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LIOUVILLIAN FIRST INTEGRALS OF HOMOGENEOUS
POLYNOMIAL 3-DIMENSIONAL VECTOR FIELDS

BY

JEAN MOUL IN OLLAGNIER (PALAISEAU)

Given a 3-dimensional vector field V with coordinates Vx, Vy and Vz

that are homogeneous polynomials in the ring k[x, y, z], we give a necessary
and sufficient condition for the existence of a Liouvillian first integral of V
which is homogeneous of degree 0. This condition is the existence of some
1-forms with coordinates in the ring k[x, y, z] enjoying precise properties; in
particular, they have to be integrable in the sense of Pfaff and orthogonal to
the vector field V . Thus, our theorem links the existence of an object that
belongs to some level of an extension tower with the existence of objects
defined by means of the base differential ring k[x, y, z]. A self-contained
proof of this result is given in the language of differential algebra.

This method of finding first integrals in a given class of functions is an
extension of the compatibility method introduced by J.-M. Strelcyn and
S. Wojciechowski; and an old method of Darboux is a special case of it.

We discuss all these relations and argue for the practical interest of our
characterization despite an old open algorithmic problem.

1. Introduction—Compatibility analysis. Consider some vector
field V = Vx∂x + Vy∂y + Vz∂z defined on R3, C3 or on some open subset U
of one of these spaces.

A function f defined on U is said to be a first integral of V if it is regular
enough, not constant on any non-empty open subset of U and if the inner
product of the exterior derivative df of f by the field V is 0:

(1) iV (df) = Vx∂xf + Vy∂yf + Vz∂zf = 0.

This means that f is invariant under the action of the local semigroup
generated by field V .

First integrals always exist locally around any regular point of the vector
field by classical results (see, for instance, [2]). Their global existence is a
difficult topological question [1].
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We will adopt a more algebraic approach; in fact, we are interested in the
effective search of first integrals for explicitly given vector fields. Precisely,
we consider a vector field V defined on the whole space whose coordinates Vx,
Vy and Vz in the canonical basis (∂x, ∂y, ∂z) are homogeneous polynomials
of the same degree with respect to the space variables x, y and z and may
depend on some parameters. We would like to know whether this vector field
admits a first integral on the whole space, or at least on some significant
subset of it, and also if this integral can be defined “in finite terms”, i.e.
explicitly by means of some elementary constructions.

In this search, it will be of interest to know the existence of a first integral
of the given field V which is also a first integral of some other vector field.

Therefore, two vector fields V1 and V2 are said to be compatible if the
following identity holds everywhere on their common domain of definition:

(2) det(V1, V2, [V1, V2]) = 0,

where [V1, V2] stands for the Lie bracket of the two fields and det is the
determinant of the 3× 3 matrix. This condition (2) does not imply that the
three fields V1, V2 and [V1, V2] are linearly dependent.

Let Ω be the volume form dx dy dz and let ω be the 1-form iV1(iV2(Ω));
an easy but tedious computation shows that the vector fields V1 and V2

are compatible if and only if the form ω satisfies the integrability condition
ω ∧ dω = 0.

A theorem of Frobenius’ shows that compatibility is a sufficient condition
for the existence of a local common first integral of two vector fields in K3

(K = R or C).
The compatibility method of Strelcyn and Wojciechowski [18] consists in

looking for first integrals of a given vector field V that are also first integrals
of linear vector fields.

Indeed, first integrals of linear vector fields are well known; precisely, it
is always possible to find two functionally independent first integrals of any
linear vector field.

Let us remark that every homogeneous vector field V (i.e. a vector field
whose coordinates are homogeneous functions of the same degree) is com-
patible with the special radial (or Euler’s) vector field E = x∂x +y∂y +z∂z,
according to the well-known Euler relation. It follows that such a field has,
at least locally, a first integral which is homogeneous of degree 0 (i.e. this
first integral is also a first integral of the field E).

In a parametric situation, finding the values of the parameters for which
the studied polynomial vector field is compatible with some non-zero linear
vector field is an algebraic problem whose solution consists in solving a
system of polynomial equations. Thus, whenever a compatible linear vector
field is found, the discovery of a common first integral is a matter of skill.
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This has been achieved with a surprising success in the particular exam-
ple of the Lotka–Volterra system in a joint work of ours with B. Grammati-
cos, A. Ramani, J.-M. Strelcyn and S. Wojciechowski [7]. Using a computer
algebra program, we used this method to find many cases, i.e. many values
of the parameters A, B and C, for which a first integral (in finite terms)
exists for the system  Lx = x (Cy + z),

Ly = y (Az + x),
Lz = z (Bz + y).

In fact, we need not be skilful in finding the common first integral if we
change our point of view. Let us now describe the facts without details: we
shall be much more precise in the next section.

If V is a non-zero homogeneous polynomial vector field in K3 and L a
linear vector field compatible with V which is not collinear with the radial
field E, an integrating factor can be found for the homogeneous 1-form
ω = iLiV Ω, where Ω is the volume form dx dy dz. Simply choose 1/P ,
where P is the non-zero homogeneous polynomial iE(ω), for this integrating
factor. Any primitive f of ω/P is then a first integral of V .

When L is a multiple of E, the polynomial P is 0 and nothing more can
be done. But, in our study of the Lotka–Volterra system, we were not able
to find a first integral only by using compatibility with the field E.

Moreover, it can be thought that the true problem, due to the homo-
geneity of the data, consists precisely in finding a first integral which is
homogeneous of degree 0, i.e. a common first integral of V and E.

This problem can be solved in a second step in the case where the di-
vergence of the field V is zero. Recall that the divergence of a vector field
V is the function div(V ) such that d(iV (Ω)) = div(V )Ω, and denote by s
the degree of V . This assumption on the divergence is not a restriction,
because, if we look for a common first integral of V and E, we can replace
V by a new vector field V ′ with zero divergence:

V ′ = V − 1
s + 2

div(V )E

without changing the homogeneous first integrals of degree 0.
The found first integral f of V is then the logarithm of a function which is

homogeneous of degree 1 and, under the previous assumption, exp(−(s+2)f)
is an integrating factor g of the 1-form ω0 = iE(iV (Ω)) and any primitive
of gω0 is a first integral of V and E.

It is now clear that linear vector fields do not play any special role in
the problem and that a less restrictive method can be proposed for find-
ing first integrals of homogeneous polynomial vector fields in K3 that are
homogeneous functions of degree 0.
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Let us call this method extended compatibility . It consists in finding
some homogeneous 1-forms ω that are integrable (ω ∧ dω = 0), orthogonal
to the given vector field V (iV (ω) = 0) and non-projective (iE(ω) 6= 0).
Moreover, the useful forms have to be irreducible (no non-trivial common
factor of the coordinates).

This will be the first and easier part of our main theorem: in the above
situation, a homogeneous first integral of degree 0 can be built from an
integral and an exponential. Thus, this first integral is Liouvillian, ac-
cording to the definition given by Michael Singer. The second and more
difficult part of the theorem will be the converse: the existence of some
1-form with coordinates in k[x, y, z] with the above properties is a neces-
sary condition for the existence of a Liouvillian first integral homogeneous
of degree 0.

All that will be described in the completely formal framework of differ-
ential algebra; the class of Liouvillian elements over a given differential field
is indeed defined in this context.

The algorithmic status of the problem of finding good 1-forms with co-
ordinates in k[x, y, z] is not yet known. Nevertheless, our theorem is not
so poor: in a wide range of situations, the non-existence of such forms can
be proven. In particular, a powerful method that can be found in the book
of J.-P. Jouanolou [8] can be used. A comprehensive study of this method,
together with new examples and remarks in more than 3 variables, will soon
be available [9].

Moreover, for a homogeneous vector field V , the existence of a (non-
homogeneous) Liouvillian first integral implies the existence of a homo-
geneous one; and this homogeneous first integral can be obtained by the
extended compatibility method. That will be the content of our second
theorem. This is the best to be expected: we then give a counterexam-
ple in which some homogeneous vector field has a homogeneous Liouvillian
first integral but has no Liouvillian first integral which is homogeneous of
degree 0.

An old method due to Gaston Darboux [6] is a special case of our ex-
tended compatibility method. It relies on the search of particular algebraic
integrals (we shall call them Darboux curves) of a polynomial vector field V .
A Darboux curve is an irreducible homogeneous polynomial f in k[x, y, z]
such that the inner product iV (df) = Vx∂xf + Vy∂yf + Vz∂zf is a multiple
mf of f by some homogeneous polynomial “eigenvalue” m. If sufficiently
many such Darboux curves can be found, a first integral can be built which
is moreover homogeneous of degree 0. It is easy to show that Darboux’s
method is formally less powerful than extended compatibility. We give an
example showing that our method is really stronger; this example is a special
case of Lotka–Volterra’s system.
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Darboux curves have another relation with our method so that the search
of all such curves for a given vector field is of great interest to us.

From an algorithmic point of view, the following question remains open:
find an effective upper bound for the degree of Darboux curves of a given
polynomial vector field. Michael Singer asks this question [14, 17], and
Henri Poincaré was already interested in this problem, which he first con-
sidered easy [11–13]. A theorem of Jean-Pierre Jouanolou’s [8] gives the
non-effective existence of such an upper bound. But the method quoted
before can sometimes be used to decide that a given vector field has no
Darboux curve, and then that no good 1-form exists for it.

We conclude this paper with miscellaneous remarks.

Acknowledgements. I am very grateful to Jean-Marie Strelcyn for
many hours of discussions about these and related subjects. It is a pleasure
for me to thank Michael Singer for his pertinent remarks and advice. I am
also indebted to Robert Moussu to whom I owe the knowledge of the basic
work of Gaston Darboux. I also thank Andrzej Nowicki for very helpful
discussions.

2. Main theorem

2.1. The frame. In the present section we are interested in a three-
dimensional vector field

V = Vx∂x + Vy∂y + Vz∂z

whose coordinates are homogeneous polynomials of the same degree n in the
polynomial ring k[x, y, z]; field k is an extension of the field Q of all rational
numbers.

Denote by K the differential field K = k(x, y, z) of all rational func-
tions in three variables with coefficients in k. The derivations of K are of
course the three commuting derivations ∂x, ∂y and ∂z with respect to the
space variables. We shall look for solutions to some problems in abstract
differential extensions of K.

An element f of K is homogeneous of degree n, i.e. is the quotient of
two homogeneous polynomials with coefficients in k whose degrees differ by
n, if and only if iE(df) = nf (Euler’s identity). In differential extensions of
K, this identity will be the definition of homogeneity.

The exterior derivative of an element f on some differential extension
of k is the formal three-dimensional object df = ∂xf dx + ∂yf dy + ∂zf dz.
More generally, we shall use notations of exterior calculus as compact ways
to deal with the three derivations ∂x, ∂y and ∂z at the same time.

The so-called Liouvillian extensions of K [17] will be of special interest
to us. A simple Liouvillian extension is a pair (L,L′) of differential fields,
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where L′ is a differential extension of L which is generated by one element
(L′ = L(t)), and where this element has one of the following three properties.

• t is algebraic over L,
• t is transcendental over L and the derivatives of t belong to L (integral

case),
• t is transcendental over L and the quotients by t of the derivatives of

t belong to L (exponential-integral case)

A pair (K, L) of differential fields is said to be a Liouvillian extension if
there exists a finite tower of simple Liouvillian extensions (L0, L1), (L1, L2),
. . . , (Ln−1, Ln), where L0 = K and Ln = L.

2.2. The result

Theorem 1. Let V be a homogeneous polynomial vector field of degree
n in three variables with coefficients in field k. Suppose that the divergence
of V is 0 and that V is not proportional to Euler’s field E, i.e. the 1-
form ω0 = iE(iV (Ω)) is not 0, Ω being the volume form dx dy dz. Then
there exists a Liouvillian first integral of V which is homogeneous of degree
0 if and only if there exists some homogeneous polynomial 1-form ω with
coordinates in the ground ring k[x, y, z], in which the coordinates of V lie,
which satisfies the following conditions:

• ω is integrable: ω ∧ dw = 0,
• ω is orthogonal to V : iV (ω) = 0,
• ω is not projective: iE(ω) 6= 0.

R e m a r k 1. This means that extended compatibility is the way to get
Liouvillian first integrals, i.e. is a well-suited method to solve “in finite
terms” the problem of the existence of a first integral of a homogeneous
polynomial vector field.

2.3. The proof . In one direction, this proof consists in giving all details,
in the chosen formal frame, of what we described in the previous section.

In the other direction, our proof, although inspired by some results of
Michael Singer [17], is probably simpler and more natural. Singer is inter-
ested in non-homogeneous two-variable polynomial vector fields: this dif-
ference is only a matter of style. As Michael is a great connoisseur of the
subject, his proof refers to classical results by Rosenlicht [16] and Risch [15]
while ours is self-contained. The stability of the subfield of constants plays
a role in their arguments; in our opinion, this seems irrelevant here.

The reader can now follow us climbing up and down Liouvillian towers.
Several lemmas will be used in the proof; assumptions on V are the same

for all of them and we shall speak of four problems in which R stands for
some differential ring which is an extension of the polynomial ring k[x, y, z]:
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Problem 1. Find an element f of R such that iV (df) = 0, iE(df) = 0
and df 6= 0.

Problem 2. Find a 1-form ω whose coordinates are elements of R such
that iV (ω) = 0, iE(ω) = 0, ω 6= 0 and dω = 0.

Problem 3. Find a 1-form ω whose coordinates are elements of R such
that iV (ω) = 0, iE(ω) = 1 and dω = 0.

Problem 4. Find a 1-form ω whose coordinates are elements of R such
that iV (ω) = 0, iE(ω) 6= 0 and ω ∧ dω = 0.

Theorem 1 can be expressed in the following form: Problem 1 can be sol-
ved in some Liouvillian extension L of K if and only if Problem 4 has a homo-
geneous solution whose coordinates lie in the polynomial ring k[x, y, z] itself.

Lemma 1. Problem 4 has a homogeneous solution whose coordinates be-
long to k[x, y, z] if and only if Problem 3 has a solution whose coordinates
belong to the field K = k(x, y, z).

P r o o f. Let ω be a 1-form whose coordinates ωx, ωy and ωz are ho-
mogeneous elements of K of the same degree and suppose that iV (ω) = 0,
iE(ω) = 1 and dω = 0. Let Q be the least common multiple of the denom-
inators of the coordinates of ω. Multiplying ω by Q, we get a new 1-form
ω′ whose coordinates are homogeneous polynomials of the same degree with
coefficients in the field k and ω′ is a solution to Problem 4.

In the other direction, consider a 1-form ω whose coordinates belong to
k[x, y, z] such that iV (ω) = 0, iE(ω) 6= 0 and ω ∧ dω = 0. Denote by P the
non-zero polynomial iE(ω) and divide ω by P to get a new 1-form ω′ whose
coordinates belong to K.

The linear properties iV (ω′) = 0 and iE(ω′) 6= 0 still hold for ω′. The
property dω′ = 0 remains to be deduced from the integrability condition
ω ∧ dω = 0 on ω.

Calculate therefore the exterior derivative of ω′ = ω/P :

dω′ = d(ω/P ) = (1/P 2)(Pdω − dP ∧ ω).

To prove that the numerator is the zero 2-form, it suffices to obtain the
following two equalities:

ω ∧ iE(dω) = Pdω,(3)
ω ∧ iE(dω) = dP ∧ ω.(4)

Taking the inner product by Euler’s field E of the identity ω∧dω = 0 yields
equality (3). As the coordinates of ω are homogeneous of some degree m,
the generalized Euler formula (for 1-forms) yields

diE(ω) + iE(dω) = (1 + m)ω
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and then the exterior product by ω gives (4).

Lemma 2. If Problem 1 has a solution in a differential ring R which is
an extension of k[x, y, z] then Problem 2 can be solved in the same ring R.

P r o o f. If f is a solution to Problem 1, then its exterior derivative df is
a solution to Problem 2.

Lemma 3. If Problem 2 can be solved in a differential field L which is
an extension of K = k(x, y, z), then there exists an integrating factor for
the 1-form ω0 = iE(iV (Ω)) in L, i.e. a non-zero element φ of L such that
d(φω0) = 0.

P r o o f. Let ω be a solution to Problem 2 and calculate the exterior
product of ω by ω0 = iE(iV (Ω)), where Ω is the volume form dx dy dz:

ω ∧ iE(iV (Ω)) = iE(ω ∧ iV (Ω))

as iE(ω) is equal to 0. Similarly, ω ∧ iV (Ω) = −iV (ω ∧Ω) as iV (ω) is equal
to 0. But a 4-form like ω∧Ω is 0, so that ω∧ω0 is 0. This means that ω and
ω0 are collinear, and precisely, as ω0 is not 0, that there exists a non-zero
element φ of L such that ω = φω0.

Lemma 4. Let φ be a non-zero element of some differential field L which
is an extension of K = k(x, y, z). This φ is an integrating factor for ω0 =
iE(iV (Ω)) if and only if φ is a homogeneous first integral of V of degree
−(n + 2), n being the degree of V .

P r o o f. As ω = φω0 is supposed to be closed,

(5) dω = 0 = d(φω0) = dφ ∧ ω0 + φ dω0.

The inner product of (5) by Euler’s field yields

0 = iE(dφ)ω0 − 0 + φiE(dω0)

and thus
iE(dφ/φ)ω0 = −iE(dω0).

On the other hand, as ω0 is a homogeneous 1-form of degree n + 1, the
generalized Euler formula (for 1-forms) yields

(n + 2)ω0 = iE(dω0) + diE(ω0) = iE(dω0).

All that proves the identity

iE(dφ) = −(n + 2)φ.

The inner product of (5) by V yields

0 = iV (dφ)ω0 − 0 + φiV (dω0)

and so

(6) iV (dφ)ω0 = −φiV (dω0).
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But iV (Ω) is a homogeneous 2-form of degree n and we get (Euler’s formula
for 2-forms)

(n + 2)iV (Ω) = iE(diV (Ω)) + diE(iV (Ω)).

As the divergence of V is 0, dω0 = (n + 2)iV (Ω). And a second inner
product by V yields 0, which proves iV (dω0) = 0 and, together with (6),
the identity iV (dφ) = 0.

Thus, assuming that ω = φω0 is closed leads to the fact that φ is a first
integral of V and is homogeneous of degree −(n + 2).

In the other direction, suppose that

iV (dφ) = 0, iE(dφ) = −(n + 2)φ.

Then calculate the exterior derivative of ω = φω0:

(7) dω = d(φω0) = dφ ∧ ω0 + φdω0.

To prove that the right hand side is 0, it suffices to start from the trivial
fact that the 4-form dφ ∧Ω is 0; taking the inner product by V gives dφ ∧
iV (Ω) = 0 as φ is a first integral of V .

The inner product by E then yields

iE(dφ) ∧ iV (Ω) = dφ ∧ ω0.

As previously seen, the zero divergence of V gives the value (n + 2)iV (Ω)
for the exterior derivative of ω0. As φ is homogeneous of degree −(n + 2),
the two terms of (7) cancel, which proves the result.

Lemma 5. If Problem 2 can be solved in a differential field L which is an
extension of K = k(x, y, z) then Problem 3 can be solved in the same field L.

P r o o f. According to the previous two lemmas, an integrating factor φ
of ω0 can be found in L. This integrating factor is a non-trivial first integral
of V and is homogeneous of degree −(n + 2). As the third property

d

[
− 1

n + 2
dφ

φ

]
= 0

is clear, − 1
n+2

dφ
φ is a solution to Problem 3.

Lemma 6. If Problem 3 has a solution ω whose coordinates belong to some
differential field L which is an extension of K, then a simple Liouvillian
extension L(t) can be built in which Problem 2 has a solution.

P r o o f. Let L(t) be the field of rational fractions with coefficients in the
differential field L. To extend derivations from L to L(t), it suffices to define
their values for t; let tωx, tωy and tωz be the values of the three derivations
for t. This determines completely, and in a unique way, the extension of the
derivations to L(t).
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As ω is closed, these three derivations, which commute on L, also com-
mute for the generator t so that they are commuting derivations of L(t).
Then ω/(tn+2) is a solution to Problem 2 and its coordinates belong to
L(t), which is a simple Liouvillian extension of L of exponential-integral
type.

Lemma 7. If Problem 2 has a solution ω whose coordinates belong to some
differential field L which is an extension of K, then a simple Liouvillian
extension L(t) can be built in which Problem 1 has a solution.

P r o o f. Let L(t) be the field of rational fractions with coefficients in the
differential field L. Let ωx, ωy and ωz be the values of the three derivations
for t. This determines completely, and in a unique way, the extension of the
derivations to L(t).

As ω is closed, these three derivations, which commute on L, also com-
mute for the generator t so that they are commuting derivations of L(t).
And t, whose derivative is ω, is a solution to Problem 1 and belongs to L(t),
which is a simple Liouvillian extension of L of integral type.

We can now summarize the proof of the theorem in one direction, i.e.
we can build a solution to Problem 1 in a two-level Liouvillian extension of
K = k(x, y, z) from a solution to Problem 4 in the ring k[x, y, z]. Indeed,
Lemma 1 gives a solution to Problem 3 in K; then Lemma 6 gives a solution
to Problem 2 in a simple Liouvillian extension of K of exponential-integral
type; applying Lemma 7 then yields a solution to Problem 1 in a simple
Liouvillian extension of integral type of the preceding field.

Climbing down Liouvillian towers allows us to get a proof in the other
direction; this proof relies on the next three lemmas.

Lemma 8. If Problem 3 has a solution whose coordinates belong to L(t),
where t is algebraic over L, then a solution to Problem 3 can be found with
coordinates in L.

P r o o f. Let L be the splitting field of the minimal polynomial of t over
L. The Galois group of algebraic automorphisms of L over L commutes
with derivations, because of the well-known uniqueness of the extension of
a derivation in the algebraic case.

The defining properties of Problem 3 are affine, and replacing every
coordinate of ω by the mean value of its conjugates gives a new solution to
Problem 3, but with coordinates in the ground field L.

Lemma 9. If Problem 3 has a solution whose coordinates belong to L(t),
where t is transcendental over L and of exponential-integral type, then a
solution to Problem 3 can be found with coordinates in L.
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P r o o f. Let ω be a solution to Problem 3 with coordinates ωx, ωy and
ωz belonging to L(t). These coordinates can be written as

ωx =
P (t)
S(t)

, ωy =
Q(t)
S(t)

, ωz =
R(t)
S(t)

,

where P , Q, R and S are univariate polynomials in t with coefficients in
L and where S is unitary. Moreover, the derivative dt of t is equal to
tηx dx + tηy dy + tηz dz, where ηx, ηy and ηz belong to L.

The hypotheses on ω are then the following:

VxP + VyQ + VzR = 0, xP + yQ + zR = S,

∂y(P/S) = ∂x(Q/S), ∂z(Q/S) = ∂y(R/S), ∂x(R/S) = ∂z(P/S).

Consider now the Euclidean divisions of polynomials P , Q and R by the
polynomial S:

P = P1S + P2, Q = Q1S + Q2, R = R1S + R2,

and denote by P 0
1 , Q0

1 and R0
1 the constant terms (as polynomials in t) of the

quotient polynomials P1, Q1 and R1. These terms belong to L and satisfy
the two identities

VxP 0
1 + VyQ0

1 + VzR
0
1 = 0 and xP 0

1 + yQ0
1 + zR0

1 = 1,

as can be seen by dividing the corresponding expressions for P , Q and R by
S and then considering the coefficients of t0 in the quotients.

The property of the “mixed derivatives” remains to be proven in order
to show that ω′ = P 0

1 dx + Q0
1 dy + R0

1 dz is a solution to Problem 3:

∂y(P 0
1 ) = ∂x(Q0

1), ∂z(Q0
1) = ∂y(R0

1), ∂x(R0
1) = ∂z(P 0

1 ).

We know similar properties for P/S, Q/S and R/S; for instance,

∂y(P/S) = ∂y(P1 + P2/S) = ∂x(Q/S) = ∂x(Q1 + Q2/S).

If the polynomial S is equal to 1, the conclusion ∂y(P1) = ∂x(Q1) is immedi-
ate, and if the degree of S is greater than or equal to 1, this is a consequence
of the fact that the partial derivatives of P2/S and Q2/S, as fractions in t,
have numerators with a degree strictly smaller than 2 times the degree of S.

Thus ∂y(P1) is the sum of ∂y(P 0
1 ) and of a polynomial in t without

constant term, because the partial derivatives of t are multiples of t by
elements of L.

Considering now the constant terms (with respect to t) of the identities

∂y(P1) = ∂x(Q1), ∂z(Q1) = ∂y(R1) and ∂x(R1) = ∂z(P1)

leads us to the sought result:

∂y(P 0
1 ) = ∂x(Q0

1), ∂z(Q0
1) = ∂y(R0

1), ∂x(R0
1) = ∂z(P 0

1 ).
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Lemma 10. If Problem 3 has a solution whose coordinates belong to L(t),
where t is transcendental over L and of integral type, then a solution to
Problem 3 can be found with coordinates in L.

P r o o f. The proof is similar to the preceding one. Consider a solution
to Problem 3 with coordinates in L(t):

ωx =
P (t)
S(t)

, ωy =
Q(t)
S(t)

, ωz =
R(t)
S(t)

,

where P , Q, R and S are univariate polynomials in t with coefficients in
L and where S is unitary. Euclidean division by S also gives a solution to
Problem 3 in which the coordinates are the quotient polynomials P1, Q1

and R1.
Let now m be the maximum degree of P1, Q1 and R1. The corresponding

coefficients Pm
1 , Qm

1 and Rm
1 are the coordinates of some 1-form. If m is

equal to 0, this form is a solution to Problem 3, and if it is not 0, we get
a solution to Problem 2. Indeed, derivation with respect to t lowers the
degrees, so that the property of mixed derivatives holds for these leading
coefficients; as V and E have coordinates which are polynomials of degree
0 (with respect to t of course), the identities involving inner products are
proved.

In the first case, the proof is finished; in the second case, Lemma 5 allows
us to get a solution to Problem 3 with coordinates in the same field as a
given solution to Problem 2, which completes the proof.

We can now conclude the proof of Theorem 1.
Consider the following tower of simple Liouvillian extensions:

K = L0 = k(x, y, z) ⊂ L1 = L0(t1) ⊂ . . . ⊂ Ln = Ln−1(tn) = L

and suppose that Problem 1 has a solution in L.
According to Lemmas 2 and 5, Problem 3 has a solution in the biggest

field L. By the last three lemmas, for every type of Liouvillian simple
extension (Li, Li(t)), if there exists a solution to Problem 3 in Li(t), then
a solution to the same problem can be found in Li; so that, by induction,
there exists a solution to Problem 3 with coordinates in the first field K. By
Lemma 1, Problem 4 can be solved with coordinates in the ring k[x, y, z].

2.4. A complementary result . The existence of a non-homogeneous Li-
ouvillian first integral of a homogeneous vector field V is already interesting;
indeed, it implies that the extended compatibility method can be applied
with success to V , as follows from the next theorem.

Theorem 2. Let V be a homogeneous polynomial vector field of degree
n in three variables with coordinates in the ring k[x, y, z]. Suppose that V
is not proportional to Euler’s field E, i.e. the 1-form ω0 = iE(iV (Ω)) is not
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0, Ω being the volume form dx dy dz. Let D be the divergence of V , i.e.
the element of k[x, y, z] given by d(iV (Ω)) = DΩ. Let V be the translate
V = V − (D/(n+2))E of V ; the divergence of V is 0. Then, if V has some
Liouvillian first integral , there exists a homogeneous polynomial 1-form ω
with coordinates in the ground ring k[x, y, z], in which the coordinates of V
lie, such that ω satisfies the following conditions:

• ω is integrable: ω ∧ dw = 0,
• ω is either orthogonal to V or to V : iV (ω) = 0 or iV (ω) = 0,
• ω is not projective: iE(ω) 6= 0.

Like the proof of the preceding theorem, this one consists in finding a
solution to some problem in a differential field L from a solution to the same
or another problem in a simple Liouvillian extension L(t) of L. We shall
therefore need several lemmas.

Lemma 11. Let V be a homogeneous vector field with coordinates in the
ring R = k[x, y, z]; if a closed 1-form ω has coordinates in some differential
extension L of R and satisfies iV (ω) = 0 then the identity iV (df) = 0 holds
for the element f = iE(ω) of L.

P r o o f. The proof is an easy computation; simply write the inner prod-
uct iV (df), use the fact that ω is closed, and the three derivatives of the
identity iV (ω) = 0 to get

iV (df) = −ωx(iE(Vx))− ωy(iE(Vy))− ωz(iE(Vz)).

But, as the coordinates of V are homogeneous of the same degree, the right
hand side is a multiple of iV (ω) and thus it is equal to 0.

Lemma 12. Let L be a differential field that is an extension of k(x, y, z)
and let L(t) be an algebraic extension of L. Suppose that there exists an
element f of L(t) which is a first integral of V , i.e. such that iV (df) = 0
and df 6= 0. Then there exists a first integral of V in L.

P r o o f. Let P be the minimal unitary polynomial of f with coefficients
in L:

P (f) =
m∑

i=0

Pif
i = 0, Pm = 1.

Differentiating P (f) with respect to x, y and z, and then taking the inner
product by V yields

m−1∑
i=0

f iiV (dPi) = 0

and all inner products iV (dPi) are 0. One of the dPi is not 0, as f is not
a constant; and the corresponding Pi is the sought first integral of V that
belongs to L.
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Lemma 13. Let L be a differential field that is an extension of k(x, y, z)
and let L(t) be a transcendental extension of L. Suppose that L(t) is a
simple Liouvillian extension of L of exponential-integral type, i.e. dt/t is a
closed 1-form η with coordinates in L. If there exists an element f of L(t)
which is a first integral of V , then there exists a non-zero closed 1-form ω
with coordinates in L such that iV (ω) = 0.

P r o o f. The element f can be written as f = P (t)/Q(t), where P and
Q are relatively prime polynomials with coefficients in L and where Q is
unitary. As f is a first integral of V , the 1-form PdQ − QdP is not 0 but
its inner product by V is 0.

The derivatives of P and Q are

dQ =
n∑

i=0

tidQi + η

n∑
i=0

itiQi, dP =
m∑

i=0

tidPi + η

m∑
i=0

itiPi,

and the inner product by V of PdQ − QdP gives the following equality of
polynomials:

P

n∑
i=0

ti(iV (dQi) + iQiiV (η)) = Q

m∑
i=0

ti(iV (dPi) + iPiiV (η)).

As P and Q are relatively prime, there exists an element α of L such that,
for every i,

iV (dQi) + iQiiV (η) = αQi, iV (dPi) + iPiiV (η) = αPi.

Moreover, α is easily seen to be equal to niV (η) because Qn = 1.
Thus, for every i, iV (dPi) = Pi(n− i)iV (η). As f is not a constant, some

of the coefficients Pi or Qi is different from 0 and satisfies dPi/Pi 6= (n− i)η.
If iV (η) = 0, η is the sought result. Otherwise ω = dPi/Pi − (n − i)η has
the desired properties.

Lemma 14. Let L be a differential field which is an extension of k(x, y, z)
and let L(t) be a transcendental extension of L. Suppose that L(t) is a simple
Liouvillian extension of L of integral type, i.e. dt is a closed 1-form η with
coordinates in L. If there exists an element f of L(t) which is a first integral
of V , then there exists a first integral of V in L.

P r o o f. The element f can be written as f = P (t)/Q(t), where P and
Q are relatively prime polynomials with coefficients in L and where Q is
unitary. As f is a first integral of V , the 1-form PdQ − QdP is not 0 but
its inner product by V is 0.

The derivatives of P and Q are

dQ =
n∑

i=0

tidQi + η

n∑
i=1

iti−1Qi, dP =
m∑

i=0

tidPi + η

m∑
i=1

iti−1Pi,
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and the inner product by V of PdQ − QdP gives the following equality of
polynomials:

P

n∑
i=0

ti(iV (dQi))+iV (η)
n∑

i=1

iti−1Qi = Q

m∑
i=0

ti(iV (dPi))+iV (η)
m∑

i=1

iti−1Pi.

As P and Q are relatively prime, there exists an element α of L such that,
for every i,

iV (dQi) + (i + 1)Qi+1iV (η) = αQi, iV (dPi) + (i + 1)Pi+1iV (η) = αPi.

Moreover, α is easily seen to be equal to 0 because Qn = 1. Thus, iV (dPm)
= 0 while Pm is not 0 and Pm is the sought first integral.

We can now conclude the proof of Theorem 2. Consider the following
tower of simple Liouvillian extensions:

K = L0 = k(x, y, z) ⊂ L1 = L0(t1) ⊂ . . . ⊂ Ln = Ln−1(tn) = L

and suppose that f is a first integral of V that belongs to L. Climbing down
this tower, we find a first integral of V in K, unless this process stops when
applying Lemma 13, in which case we get some non-zero closed 1-form ω
with coordinates in an intermediate Li such that iV (ω) = 0. According to
Lemma 11, φ = iE(ω) is a first integral of V in Li or a constant.

The process stops if φ is a constant. If this constant is 0, then ω is a
solution to Problem 2 for V and also for the translated vector field V with
divergence 0; the proof of Theorem 1 can then be applied to get the result.
If this constant is different from 0, we can divide by it to get a solution to
Problem 3 in Li and go further.

Finally, we get either a first integral of V in K = k(x, y, z) or a solution to
Problem 3 for V or V with coordinates in K. If the final result of the process
is a first integral φ of V in the field K = k(x, y, z) of rational fractions,
then the quotient of the homogeneous components of highest degree of the
numerator and denominator of φ is a homogeneous first integral of V , which
concludes the proof.

2.5. A counterexample. The previous improvement of the main theorem
is the best result to be expected in that direction; indeed, here follows
a special case of the Lotka–Volterra system which has no Liouvillian first
integral that is homogeneous of degree 0, while some homogeneous first
integral does exist. Let us postpone this example until we have defined
Darboux curves because its proof shares arguments with further statements.

3. Darboux’s method and Darboux curves

3.1. Darboux’s method . Another method for finding first integrals of
homogeneous polynomial vector fields in finite terms dates back to a memoir
by Darboux [6]. Let us describe it.
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A particular algebraic solution or Darboux curve of a given homogeneous
polynomial vector field V is an irreducible homogeneous polynomial f such
that

iV (df) = Vx∂xf + Vy∂yf + Vz∂zf

i.e. iV (df) is a multiple of f by some polynomial m.
Looking at the base field k as a subfield of R or C, the geometric meaning

of this property is that the projective curve (or conic surface) {f = 0}
consists of trajectories of the vector field V or that the local semigroup
generated by V preserves this set.

Suppose now that the divergence of V is 0; this assumption is not a
restriction for what we are interested in. Suppose that we can find several
such Darboux curves fi (iV (dfi) = mifi), so that a linear combination∑

aimi of the “eigenvalues” mi is 0 with some ai different from 0. The
product f =

∏
fai

i is then a homogeneous first integral of V ; of course, if
the exponents are not rational, this integral may not be a true function,
which means that we stay in the abstract differential algebra frame.

Then, either
∑

aideg(fi) = 0, in which case f has a homogeneity degree
0 and the job is done, or some well-chosen power of f is an integrating
factor of the 1-form ω0 = iE(iV (Ω)) and the conclusion follows from the
same computations as in the extended compatibility method.

3.2. Extended compatibility versus Darboux’s method . Darboux’s
method is formally less general than extended compatibility in the sense
that, if there are sufficiently many Darboux curves, the 1-form∑

ai
dfi

fi

is a solution to Problem 2 in the special case where
∑

ai deg(fi) = 0 and, in
the other cases, its quotient by this coefficient

∑
ai deg(fi) is a solution to

Problem 3. Thus, Darboux’s method is a way to get what we look for in the
extended compatibility method more quickly than usual, in some situations.

To show that our method is really more general than Darboux’s, we
now give an example in which we are able to exhibit a 1-form ω solving
Problem 4 which yields a Liouvillian first integral according to Theorem 1;
in this example, all Darboux curves can be found, and they are not numerous
enough to yield a result according to Darboux’s method.

Example 1. Consider Lotka–Volterra’s field Lx = x(Cy + z),
Ly = y(Az + x),
Lz = z(Bz + y),

and take particular values A = −1, B = 1/2 and C = 0 of the parameters.
Let L be the corresponding field with zero divergence and consider the
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1-form ω

ω =
1
2

dx

x
− 1

2
dy

y
+

dz

z
− dF,

where F is given by

F =
(x + y)2

xy
.

Then ω satisfies iL̄(ω) = 0 and iE(ω) = 1, and, as it is closed, this form is a
solution to Problem 3, so that extended compatibility gives a result in this
situation.

The proof of this fact is an easy and uninteresting computation. More-
over, this particular set of values of the parameters A, B and C does not
appear in the complete list given in [7], so that ordinary compatibility with
linear vector fields is not sufficient here.

Conversely, Darboux’s method cannot be applied here according to the
next proposition.

Proposition 1. In the above example, there are only three Darboux
curves, x, y and z; the corresponding eigenvalues are linearly independent ,
so that no non-trivial linear combination of the logarithmic derivatives is a
first integral of L.

P r o o f. It suffices to prove that there does not exist any homogeneous
non-trivial polynomial f such that iL(df) = lf without x, y or z as a factor.
The eigenvalue l is here a first degree homogeneous polynomial λx+µy+νz
because the degree of V is 2.

Such an f would satisfy

x(Cy + z)∂xf + y(Az + x)∂yf + z(Bx + y)∂zf = (λx + µy + νz)f.

As f is supposed not to be divisible by x, y or z, let P , Q and R be the
three homogeneous non-zero two-variable polynomials obtained by setting
x = 0, y = 0 and z = 0 respectively in f . These three polynomials have the
same degree n, which is the degree of f , and satisfy

(µy + νz)P = yz(A∂yP + ∂zP ),
(νz + λx)Q = zx(B∂zQ + ∂xQ),
(λx + µy)R = xy(C∂xR + ∂yR).

It is not very difficult to prove that there exist 6 natural numbers β1,
γ1, α2, γ2, α3 and β3 such that P , Q and R are non-zero multiples of
yβ1zγ1(y−Az)n−β1−γ1 , zγ2xα2(z−Bx)n−γ2−α2 and xα3yβ3(x−Cy)n−α3−β3

respectively; moreover, these numbers satisfy the following equations and
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inequalities: 

λ = β3 = γ2B,
µ = γ1 = α3C,
ν = α2 = β1A,
β1 + γ1 ≤ n,
α2 + γ2 ≤ n,
α3 + β3 ≤ n.

With the given values of the parameters A, B and C, we get λ = β3 = γ2/2,
µ = γ1 = 0,
ν = α2 = −β1,

and f , that can generally be written as f = α(yβ1zγ1(y −Az)n−β1−γ1) + x?
= β(zγ2xα2(z −Bx)n−γ2−α2) + y?
= γ(xα3yβ3(x− Cy)n−α3−β3) + z?,

where α, β and γ are some non-zero numbers and where the question mark
stands for any uninteresting homogeneous polynomial of degree n−1, reads f = α(y + z)n + x?,

= β(z2λ(z − x/2)n−2λ) + y?,
= γ(xn−λyλ) + z?,

as α2 = β1 = 0.
Looking at the coefficients of yn, we get λ = n, which is impossible since

2λ must be smaller than n.

There is another link between extended compatibility analysis and Dar-
boux curves, which is given by the following proposition.

Proposition 2. Let V be a vector field whose coordinates are homoge-
neous polynomials of the same degree. Let ω be an irreducible 1-form whose
coordinates are homogeneous polynomials of the same degree and let P be
some homogeneous polynomial. If ω/P is closed and iV (ω) = 0, then the
irreducible factors of P are Darboux curves of V .

P r o o f. As ω/P is closed, ω satisfies the integrability condition ω ∧ dω
= 0. Taking the inner product of this identity by V yields

iV (ω) ∧ dω = ω ∧ iV (dω)

and ω and iV (dω) are collinear. But ω is irreducible, so that there exists
a polynomial N such that iV (dω) = Nω. The condition d(ω/P ) = 0 reads
Pdω = dP ∧ ω; taking the inner product by V and cancelling the non-zero
form ω gives

iV (dP ) = NP.
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Thus P is a particular solution of V and it is not difficult to finish the
proof: irreducible factors Pi of P (maybe in some extension of the field k)
also satisfy the identities iV (dPi) = NiPi for some polynomial eigenvalues
Ni, i.e. these factors are Darboux curves.

3.3. The announced counterexample. Consider the previously quoted
Lotka–Volterra field:  Lx = x(Cy + z),

Ly = y(Az + x),
Lz = z(Bz + y),

and take the particular values A = 0, B = 0 and C = 0 of the parameters.
Let L be the corresponding field with zero divergence. For a suitable choice
of λ, µ and ν, L + (λx + µy + νz)E has the homogeneous first integral
f = xyz. But there is no Liouvillian first integral of degree 0 for it as
follows from the next proposition.

Proposition 3. Let V0 be the vector field{
Lx = xz,
Ly = yx,
Lz = zy.

There is no 1-form ω whose coordinates are homogeneous polynomials of
k[x, y, z] such that iV 0

(ω) = 0, iE(ω) 6= 0 and ω ∧ dω = 0 and , according
to Theorem 1, V0 has no Liouvillian first integral which is homogeneous of
degree 0.

P r o o f. First look for Darboux curves of V0; of course, x, y and z are
some of them. There is no non-zero homogeneous polynomial f such that
iV0(df) = (λx+µy+νz)f without x, y or z as a factor by arguments similar
to those for Proposition 2. No non-trivial linear combination ω of dx/x,
dy/y and dz/z satisfies iV0(ω) and Darboux’s method cannot be applied.

The extended compatibility method consists in finding a closed 1-form ω
with homogeneous coordinates of degree −1 in k(x, y, z) such that iV0(ω) =
0. The least common multiple of the denominators of the coordinates of
ω would be proportional to some monomial xa′

yb′
zc′

as x, y and z are the
only Darboux curves of V0. Such an ω would then read

ω =
ωxdx + ωydy + ωzdz

xaybzc
,

where ωx, ωy and ωz are relatively prime homogeneous polynomials of the
same degree in k[x, y, z]. Simple computations lead to the decomposition

ω = λ
dx

x
+ µ

dy

y
+ ν

dz

z
+ d

(
N

xaybzc

)
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where N is some non-zero homogeneous polynomial of degree a + b + c ≥ 1
in k[x, y, z]; moreover, N is not divisible by x, y or z. And N would satisfy

iV0

(
d

(
N

xaybzc

))
= −(λz + µx + νy),

which means that zxNx + xyNy + yzNz −N(az + bx + cy) is a multiple of
xaybzc. A careful and cumbersome case analysis (how many zeros among a,
b and c) shows that such a polynomial N cannot exist, which concludes the
proof.

4. Final remarks

4.1. Finding all Darboux curves. In order to transform the previous
methods in true algorithms, it would be of interest to find all Darboux curves
of a given polynomial vector field; we need therefore an upper bound for the
degree of such curves, that would reduce the problem to linear algebra. A
theorem of Jouanolou’s [8] gives the existence of this upper bound; but this
proof is not effective. Nevertheless, it is sometimes possible to show that no
Darboux curve exists for a vector field, which proves that it is not possible
to find a Liouvillian first integral which is homogeneous of degree 0.

To show that such a situation is in fact generic, Jouanolou [8] proves
that the following vector field has no Darboux curve:

V = zm∂x + xm∂x + ym∂x, m ≥ 2.

His very interesting proof does not seem to be a first step in the direction
of an algorithm; indeed, very special arithmetic properties of this example
are used. The proof that we gave in the above example of the fact that
extended compatibility is more powerful than Darboux’s method, also uses
specific arithmetic properties to show that there are only three Darboux
curves.

For us, all that gives an illustration of the true difficulty of this algo-
rithmic question: find all Darboux curves of a given polynomial vector field.
However, the class of examples [9] to which the method of Jouanolou can be
applied is far from being empty. For these examples, the extremal situation
can be proven: no Darboux curve and then no Liouvillian first integral of
degree 0 exists for the given derivation.

4.2. Finding some Darboux curves. For a particular system, like Lotka–
Volterra’s, the search of Darboux curves with a given degree is quite feasible
using computer algebra. We found many exceptional values of the param-
eters A, B and C for which a new fourth Darboux curve occurs (x, y and
z are always Darboux curves of this factorizable system and, in the case of
a second degree vector field, four different Darboux curves are enough to
apply Darboux’s method); we did the complete job for degrees 1 to 6.
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4.3. Are these first integrals true functions? It can happen that the
elements f lying in some Liouvillian extension of the ground field, which can
be considered as first integrals of some vector fields, are not true functions
from R3 to R, or even from R3 to the circle, due to topological properties of
the natural open set in which they would be defined. Nevertheless, we did
not find an explicit example of such a situation: all first integrals found in the
examples that we have dealt with up to now using extended compatibility are
true functions. Further computations are to be done in order to understand
this point.

4.4. A formal Frobenius theorem. We conclude this paper by giving an
analogue of the theorem of Frobenius that we quoted in the first section in
the frame of differential algebra.

Theorem 3. Let K be a field of characteristic 0; suppose that ∂x, ∂y and
∂z are three commuting derivations of K. Let ω be a 1-form with coordinates
ωx, ωy and ωz in K and suppose that ω satisfies the integrability condition
ω ∧ dw = 0, which reads

ωx(ωyz − ωzy) + ωy(ωzx − ωxz) + ωz(ωxy − ωyx) = 0.

Then the three coordinates φx, φy and φz of a closed 1-form φ can be found
in a differential ring R that extends K, such that φ ∧ ω = dω. There then
exists an element g such that dg = φ in a simple Liouvillian extension of
the quotient field R of R; this extension is of integral type. Thus, exp(−g)
is an integrating factor of ω according to the previous computations.

P r o o f. If ω = 0, there would be no work to do, so that one of the
coordinates, for instance ωz, can be supposed to be different from 0.

Consider now the ring R = K[φ1, φ2, . . .] in infinitely many coordinates
with coefficients in the field K. Setting ∂zφi = φi+1 for every integer i ≥ 1
makes R a free differential extension of K for the derivation ∂z.

The first variable φ1 can also be written φz. Denote then by φx and φy

the two elements of R defined by (recall that ωz 6= 0)

ωzφx = ωxφz + ωzx − ωxz, ωzφy = ωyφz + ωzy − ωyz.

With such a choice, the 1-form φ clearly satisfies φ∧ω = dω; this is a simple
consequence of the integrability assumption on ω.

Then extensions of derivations ∂x and ∂y from K to R are given by
their values on the indeterminates φi; for φ1 = φz, we set ∂xφz = ∂zφx

and ∂yφz = ∂zφy, and, inductively for i > 1, ∂xφi = ∂z∂xφi−1 and ∂yφi =
∂z∂yφi−1. The φ so defined is a closed form: the only identity to be proven
is ∂xφy = ∂yφx, as the two other are consequences of the definition of ∂x and
∂y. The proof of this identity relies on a simple but long and cumbersome
computation.
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It remains to be shown that the extensions of the derivations com-
mute. By construction, ∂x and ∂z commute because their bracket gives
the value 0 to elements of K and to all φi, and the same argument is
true for ∂y and ∂z. The identity ∂x∂yφi = ∂y∂xφi can be proved by an
easy induction on i, as soon as the result is established for φ1 = φz. But
∂x∂yφz = ∂x∂zφy = ∂z∂xφy and ∂y∂xφz = ∂y∂zφx = ∂z∂yφx; and the proof
is completed according to the “cumbersome” identity ∂xφy = ∂yφx.
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