n-1}$ is a CR-submanifold of $H_{e^{2}}^{n}$ satisfying the conditions (a)-(c). $\pi: S^{2 n-1} \rightarrow P_{n-1}(\mathbb{C})$ is a Riemannian submersion satisfying (d). From O'Neill [11], for orthonormal horizontal vectors X, Y, $A_{X} Y=-g(X, J Y) J C$, where J is an almost complex structure on $H_{e^{2}}^{n}$ and C is the unit normal vector to $S^{2 n-1}$. The holomorphic sectional curvature H of $P_{n-1}(\mathbb{C})$ is $H(\widetilde{X})=1+3\left|A_{X} J X\right|^{2}=4$, where \widetilde{X} is any unit vector tangent to $P_{n-1}(\mathbb{C})$ and $X=$ h.l. (\widetilde{X}).

REFERENCES

[1] R. L. Bishop and S. I. Goldberg, On the topology of positively curved Kaehler manifolds II, Tôhoku Math. J. 17 (1965), 310-318.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
[3] D. E. Blair and B. Y. Chen, On CR-submanifolds of Hermitian manifolds, Israel J. Math. 34 (1979), 353-363.
[4] B. Y. Chen and L. Vanhecke, Isometric, holomorphic and symplectic reflections, Geom. Dedicata 29 (1989), 259-277.
[5] S. Dragomir, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 98-110.
[6] -, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I-II, Geom. Dedicata 28 (1988), 181-197, Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1-11.
[7] S. Kobayashi, Submersions of CR submanifolds, Tôhoku Math. J. 89 (1987), 95-100.
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2, Interscience Publishers, 1963, 1969.
[9] F. Narita, Riemannian submersions and isometric reflections with respect to submanifolds, Math. J. Toyama Univ. 15 (1992), 83-94.
[10] -, Riemannian submersion with isometric reflections with respect to the fibers, Kodai Math. J. 16 (1993), 416-427.
[11] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 1-20.
[12] R. C. Randell, Generalized Brieskorn manifolds, Bull. Amer. Math. Soc. 80 (1974), 111-115.
[13] T. Takahashi, Deformations of Sasakian structures and its application to the Brieskorn manifolds, Tôhoku Math. J. 30 (1978), 37-43.
[14] Y. Tashiro, On contact structure of hypersurfaces in complex manifolds, I, ibid. 15 (1963), 62-78.
[15] I. Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), 338-351.
[16] -, A theorem on compact locally conformal Kähler manifolds, Proc. Amer. Math. Soc. 75 (1979), 279-283.
[17] -, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284.
[18] -, Some curvature properties of locally conformal Kaehler manifolds, Trans. Amer. Math. Soc. (2) 259 (1980), 439-447.
[19] I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255.
[20] K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163-196.
[21] —, —, Structures on Manifolds, World Sci., Singapore, 1984.
Department of Mathematics
Akita National College of Technology
1-1, Bunkyo-cho Iijima
Akita 011, Japan
E-mail: narifumi@air.akita-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: 53C55, 53C40.

