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ON THREFE PROBLEMS FROM THE SCOTTISH BOOK
CONNECTED WITH ORTHOGONAL SYSTEMS

BY

A. PLICHKO anp A. RAZENKOV (LVIV)

Introduction. In this paper we consider some questions connected with
the following problems from [5]:

1. PROBLEM OF MAZUR ([5, Problem 154]): Let (¢,) be an orthogonal
system consisting of continuous functions and closed in C.

(a) If f(t) ~ a1p1(t) + azpa(t) + ... is the development of a given con-
tinuous function f(¢) and n1,na,... denote the successive indices for which
ap, #0,..., can one approximate f(¢) uniformly by linear combinations of
the functions ¢y, (t), n, (t),...7

(b) Does there exist a linear summation method M such that the devel-
opment of every continuous function f(¢) in the system (¢, (t)) is uniformly
summable by the method M to f(t)?

In [6] A. M. Olevskii has given negative answers to both questions.

2. PROBLEM OF BANACH ([5, Problem 86]): Given a sequence of
functions (¢, (t)) which is orthogonal, normed, measurable, and uniformly
bounded, can one always complete it, using functions with the same bound,
to a sequence which is orthogonal, normed, and complete? Consider the
case when infinitely many functions are necessary for completion.

This problem was first solved by S. Kaczmarz in [2]. Various solutions of
this problem were found by B. S. Kashin, A. M. Olevskii, S. V. Bochkarev
and K. S. Kazarian [3, 4].

3. PROBLEM OF MAZUR ([5, Problem 51]):

a) Is every set of functions, measurable in [0, 1] with the property that
any two functions of the set are orthogonal, at most countable? (the func-
tions are not assumed to be square-integrable!)

b) An analogous question for sequences: Is every set of sequences with
the property that any two sequences (g,), (9,) of this set are orthogonal,
that is, fo;l Ennn = 0, at most countable?
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It is stated in [5] that this problem was solved by Mazurkiewicz but there
is no such remark in the xerox copy of the original manuscript we have.

Let X be a separable Banach space and let X* be its dual. A system
Tny frny Zn € X, frn€ X*,n=1,2,...,00is called biorthogonal if f,,(z,) =
Omn (Kronecker delta). A biorthogonal system is called fundamental (or
complete) if its closed linear span [z,]°% is equal to X, and total if for
any non-zero element z € X there is an index n such that f,(z) # 0. A
fundamental and total biorthogonal system is called a Markushevich basis
(an M-basis). A biorthogonal system is called a strong M -basis if x €
[fn(z)z,]02 for every x in X. A system (z,,) is called a T-basis if there
exists a regular summation method such that for every element x in X there
exists a unique series Y, b,z, which is summable to = by this method.

We say that a Banach space X is densely embedded in a Banach space Y
if X is a dense linear subspace of Y, it does not coincide with Y and there
exists a positive constant C such that ||z||y < C|/z|x for z € X.

1. An answer to the first part of Mazur’s question [5, Problem 154]
follows from the following general proposition which is an improvement of
results of Gurarii and Johnson [1, 10].

PRrROPOSITION 1. Let X be a separable Banach space which is densely
embedded in a Hilbert space H. There exists a non-strong M-basis in X
which is an orthogonal system in H.

For the proof we need three lemmas.

LEMMA 1. Let X be a Banach space which is densely embedded in a

Banach space Y and let E be a finite-codimensional closed subspace of Y.
Then X N E is densely embedded in E.

Proof. Let Z be a finite-dimensional complement to X N EF in X.
Then for every e € E there exists a sequence x,, + 2, — e in Y-norm with
T, € XNFEand z, € Z. Since ZNE =0, Z and E are closed in Y and Z
is finite-dimensional, we have z,, — = and z, — z as n — oo, with x € F,
z€ Zande=x+2 Thusz=0and z, - easn — oo, ie. XNE
is densely embedded in E. If XNE = E, then X = (XNE)+Z =Y.
Therefore X N E # E.

LEMMA 2. Let X be a Banach space which is densely embedded in a
Hilbert space H. For any e > 0 there exist x and x' in X such that ||z||x =
lo'[|x =1, [|x —2'||x <e and zLa’ in H.

Proof. Let || || be the norm in X and || || be the norm in H. Without
loss of generality we may suppose that there exists u in X such that ||u| =
|lu|lg = 1. Let E be the orthogonal complement of u in H. Then codim F
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= 1. It follows from Lemma 1 that X N E is dense in E and this embedding
is not an isomorphism. Hence we may choose v in X NE such that ||v||g =1

and a := ||v|| is sufficiently large. Put T = v+u, T = v —u, x = T/||Z|| and
' =7'/|7'||. Then (Z,7') = (v+u,v—u) = ||v|]|g — ||ul]|g = 0, hence z Lz’
in H. Tt is easy to see that a — 1 < ||Z||,||Z'|| < @ + 1. This implies that
[zl = 117"l | < 2 and [|Z]| - |7']] > (a — 1)*. Then
Iz — o/ = Lzl — =zl [l = i)y + A1zl + [zl
e[| - [l (a—1)?
< 2||v|| + 2(a + 1)||ul] < 2a+2(a+1)
- (a—1)? (a1

i.e. choosing a sufficiently large we may obtain ||z — 2/|| less than any pre-
assigned €. m

LEMMA 3. Let X be a Banach space which is densely embedded in a
Hilbert space H. Let (@) be a system which is fundamental in X and
orthogonal in H. Then (p,) is an M-basis in X.

Proof. Since (¢,) is orthogonal in H, there exist functionals (¢}) C H*
biorthogonal to (¢,). Since X is densely embedded in H, H* is embedded
in X* and dense in the weak* topology, hence () is a total system on X,
and therefore (,,) is an M-basis in X. =

Proof of Proposition 1. Let (y,) be some M-basis in X and let
(en) be a sequence of positive scalars such that lim,, £,, =0. We proceed by
induction. In the first step we put z; =v; and choose x; and 2} in X Ny
which satisfy the conclusion of Lemma 2 with € = ;. In the nth step we put
Yin-1 = (i, 2, x;)?;ll, take z, € lin(Y,,—1,y,) with z, LY, 1 and choose z,,
and z/, in X N (Y,_1 U {y,})* which satisfy Lemma 2 with ¢ = &,,. Then
the subspaces X1 = [z, 2502, and X5 = [2]]°%; are quasi-complementary
but not complementary in X and orthogonal in H. It is known (see [8] for
example) that we can choose a subspace X{ of X; such that dim X; /Xy =1
and so that Xy and X, remain quasi-complementary in X. Take a system
(u,) which is complete in X and orthogonalize it in H. We get a system
(vn) C XY for which all conditions of Lemma 3 are valid, hence (v,,) is an M-
basis in X{), orthogonal in H. Put ¢s, 1 = v, and 9, = x, forn=1,2,...
Then (p,,) is an M-basis in X, it is orthogonal in H by Lemma 3, but it is
not a strong M-basis because [pa,-1]52; C X? and ([p2,]3%1)t D X;1. =

Remark. Since every T-basis (summation basis) is a strong M-basis
(see [11, p. 357]), there exists an M-basis in X, orthogonal in H, which is
not a T-basis in X. In the case when X has a conditional basis which is
orthogonal in H, a negative answer to the second part of Mazur’s question
[5, Problem 154] can be obtained significantly simpler than in the article of
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A. M. Olevskii [6]. Such bases exist in L,, p > 2 (trigonometric system),
and in C' (Franklin system). We will show that such bases exist in some
symmetric function spaces which are embedded in Ls.

PROPOSITION 2. Let X be a Banach space densely embedded in o Hilbert
space H and suppose that X has a conditional basis orthogonal in H. Then

there exists a strong M-basis in X, orthogonal in H, which is not a T-basis
mn X.

Proof. This easily follows from the fact that every conditional basis
has a permutation which is not a T-basis (see [11, p. 357]). It is clear that
the rearranged system remains an M-basis and orthogonal in H. =

The following statement is well known (see [9, p. 31], for example).

LEMMA 4. No orthonormal basis (x, ()5 in L2(0,1) with |x,(t)| =
for all n can be an unconditional basis of a symmetric space E on (0,1
different from L.

1
)

Let E be a symmetric function space, let pr and qg be its Boyd indices
(see e.g. [9, p. 27] for definition). It is known that the Walsh system is a
basis in L,, 1 <p <oo. If 1 <pg < gg < oo, then F is an interpolation
space between L,,, and Ly, ([9, p. 27]). The above observations imply that
the Walsh system is a conditional basis in F when 2 < pg < qg < oo.

2. The following proposition gives, in particular, a negative answer to
Banach’s question [5, Problem 86].

PROPOSITION 3. Let X be a Banach space which is densely embedded in
a Hilbert space H and this embedding is not compact. Then there exists a
sequence (@) such that

(i) (on) is bounded in X;
(ii) (¢n) is orthogonal in H;
(iii) (pn) admits no extension to a fundamental and orthogonal sequence
i H, using elements from X;
(iv) the closed linear span of (vy) in H has an infinite codimension in H.

We need two lemmas for the proof.

LEMMA 5. Let X be a Banach space which is densely embedded in a
Hilbert space H and the embedding is not compact. Then there exists a
positive scalar a such that for any finite-codimensional closed subspace E C
H there exists v € X N E+ such that ||z]|x < allz| x.

Proof. Suppose the converse. Then for every a there exists a finite-
codimensional subspace £ C H with ||z||x > a||z| g for every z € X N E.
We will show that this implies the compactness of the embedding of X in H.



ORTHOGONAL SYSTEMS 231

We need to show that for every € > 0 there exists a finite cover of B(X)
(the unit ball of X) by balls Si,...,S,, in H with radius . It follows
from the assumption that B(X)N E C eB(H) if e = 1/a. Compactness of
the embedding now easily follows from the fact that X N E is closed and
finite-codimensional. =

LEMMA 6. Let X be a Banach space which is densely embedded in a
Hilbert space H. Let E be a finite-codimensional closed subspace of H, let
e >0andv € X. Then there exists y € XNE such that d(v,lin(E+,y)) < ¢,
where d means the distance in H.

Proof. Decompose vin H as v = v* +v**, where v* € F and v** € E*.
Hence

d(v,lin(E*,y)) = inf{|lv — 2|/ : 2 € lin(E+, y)}
= inf{(JJo* = Ay||® + |o** —u|H)2: N ER, ue E}
= inf{|[v* — A\y||g : A € R}.

Since X NFE is densely embedded in £ by Lemma 1, v* can be approximated
arbitrarily closely by an element y from X N E. =

Proof of Proposition 3. The proof is a modification of arguments
from [7]. The reasoning uses the orthogonal transformation of A. M. Olevskii
and takes into account results from [8].

Let (v,)52, C X be a complete sequence in H such that each element is
repeated infinitely many times. Let (£,,)72; be a sequence of positive scalars
such that lim, e, = 0. By [8] there exists a closed infinite-dimensional
subspace Z in H such that Z N X = 0. We proceed by induction. Let a
be the constant from Lemma 5. For elements (z;,z;,y;)"; C H we put
H, = lin(z;,z;,y;)" ;. In the first step we use Lemma 5 to find 2; € Z,
z1 # 0, and 27 € X with z1 1z, ||z1]|lg = 1 and [|z1]|x < a. Next we
use Lemma 6 to choose y; € X such that y; € (z1,21)%, |lyi]lg = 1 and
d(vi, Hy) < 1. In the nth step we take z, € Z N H;-;, z, # 0, choose
v, € X N HE- | Nz- such that ||z,]|g = 1 and ||z,||x < a and choose
Yn € X NH;- | N (2n,7,) " such that ||ly1||g = 1 and d(v,,, Hy,) < &,.

Now we rearrange the sequence (y,) and relabel it as (¢, )>_,, where
(im)5°_; is an increasing sequence such that for every m, iy, — ipy—1 = 2°™,
where the positive integer s,, is chosen to satisfy 275m/2||y; |x < 27™.
We relabel (z,,)72 ; using the remaining positive integers to get the sequence
(i 10 & (im)pe_q). Let us apply for each block (¢; : iy—1 < @ < iy,) the
orthogonal transformation of Olevskii [7]. We obtain a sequence (@)%,
which is bounded in X and orthonormal in H. The closed linear span of
(pr)52, in H coincides with the closed linear span of (z,,,yn)52; in H. It is
clear that the subspace [z,]2; is an orthogonal complement to this closed
linear span. m
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3. In this section we will answer Mazur’s question [5, Problem 51]. First
we consider the discrete variant. We need the following known lemma ([11,
p. 208]).

LEMMA 7. Let N be a countable set. Then there exists a family {My}oca
of subsets of N with the following properties:

(i) The index set A has cardinality continuum.
(ii) Fach set M, is infinite.
(iii) Mo N Mg is finite for a # 3.

Proof. Let N be the set of all rational numbers in (0,1), A be the set of
all irrational numbers in (0, 1) and, for each a € A, let M, be an arbitrary
infinite sequence in N converging to «. m

PROPOSITION 4. There exist continuum many Sequences =% =
(xy,29,...), a € A, such that & = 0,1, or —1 for every n and «, and
for a # 3 the series > -, x%2? contains a finite number of non-zero terms
and its sum is equal to zero.

Proof. In a countable set Ny choose continuum many non-empty sub-
sets My, a € A, such that M, N Mg is a finite set for a # 3, by Lemma 7.
Put 2% = (z¢,29,...), where 2% = 1if n € M,, and 2% =0 if n ¢ M,. We
have constructed continuum many sequences x® so that for every a # 3 the

series Y 2%z is a finite sum.
Now We represent A as a dyadic tree A = A; U As, Ay = Az U Ay,
Ay = A5 U Ag, . .., where U denotes disjoint union, by the scheme:

/\
//\\ //\\

/\ /\ /\ /\

We make this representation in such a way that
(%) every chain (Ag,)52, has one-point intersection (\,o, A, .

We shall add to Ny a countable number of countable sets N;, i =1,2,...,
and shall complete the definition of our sequences on (=, N; by 0, 1, and
—1 so that in the ith step for a # ( the series

S(a,Byi) = Y, anal

HGUQ:ON’C
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will contain a finite number of non-zero terms; if S(a,(3,i) = 0 then
S(a,8,7) = 0 for j > i; and for every a # [ there exists ¢ such that
S(a,8,1) = 0.

First step. Let N1 be a copy of Ny and ¢1 : N9 — Nj be an identifying
map. Put

a

o oy if v € Ay,
Tor(n) = {—xf; if a € As, n € No.
Then for every a, (3 the series S(«,3,1) has a finite number of non-zero
terms and its sum is zero for a € Ay, 8 € As.

Second step. Let Ny be a copy of NoU Ny and 2 : NgU Ny — Ny be an
identifying map. Put

x% lf o € A37

Lo (n) Z{—l“% ifaoe Ay, ne NyUDN.
0 ifagA,

Then for every a, ( the series S(«,3,2) has a finite number of non-zero

terms, its sum is zero for a € A3z, 0 € A4, and also for a € Ay, § € Ao,
since it is then equal to S(a, 3,1).

Third step. Let N3 be a copy of NgUN1;UN and 3 : NgUN;UNy — Nj
be an identifying map. Put

n
0 if « g Ag,
Then for every a, (3 the series S(«,3,3) has a finite number of non-zero
terms, its sum is zero for a € As, f € Ag, for a € Ay, § € Ay (being equal
to S(a, 3,1)) and for o € Ag, 5 € Ay (being equal to S(«, 3,2)).

We have constructed our sequences so that in the ith step for a # 3 the
series S(a, 3,1) has a finite number of non-zero terms and if S(a, 8,7) = 0
then S(a, 3,7) = S(a, 8,47) = 0 for j > i. Condition (*) ensures that for any
distinct «, 3 there exists ¢ such that S(«, 3,7) =0. =

33% ifOéEAg),
xgs(n):{—xa if o€ As, n € NoUN;UNs.

An uncountable orthogonal system on an interval can be obtained as a
result of the following transformation. We decompose (0, 1) into a countable
union of disjoint sets (A4,,)52; of positive measure, and for every sequence
x = (x,,) we define a function f,(t) = x,/\/1(4,) for t € A,. Tt is easy to
see that if % a € A, are the sequences from Proposition 4, then the set of
functions fio, a € A, has the property desired in [5, Problem 51].
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