# COLLOQUIUM MATHEMATICUM 

# FINITE CYCLIC GROUPS AND THE k-HFD PROPERTY 

BY<br>SCOTT T. CHAPMAN (SAN ANTONIO, TEXAS) AND<br>WILLIAM W. SMITH (CHAPEL HILL, NORTH CAROLINA)

If $D$ is a Krull domain, then it is well known that $D$ is a unique factorization domain (UFD) if and only if $D$ has trivial divisor class group. The study of several factorization properties weaker than the UFD condition, as well as a general analysis of number theoretic functions related to the factorization of elements into products of irreducible elements in Krull domains and monoids, has been the focus of recent research (see [4]-[10]). In particular, let $D$ be an atomic integral domain and suppose that $\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}$ are irreducible elements of $D$ such that

$$
\begin{equation*}
\alpha_{1} \ldots \alpha_{m}=\beta_{1} \ldots \beta_{n} \tag{1}
\end{equation*}
$$

Then $D$ is a

1. half-factorial domain (HFD) if the equation (1) implies that $m=n$;
2. $k$-half-factorial domain ( $k$-HFD), where $k \geq 1$ is some positive integer, if the equation (1) along with the fact that $n$ or $m$ is less than or equal to $k$, implies that $m=n$.

Every atomic integral domain $D$ is a 1-HFD, and if $D$ is not a $t$-HFD (for some positive integer $t$ ), then $D$ is not a $k$-HFD for any $k \geq t$. Clearly, if $D$ is a HFD then $D$ is a $k$-HFD for every $k \geq 1$. If $D$ is the ring of integers in a finite algebraic extension of the rationals, then the converse of this statement is true [4, Theorem 1.3] (this is a generalization of a well-known result of Carlitz [2]). In general, the converse is false; in Example 7 of [4] the present authors construct a Dedekind domain with class group $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$ which is not a HFD, but is a 2-HFD. In this note, we will address a conjecture (stated in both [5] and [6]) which asserts that the converse of this relationship holds if $D$ is a Krull domain with finite cyclic class group. While we do not settle the conjecture, we show that it holds for a large class of Krull domains with finite cyclic class group.

Central to our arguments will be a close examination of the set
$S=\left\{g \in \mathbb{Z}_{n} \mid g \neq 0\right.$ and contains a height-one prime ideal of $\left.D\right\}$.
For such a set $S=\left\{s_{1}, \ldots, s_{t}\right\}$, we will always assume that each element $s_{i} \in S$ is of the form $s_{i}=r_{i}+n \mathbb{Z}$, where $0<r_{i} \leq n-1$. We will use the following terminology, consistent with that used in the papers [5] and [6]:

1. $S$ is unitary if for some $s_{i} \in S$ we have $r_{i}=1$.
2. $S$ has the all divisor property if for every $s_{i} \in S, r_{i}$ divides $n$ in $\mathbb{Z}$.

For convenience, we shall refer to a set $S$ with the all divisor property as an $\mathcal{A D}$-set. We summarize our main results in the following theorem.

Theorem 1. Let $D$ be a Krull domain with divisor class group $G=\mathbb{Z}_{n}$ with set $S$. Suppose that any of the following conditions hold:

1. $S$ contains a generator of $\mathbb{Z}_{n}$ (see Propositions 2 and 7).
2. $S$ is an $\mathcal{A D}$-set with $|S| \leq 4$ (see Proposition 6).
3. $S$ is an $\mathcal{A D}$-set and $G \cong \mathbb{Z}_{p^{r} q^{t}}$, where $p$ and $q$ are distinct primes in $\mathbb{Z}$ (see Proposition 9 ).

Then $D$ is a HFD if and only if $D$ is a $k$-HFD for some $k \geq 2$.
The papers [5] and [6] contain a detailed study of Dedekind domains $D$ which are $k$-HFD for some $k \geq 2$. These results easily generalize to the case where $D$ is a Krull domain (see [1] for details). We summarize several of the relevant results of these papers in the following proposition.

Proposition 2. Let $D$ be a Krull domain with divisor class group $G$. Suppose that any of the following conditions hold:

1. $G \cong \mathbb{Z}_{p^{n}}$ for some prime integer $p$ and positive integer $n$.
2. $G \cong \mathbb{Z}_{p q}$ for distinct prime integers $p$ and $q$.
3. $|G| \leq 15$.

Then $D$ is a HFD if and only if $D$ is a $k$-HFD for some $k \geq 2$.
We shall later require the following two results; 1 is Lemma 3.1 in [6], and 2 is Theorem 3.10 in [3].

Proposition 3. Let $D$ be a Krull domain with divisor class group $\mathbb{Z}_{n}$.

1. If $S$ is unitary and is not an $\mathcal{A D}$-set, then $D$ is not a 2-HFD (and hence not a HFD).
2. If $|S| \leq 3$ and $S$ is an $\mathcal{A D}$-set, then $D$ is a HFD.

While our interest in this problem is centered in ring theory, results concerning lengths of factorizations in a Krull domain $D$ are combinatorial results based on the block semigroup associated with the divisor class group of $D$. Recall the following definitions. Let $G$ be an abelian group, $S$ a subset of the nonzero elements of $G$, and $\mathcal{F}(G)$ the multiplicative free abelian
monoid with basis $G$. The elements of $\mathcal{F}(G)$ can be viewed as products of the form

$$
F=\prod_{g \in G} g^{v_{g}(F)}
$$

where $v_{g}(F) \in \mathbb{Z}^{+}$and $v_{g}(F)=0$ for almost all $g \in G$. Set

$$
\mathcal{B}(G)=\left\{B \in \mathcal{F}(G) \mid \sum_{g \in G} v_{g}(B) g=0\right\}
$$

$\mathcal{B}(G)$ is known as the block semigroup over $G$. More generally, set

$$
\mathcal{B}(S)=\left\{B \in \mathcal{B}(G) \mid v_{g}(B)=0 \text { for } g \in G \backslash S\right\} .
$$

Block semigroups have been studied in great detail in [7], [8], and [10]. An element $B \in \mathcal{B}(S)$ is called irreducible if it cannot be written in the form $B=B_{1} B_{2}$, where $B_{1}$ and $B_{2}$ are nonzero blocks of $\mathcal{B}(S)$.

For an atomic monoid $M$, define $M$ to be a half-factorial monoid (HFM), or a $k$-half-factorial monoid ( $k$-HFM) in a manner analogous to the definitions used for atomic integral domains. The paper [1, pp. 99-100] gives a detailed argument that a Krull domain $D$ with divisor class group $G=\mathrm{Cl}(D)$ is a HFD (or $k$-HFD for some $k \geq 2$ ) if and only if $\mathcal{B}(S)$ is a HFM (or $k$-HFM for some $k \geq 2$ ). Hence, for the remainder of this paper we focus on the block semigroup $\mathcal{B}(S)$ related to the Krull domain $D$.

If $B=s_{1}^{n_{1}} \ldots s_{t}^{n_{t}}$ is a block in $\mathcal{B}(S)$, then set

$$
k(B)=\sum_{i=1}^{t} \frac{n_{i}}{\left|s_{i}\right|},
$$

where $\left|s_{i}\right|$ denotes the order of the element $s_{i}$ in $G$. The function $k$ is known as the weight of $B$. If $B$ is the irreducible block associated with an irreducible $\alpha$ in $D$, then the value $z(\alpha)=k(B)$ is referred to in the literature as the Zaks-Skula constant of $\alpha$ (see [5]). A well-known result of Zaks and Skula states that a Dedekind domain $D$ with torsion class group is a HFD if and only if $z(\alpha)=1$ for every irreducible element $\alpha \in D$ (see [3, Theorem 3.8] for a proof of this fact).

Hence, assume that $G=\mathbb{Z}_{n}$ and $S=\left\{s_{1}, \ldots, s_{t}\right\} \subset G \backslash\{0\}$ for $1 \leq$ $s_{i}<n$. Under our assumption that $S$ represents the set of nonzero divisor classes of some Krull domain $D$ which contain height-one prime ideals, it is necessary that $S$ is a generating set of $G$. If $B$ is an irreducible block of $\mathcal{B}(S)$, then $B=s_{1}^{x_{1}} \ldots s_{t}^{x_{t}}$, where $\sum_{i=1}^{t} s_{i} x_{i}=m n$ for some nonnegative integer $m$. If $S$ is an $\mathcal{A D}$-set, then $k(S)=m$. Set

$$
K(\mathcal{B}(S))=\{k(B) \mid B \text { is irreducible in } \mathcal{B}(S)\}
$$

Lemma 4. Let $G$ and $S$ be as above. Assume that

1. $A=s_{1}^{x_{1}} \ldots s_{t}^{x_{t}}$ is an irreducible block in $\mathcal{B}(S)$ such that $k(A)=$ $\operatorname{Max}(K(\mathcal{B}(S)))$.
2. $B=s_{1}^{y_{1}} \ldots s_{t}^{y_{t}}$ is an irreducible block in $\mathcal{B}(S)$ with $k(A)>k(B)$ and $x_{i} \geq y_{i} / 2$ for each $i$.

Then $\mathcal{B}(S)$ is not a 2-HFM.
Proof. We write

$$
A^{2}=s_{1}^{2 x_{1}} \ldots s_{t}^{2 x_{t}}=B\left(s_{1}^{2 x_{1}-y_{1}} \ldots s_{t}^{2 x_{t}-y_{t}}\right)
$$

Setting $C=s_{1}^{2 x_{1}-y_{1}} \ldots s_{t}^{2 x_{t}-y_{t}}$, we have $A^{2}=B C$, where $C \in \mathcal{B}(S)$. Hence, $2 k(A)=k(B)+k(C)$ and $k(C)=2 k(A)-k(B)>k(A)$. Since $k(A)=$ $\operatorname{Max}(\mathcal{B}(S)), k(C)>k(A)$ implies that $C$ is not irreducible. Thus $A^{2}=B C$ implies that $\mathcal{B}(S)$ is not a 2 -HFM.

We derive a corollary to the lemma which will be of later use.
Corollary 5. Let $G, S$, and $A$ be as in Lemma 4 and suppose that $\mathcal{B}(S)$ is a 2-HFM. Then

1. For any $B \in \mathcal{B}(S)$ with $k(B)<k(A)$ there is an $i$ such that $x_{i}<y_{i} / 2$.
2. If $k(A)>1$, then $x_{i}<\left|s_{i}\right| / 2$ for all $i$. In addition, if $S$ is an $\mathcal{A D}$-set, then $x_{i}<n /\left(2 s_{i}\right)$ for all $i$.

Proof. Part 1 follows directly from Lemma 4. For part 2, let $C_{i}$ be the element of $\mathcal{B}(S)$ of the form $C_{i}=s_{i}^{\left|s_{i}\right|}$. If $x_{i} \geq\left|s_{i}\right| / 2$, then, since $x_{j} \geq 0$ for each $i \neq j$, we deduce that $\mathcal{B}(S)$ is not a 2 -HFM by part 2 of Lemma 4 , a contradiction. Notice that if $S$ is an $\mathcal{A D}$-set, then $\left|s_{i}\right|=n / s_{i}$.

The corollary allows us to prove part 2 of Theorem 1.
Proposition 6. Let $G \cong \mathbb{Z}_{n}$ and $S=\left\{s_{1}, \ldots, s_{t}\right\} \subseteq \mathbb{Z}_{n} \backslash\{0\}$ be an $\mathcal{A D}$-set with $|S| \leq 4$. $\mathcal{B}(S)$ is a HFM if and only if $\mathcal{B}(S)$ is a $k$-HFM for some $k \geq 2$.

Proof. Suppose $\mathcal{B}(S)$ is not a HFM and is a 2-HFM. Let $A=s_{1}^{x_{1}} \ldots s_{t}^{x_{t}}$ be an irreducible block in $\mathcal{B}(S)$ such that $k(A)=m=\operatorname{Max} K(\mathcal{B}(S))>1$ (this is possible since $S$ is an $\mathcal{A D}$-set). By part 2 of Corollary $5, x_{i}<$ $n /\left(2 s_{i}\right)=\left|s_{i}\right| / 2$ for all $i$. Hence,

$$
m n=\sum_{i=1}^{t} s_{i} x_{i}<\sum_{i=1}^{t} s_{i} \frac{n}{2 s_{i}}=\sum_{i=1}^{t} \frac{n}{2} \leq 2 n
$$

since $|S| \leq 4$. Thus $m<2$ implies that $m=1$, a contradiction.
We proceed to a proposition which will complete the proof of part 1 of Theorem 1.

Proposition 7. Let $G \cong \mathbb{Z}_{n}$ and $S=\left\{s_{1}, \ldots, s_{t}\right\} \subseteq \mathbb{Z}_{n} \backslash\{0\}$ be a unitary $\mathcal{A D}$-set of $G . \mathcal{B}(S)$ is a HFM if and only if $\mathcal{B}(S)$ is a 2 -HFM.

Proof. Assume there exists a unitary $\mathcal{A D}$-set $S$ for which $\mathcal{B}(S)$ is a 2 -HFM but not a HFM. Without loss of generality, assume that $s_{1}=1$. Let such an $S$ be chosen with $|S|$ minimal. Notice that $|S|>4$ by Proposition 6. We claim that if $B=1^{y_{1}} s_{2}^{y_{2}} \ldots s_{t}^{y_{t}}$ is an irreducible block of $\mathcal{B}(S)$ with $y_{1} \neq 0$ and some $y_{j}=0$ (for $2 \leq j \leq t$ ), then $k(B)=1$. To see this, let $S^{\prime}=\left\{s_{i} \mid y_{i} \neq 0\right\}$. Then $S^{\prime}$ is properly contained in $S$. Thus, $\mathcal{B}\left(S^{\prime}\right)$ is a 2-HFM since $\mathcal{B}(S)$ is a 2-HFM. By the minimality of $S, \mathcal{B}\left(S^{\prime}\right)$ is a HFM. Thus $k(B)=1$.

Now, suppose $A=1^{x_{1}} s_{2}^{x_{2}} \ldots s_{t}^{x_{t}}$ is an irreducible block in $\mathcal{B}(S)$ with $k(A)=\operatorname{Max}(K(\mathcal{B}(S)))>1$. Since $S$ is an $\mathcal{A D}$-set, $\sum_{i=1}^{t} s_{i} x_{i}=m n$, where $k(A)=m$ for some $m>1$. By part 2 of Corollary $5, x_{i}<n /\left(2 s_{i}\right)$ for each $i$. Hence, $0<n-2 s_{i} x_{i}$ for each $i$. Now, for each $2 \leq j \leq k$, set

$$
M_{j}=s_{1}^{x_{1}+s_{j} x_{j}} \prod_{i \neq j} s_{i}^{x_{i}}
$$

Notice that since $s_{1}\left(x_{1}+s_{j} x_{j}\right)+s_{2} x_{2}+\ldots+s_{t} x_{t}=m n, k\left(M_{i}\right)=m>1$.
By the observation in the paragraph above, $M_{i}$ is not irreducible.
For each $2 \leq i \leq t$, set

$$
R_{i}=s_{1}^{n-s_{i} x_{i}} s_{i}^{x_{i}}
$$

Since $n-s_{i} x_{i}>0$, each $R_{i}$ is a block in $\mathcal{B}(S)$ with

$$
k\left(R_{i}\right)=\left(\left(n-s_{i} x_{i}\right)+s_{i} x_{i}\right) / n=1
$$

Hence each $R_{i}$ is irreducible in $\mathcal{B}(S)$. Consider

$$
\begin{aligned}
A R_{i} & =\left(s_{1}^{x_{1}} \ldots s_{t}^{x_{t}}\right)\left(s_{1}^{n-s_{i} x_{i}} s_{i}^{x_{i}}\right)=s_{i}^{2 x_{i}} s_{1}^{x_{1}+n-s_{i} x_{i}} \prod_{j \neq i, j>1} s_{j}^{x_{j}} \\
& =\left(s_{i}^{2 x_{i}} s_{1}^{n-2 s_{i} x_{i}}\right)\left(s_{1}^{x_{1}+s_{i} x_{i}} \prod_{j \neq i, j>1} s_{j}^{x_{j}}\right)=C M_{i} .
\end{aligned}
$$

Since $A, R_{i}$, and $M_{i}$ are blocks in $\mathcal{B}(S), C$ is a nontrivial block. By the previous argument each $M_{i}$ is not irreducible. Thus, the product $A R_{i}$ can be written as a product of at least three irreducibles. We conclude that $\mathcal{B}(S)$ is not a 2 -HFM.

Proof of part 1 of Theorem 1. By previous remark it suffices to consider the block semigroup $\mathcal{B}(S)$. Since $S$ contains a generator, we can use an automorphism argument [5, Lemma 1.9] and assume that $S$ is unitary. By part 1 of Proposition 3 , if $S$ is not an $\mathcal{A D}$-set, then $\mathcal{B}(S)$ is neither a 2 -HFM nor HFM. Thus $S$ must be an $\mathcal{A D}$-set. Proposition 7 now completes the proof.

The proof of part 3 of Theorem 1 will require a lemma.
Lemma 8. Let $G=\mathbb{Z}_{n}$ and $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be an $\mathcal{A D}$-set of $G$. Set $d=\operatorname{gcd}\left(s_{2}, \ldots, s_{k}\right), m=n / d$, and $S^{\prime}=\left\{s_{1}, s_{2} / d, \ldots, s_{k} / d\right\}$. Then

1. $S^{\prime}$ is an $\mathcal{A D}$-set for $\mathbb{Z}_{m}$ and $\operatorname{gcd}\left(s_{1}, s_{2} / d, \ldots, s_{k} / d\right)=1$.
2. $\mathcal{B}(S)$ is a $H F M$ (or a $k$-HFM for some $k \geq 2$ ) if and only if $\mathcal{B}\left(S^{\prime}\right)$ is a HFM (or a $k$-HFM for some $k \geq 2$ ).

Proof. We note that since $\operatorname{gcd}\left(s_{1}, \ldots, s_{k}\right)=1$, we have $\operatorname{gcd}\left(s_{1}, d\right)=1$. Since $s_{1}\left|d(n / d), s_{1}\right|(n / d)$ and $S^{\prime}$ is an $\mathcal{A D}$-set for $\mathbb{Z}_{m}$ with

$$
\operatorname{gcd}\left(s_{1}, s_{2} / d, \ldots, s_{k} / d\right) \mid \operatorname{gcd}\left(s_{1}, s_{2}, \ldots, s_{k}\right)=1
$$

This completes the proof of 1 .
There is a one-to-one correspondence between the irreducible blocks of $\mathcal{B}(S)$ and $\mathcal{B}\left(S^{\prime}\right)$, given in the following manner. Let $B=s_{1}^{x_{1}} \ldots s_{k}^{x_{k}}$ be an irreducible block in $\mathcal{B}(S)$ with $\sum_{i=1}^{k} s_{i} x_{i}=n t$. Since $d \mid s_{1} x_{1}$ and $\operatorname{gcd}\left(d, s_{1}\right)=1$, it follows that $d \mid x_{1}$ and $B^{\prime}=s_{1}^{\left(x_{1} / d\right)}\left(s_{2} / d\right)^{x_{2}} \ldots\left(s_{k} / d\right)^{x_{k}}$ is an irreducible block in $\mathcal{B}\left(S^{\prime}\right)$ with

$$
s_{1}\left(\frac{x_{1}}{d}\right)+\sum_{i=2}^{k}\left(\frac{s_{i}}{d}\right) x_{i}=\left(\frac{n}{d}\right) t .
$$

A reverse correspondence works in a similar manner (notice for such blocks that $\left.t=k(B)=k\left(B^{\prime}\right)\right)$. Hence 2 follows.

The next proposition establishes Theorem 1, part 3.
Proposition 9. Let $G=\mathbb{Z}_{p^{r} q^{s}}$, where $p$ and $q$ are distinct primes in $\mathbb{Z}$, and let $S=\left\{s_{1}, \ldots, s_{t}\right\}$ be an $\mathcal{A D}$-set of $G$. Then $\mathcal{B}(S)$ is a HFM if and only if $\mathcal{B}(S)$ is a $k$-HFM for some $k \geq 2$.

Proof. If $S$ contains a generator of $G$, then the result follows from Proposition 7. So assume that $S$ does not contain a generator of $G$ and that $\mathcal{B}(S)$ is a 2-HFM and not a HFM with $G=\mathbb{Z}_{n}$, where $n=p^{r} q^{s}$. Choose $n=p^{r} q^{s}$ minimal for such an example and an $\mathcal{A D}$-set $S=\left\{s_{1}, \ldots, s_{t}\right\}$ with $|S|$ also minimal. For each $1 \leq i \leq t$ set

$$
d_{i}=\operatorname{gcd}\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{t}\right)
$$

By considering the correspondence set up in Lemma 8, if any of the $d_{i}>1$ then we would have a cyclic group $\mathbb{Z}_{n / d_{i}}$, which is of order strictly less than $n$, and a corresponding set $S^{\prime}$ such that $\mathcal{B}\left(S^{\prime}\right)$ is a 2-HFM but not HFM, contradicting the minimality of $n$. Hence, each $d_{i}=1$.

We now argue that in $S$ there must be some $1 \leq i<j \leq t$ such that either $s_{i} \mid s_{j}$ or $s_{j} \mid s_{i}$. Since $\operatorname{gcd}\left(s_{1}, \ldots, s_{k}\right)=1$, one of the $s_{i}=p^{v}$. Since $d_{i}=1$, then one of the $s_{j}=p^{w}$ (for $i \neq j$ ) and hence either $s_{i} \mid s_{j}$ or $s_{j} \mid s_{i}$.

Without loss of generality, assume that $s_{1} \mid s_{2}$. Suppose $s_{1} b=s_{2}$. Since $\mathcal{B}(S)$ is not a HFM, there is an irreducible block $A=s_{1}^{x_{1}} \ldots s_{t}^{x_{t}}$ with $\sum_{i=1}^{t} s_{i} x_{i}=m n$, where $k(A)=m=\operatorname{Max}(K(\mathcal{B}(S)))>1$. By Corollary 5, $x_{i}<n /\left(2 s_{i}\right)$ for each $i$. Set

$$
M=s_{1}^{x_{1}+b x_{2}} s_{3}^{x_{3}} \ldots s_{t}^{x_{t}}, \quad B_{1}=s_{1}^{\left(n / s_{1}\right)-b x_{2}} s_{2}^{x_{2}}, \quad B_{2}=s_{1}^{\left(n / s_{1}\right)-2 b x_{2}} s_{2}^{2 x_{2}} .
$$

Now, $k(M)=m, k\left(B_{1}\right)=1$, and $k\left(B_{2}\right)=1$. Notice that $x_{2}<n / 2 s_{2}$ implies that $2 b x_{2}<2 b n / 2 s_{1} b=n / s_{1}$. Since $k\left(B_{1}\right)=k\left(B_{2}\right)=1$, property $\mathcal{A D}$ implies that both $B_{1}$ and $B_{2}$ are irreducible. Since, for any proper subset $S^{\prime}$ of $S, \mathcal{B}\left(S^{\prime}\right)$ inherits the 2-HFM property, it follows from the minimality of $|S|$ that $\mathcal{B}\left(S^{\prime}\right)$ must have the HFM property. Thus $M$ is not irreducible in $\mathcal{B}\left(S^{\prime}\right)$ and hence $M$ is not irreducible in $\mathcal{B}(S)$. Thus

$$
A B_{1}=M B_{2}
$$

implies that the product of 2 irreducibles in $\mathcal{B}(S)$ can be written as the product of more than 2 irreducibles in $\mathcal{B}(S)$, a contradiction.

It is of interest to note that the proof of Theorem 1 remains valid if the Krull domain $D$ with divisor class group $\mathbb{Z}_{n}$ is replaced by a Krull monoid $H$ with identical divisor class group. In this case, the set $S$ would now represent the subset of divisor classes of $H$ which contain at least one prime divisor. The interested reader is referred to [9] for more information on Krull monoids.

Acknowledgements. The authors express their appreciation to Alfred Geroldinger for discussions related to this work.

## REFERENCES

[1] D. F. Anderson, S. T. Chapman and W. W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96 (1994), 97-112.
[2] L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11 (1960), 391-392.
[3] S. T. Chapman, The davenport constant, the cross number, and their application in factorization theory, in: Zero-Dimensional Commutative Rings, Marcel Dekker, New York, 1995, 167-190.
[4] S. T. Chapman and W. W. Smith, Factorization in Dedekind domains with finite class group, Israel J. Math. 71 (1990), 65-95.
[5] -, 一, On the HFD, CHFD, and k-HFD properties in Dedekind domains, Comm. Algebra 20 (1992), 1955-1987.
[6] -, 一, On the $k$-HFD property in Dedekind domains with small class group, Mathematika 39 (1992), 330-340.
[7] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
[8] A. Geroldinger and F. Halter-Koch, Non-unique factorizations in block semigroups and arithmetical applications, Math. Slovaca 42 (1992), 641-661.
[9] U. Krause and C. Zahlten, Arithmetic in Krull monoids and the cross number of divisor class groups, Mitt. Math. Ges. Hamburg 12 (1991), 681-696.
[10] W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330.

Department of Mathematics Trinity University 715 Stadium Drive San Antonio, Texas 78212-7200 U.S.A.

Department of Mathematics
The University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27599-3250
U.S.A.

