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FINITE CYCLIC GROUPS AND THE k-HFD PROPERTY

BY
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If D is a Krull domain, then it is well known that D is a unique factoriza-
tion domain (UFD) if and only if D has trivial divisor class group. The study
of several factorization properties weaker than the UFD condition, as well
as a general analysis of number theoretic functions related to the factoriza-
tion of elements into products of irreducible elements in Krull domains and
monoids, has been the focus of recent research (see [4]–[10]). In particular,
let D be an atomic integral domain and suppose that α1, . . . , αm, β1, . . . , βn

are irreducible elements of D such that

(1) α1 . . . αm = β1 . . . βn.

Then D is a

1. half-factorial domain (HFD) if the equation (1) implies that m = n;
2. k-half-factorial domain (k-HFD), where k ≥ 1 is some positive integer,

if the equation (1) along with the fact that n or m is less than or equal to
k, implies that m = n.

Every atomic integral domain D is a 1-HFD, and if D is not a t-HFD (for
some positive integer t), then D is not a k-HFD for any k ≥ t. Clearly, if D
is a HFD then D is a k-HFD for every k ≥ 1. If D is the ring of integers in a
finite algebraic extension of the rationals, then the converse of this statement
is true [4, Theorem 1.3] (this is a generalization of a well-known result of
Carlitz [2]). In general, the converse is false; in Example 7 of [4] the present
authors construct a Dedekind domain with class group Z4⊕Z4 which is not
a HFD, but is a 2-HFD. In this note, we will address a conjecture (stated in
both [5] and [6]) which asserts that the converse of this relationship holds if
D is a Krull domain with finite cyclic class group. While we do not settle
the conjecture, we show that it holds for a large class of Krull domains with
finite cyclic class group.
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Central to our arguments will be a close examination of the set

S = {g ∈ Zn | g 6= 0 and contains a height-one prime ideal of D}.
For such a set S = {s1, . . . , st}, we will always assume that each element
si ∈ S is of the form si = ri + nZ, where 0 < ri ≤ n − 1. We will use the
following terminology, consistent with that used in the papers [5] and [6]:

1. S is unitary if for some si ∈ S we have ri = 1.
2. S has the all divisor property if for every si ∈ S, ri divides n in Z.

For convenience, we shall refer to a set S with the all divisor property as an
AD-set . We summarize our main results in the following theorem.

Theorem 1. Let D be a Krull domain with divisor class group G = Zn

with set S. Suppose that any of the following conditions hold :

1. S contains a generator of Zn (see Propositions 2 and 7).
2. S is an AD-set with |S| ≤ 4 (see Proposition 6).
3. S is an AD-set and G ∼= Zprqt , where p and q are distinct primes in

Z (see Proposition 9).

Then D is a HFD if and only if D is a k-HFD for some k ≥ 2.

The papers [5] and [6] contain a detailed study of Dedekind domains D
which are k-HFD for some k ≥ 2. These results easily generalize to the case
where D is a Krull domain (see [1] for details). We summarize several of
the relevant results of these papers in the following proposition.

Proposition 2. Let D be a Krull domain with divisor class group G.
Suppose that any of the following conditions hold :

1. G ∼= Zpn for some prime integer p and positive integer n.
2. G ∼= Zpq for distinct prime integers p and q.
3. |G| ≤ 15.

Then D is a HFD if and only if D is a k-HFD for some k ≥ 2.

We shall later require the following two results; 1 is Lemma 3.1 in [6],
and 2 is Theorem 3.10 in [3].

Proposition 3. Let D be a Krull domain with divisor class group Zn.

1. If S is unitary and is not an AD-set , then D is not a 2-HFD (and
hence not a HFD).

2. If |S| ≤ 3 and S is an AD-set , then D is a HFD.

While our interest in this problem is centered in ring theory, results
concerning lengths of factorizations in a Krull domain D are combinatorial
results based on the block semigroup associated with the divisor class group
of D. Recall the following definitions. Let G be an abelian group, S a
subset of the nonzero elements of G, and F(G) the multiplicative free abelian
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monoid with basis G. The elements of F(G) can be viewed as products of
the form

F =
∏
g∈G

gvg(F ),

where vg(F ) ∈ Z+ and vg(F ) = 0 for almost all g ∈ G. Set

B(G) =
{

B ∈ F(G)
∣∣∣ ∑

g∈G

vg(B)g = 0
}

.

B(G) is known as the block semigroup over G. More generally, set

B(S) = {B ∈ B(G) | vg(B) = 0 for g ∈ G\S}.

Block semigroups have been studied in great detail in [7], [8], and [10]. An
element B ∈ B(S) is called irreducible if it cannot be written in the form
B = B1B2, where B1 and B2 are nonzero blocks of B(S).

For an atomic monoid M , define M to be a half-factorial monoid (HFM),
or a k-half-factorial monoid (k-HFM) in a manner analogous to the defini-
tions used for atomic integral domains. The paper [1, pp. 99–100] gives a de-
tailed argument that a Krull domain D with divisor class group G = Cl(D)
is a HFD (or k-HFD for some k ≥ 2) if and only if B(S) is a HFM (or
k-HFM for some k ≥ 2). Hence, for the remainder of this paper we focus
on the block semigroup B(S) related to the Krull domain D.

If B = sn1
1 . . . snt

t is a block in B(S), then set

k(B) =
t∑

i=1

ni

|si|
,

where |si| denotes the order of the element si in G. The function k is
known as the weight of B. If B is the irreducible block associated with an
irreducible α in D, then the value z(α) = k(B) is referred to in the literature
as the Zaks–Skula constant of α (see [5]). A well-known result of Zaks and
Skula states that a Dedekind domain D with torsion class group is a HFD
if and only if z(α) = 1 for every irreducible element α ∈ D (see [3, Theorem
3.8] for a proof of this fact).

Hence, assume that G = Zn and S = {s1, . . . , st} ⊂ G\{0} for 1 ≤
si < n. Under our assumption that S represents the set of nonzero divisor
classes of some Krull domain D which contain height-one prime ideals, it
is necessary that S is a generating set of G. If B is an irreducible block
of B(S), then B = sx1

1 . . . sxt
t , where

∑t
i=1 sixi = mn for some nonnegative

integer m. If S is an AD-set, then k(S) = m. Set

K(B(S)) = {k(B) | B is irreducible in B(S)}.
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Lemma 4. Let G and S be as above. Assume that

1. A = sx1
1 . . . sxt

t is an irreducible block in B(S) such that k(A) =
Max(K(B(S))).

2. B = sy1
1 . . . syt

t is an irreducible block in B(S) with k(A) > k(B) and
xi ≥ yi/2 for each i.

Then B(S) is not a 2-HFM.

P r o o f. We write

A2 = s2x1
1 . . . s2xt

t = B(s2x1−y1
1 . . . s2xt−yt

t ).

Setting C = s2x1−y1
1 . . . s2xt−yt

t , we have A2 = BC, where C ∈ B(S). Hence,
2k(A) = k(B) + k(C) and k(C) = 2k(A) − k(B) > k(A). Since k(A) =
Max(B(S)), k(C) > k(A) implies that C is not irreducible. Thus A2 = BC
implies that B(S) is not a 2-HFM.

We derive a corollary to the lemma which will be of later use.

Corollary 5. Let G, S, and A be as in Lemma 4 and suppose that
B(S) is a 2-HFM. Then

1. For any B ∈ B(S) with k(B) < k(A) there is an i such that xi < yi/2.
2. If k(A) > 1, then xi < |si|/2 for all i. In addition, if S is an

AD-set , then xi < n/(2si) for all i.

P r o o f. Part 1 follows directly from Lemma 4. For part 2, let Ci be the
element of B(S) of the form Ci = s

|si|
i . If xi ≥ |si|/2, then, since xj ≥ 0 for

each i 6= j, we deduce that B(S) is not a 2-HFM by part 2 of Lemma 4, a
contradiction. Notice that if S is an AD-set, then |si| = n/si.

The corollary allows us to prove part 2 of Theorem 1.

Proposition 6. Let G ∼= Zn and S = {s1, . . . , st} ⊆ Zn\{0} be an
AD-set with |S| ≤ 4. B(S) is a HFM if and only if B(S) is a k-HFM for
some k ≥ 2.

P r o o f. Suppose B(S) is not a HFM and is a 2-HFM. Let A = sx1
1 . . . sxt

t

be an irreducible block in B(S) such that k(A) = m = Max K(B(S)) > 1
(this is possible since S is an AD-set). By part 2 of Corollary 5, xi <
n/(2si) = |si|/2 for all i. Hence,

mn =
t∑

i=1

sixi <

t∑
i=1

si
n

2si
=

t∑
i=1

n

2
≤ 2n

since |S| ≤ 4. Thus m < 2 implies that m = 1, a contradiction.

We proceed to a proposition which will complete the proof of part 1 of
Theorem 1.



FINITE CYCLIC GROUPS 223

Proposition 7. Let G ∼= Zn and S = {s1, . . . , st} ⊆ Zn\{0} be a unitary
AD-set of G. B(S) is a HFM if and only if B(S) is a 2-HFM.

P r o o f. Assume there exists a unitary AD-set S for which B(S) is a
2-HFM but not a HFM. Without loss of generality, assume that s1 = 1. Let
such an S be chosen with |S| minimal. Notice that |S| > 4 by Proposition
6. We claim that if B = 1y1sy2

2 . . . syt

t is an irreducible block of B(S) with
y1 6= 0 and some yj = 0 (for 2 ≤ j ≤ t), then k(B) = 1. To see this, let
S′ = {si | yi 6= 0}. Then S′ is properly contained in S. Thus, B(S′) is a
2-HFM since B(S) is a 2-HFM. By the minimality of S, B(S′) is a HFM.
Thus k(B) = 1.

Now, suppose A = 1x1sx2
2 . . . sxt

t is an irreducible block in B(S) with
k(A) = Max(K(B(S))) > 1. Since S is an AD-set,

∑t
i=1 sixi = mn, where

k(A) = m for some m > 1. By part 2 of Corollary 5, xi < n/(2si) for each
i. Hence, 0 < n− 2sixi for each i. Now, for each 2 ≤ j ≤ k, set

Mj = s
x1+sjxj

1

∏
i 6=j

sxi
i .

Notice that since s1(x1 + sjxj) + s2x2 + . . . + stxt = mn, k(Mi) = m > 1.
By the observation in the paragraph above, Mi is not irreducible.

For each 2 ≤ i ≤ t, set

Ri = sn−sixi
1 sxi

i .

Since n− sixi > 0, each Ri is a block in B(S) with

k(Ri) = ((n− sixi) + sixi)/n = 1.

Hence each Ri is irreducible in B(S). Consider

ARi = (sx1
1 . . . sxt

t )(sn−sixi
1 sxi

i ) = s2xi
i sx1+n−sixi

1

∏
j 6=i,j>1

s
xj

j

= (s2xi
i sn−2sixi

1 )
(
sx1+sixi
1

∏
j 6=i,j>1

s
xj

j

)
= CMi.

Since A, Ri, and Mi are blocks in B(S), C is a nontrivial block. By the
previous argument each Mi is not irreducible. Thus, the product ARi can
be written as a product of at least three irreducibles. We conclude that
B(S) is not a 2-HFM.

P r o o f o f p a r t 1 o f T h e o r e m 1. By previous remark it suffices
to consider the block semigroup B(S). Since S contains a generator, we
can use an automorphism argument [5, Lemma 1.9] and assume that S is
unitary. By part 1 of Proposition 3, if S is not an AD-set, then B(S) is
neither a 2-HFM nor HFM. Thus S must be an AD-set. Proposition 7 now
completes the proof.
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The proof of part 3 of Theorem 1 will require a lemma.

Lemma 8. Let G = Zn and S = {s1, . . . , sk} be an AD-set of G. Set
d = gcd(s2, . . . , sk), m = n/d, and S′ = {s1, s2/d, . . . , sk/d}. Then

1. S′ is an AD-set for Zm and gcd(s1, s2/d, . . . , sk/d) = 1.
2. B(S) is a HFM (or a k-HFM for some k ≥ 2) if and only if B(S′)

is a HFM (or a k-HFM for some k ≥ 2).

P r o o f. We note that since gcd(s1, . . . , sk) = 1, we have gcd(s1, d) = 1.
Since s1 | d(n/d), s1 | (n/d) and S′ is an AD-set for Zm with

gcd(s1, s2/d, . . . , sk/d) | gcd(s1, s2, . . . , sk) = 1.

This completes the proof of 1.
There is a one-to-one correspondence between the irreducible blocks

of B(S) and B(S′), given in the following manner. Let B = sx1
1 . . . sxk

k

be an irreducible block in B(S) with
∑k

i=1 sixi = nt. Since d | s1x1 and
gcd(d, s1) = 1, it follows that d |x1 and B′ = s

(x1/d)
1 (s2/d)x2 . . . (sk/d)xk is

an irreducible block in B(S′) with

s1

(
x1

d

)
+

k∑
i=2

(
si

d

)
xi =

(n

d

)
t.

A reverse correspondence works in a similar manner (notice for such blocks
that t = k(B) = k(B′)). Hence 2 follows.

The next proposition establishes Theorem 1, part 3.

Proposition 9. Let G = Zprqs , where p and q are distinct primes in
Z, and let S = {s1, . . . , st} be an AD-set of G. Then B(S) is a HFM if
and only if B(S) is a k-HFM for some k ≥ 2.

P r o o f. If S contains a generator of G, then the result follows from
Proposition 7. So assume that S does not contain a generator of G and that
B(S) is a 2-HFM and not a HFM with G = Zn, where n = prqs. Choose
n = prqs minimal for such an example and an AD-set S = {s1, . . . , st} with
|S| also minimal. For each 1 ≤ i ≤ t set

di = gcd(s1, . . . , si−1, si+1, . . . , st).

By considering the correspondence set up in Lemma 8, if any of the di > 1
then we would have a cyclic group Zn/di

, which is of order strictly less than
n, and a corresponding set S′ such that B(S′) is a 2-HFM but not HFM,
contradicting the minimality of n. Hence, each di = 1.

We now argue that in S there must be some 1 ≤ i < j ≤ t such that
either si | sj or sj | si. Since gcd(s1, . . . , sk) = 1, one of the si = pv. Since
di = 1, then one of the sj = pw (for i 6= j) and hence either si | sj or sj | si.
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Without loss of generality, assume that s1 | s2. Suppose s1b = s2. Since
B(S) is not a HFM, there is an irreducible block A = sx1

1 . . . sxt
t with∑t

i=1 sixi = mn, where k(A) = m = Max(K(B(S))) > 1. By Corollary 5,
xi < n/(2si) for each i. Set

M = sx1+bx2
1 sx3

3 . . . sxt
t , B1 = s

(n/s1)−bx2
1 sx2

2 , B2 = s
(n/s1)−2bx2
1 s2x2

2 .

Now, k(M) = m, k(B1) = 1, and k(B2) = 1. Notice that x2 < n/2s2

implies that 2bx2 < 2bn/2s1b = n/s1. Since k(B1) = k(B2) = 1, property
AD implies that both B1 and B2 are irreducible. Since, for any proper subset
S′ of S, B(S′) inherits the 2-HFM property, it follows from the minimality
of |S| that B(S′) must have the HFM property. Thus M is not irreducible
in B(S′) and hence M is not irreducible in B(S). Thus

AB1 = MB2

implies that the product of 2 irreducibles in B(S) can be written as the
product of more than 2 irreducibles in B(S), a contradiction.

It is of interest to note that the proof of Theorem 1 remains valid if the
Krull domain D with divisor class group Zn is replaced by a Krull monoid
H with identical divisor class group. In this case, the set S would now
represent the subset of divisor classes of H which contain at least one prime
divisor. The interested reader is referred to [9] for more information on
Krull monoids.
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