VOL. 71 1996 NO. 1

A NOTE ON THE DIOPHANTINE EQUATION
$$(x^2 - 1)(y^2 - 1) = (z^2 - 1)^2$$

ВЪ

HUAMING WU AND MAOHUA LE (ZHANJIANG)

1. Introduction. Let \mathbb{Z} , \mathbb{N} be the sets of integers and positive integers respectively. In this note we deal with the solutions (x, y, z) of the equation

(1)
$$(x^2-1)(y^2-1)=(z^2-1)^2$$
, $x,y,z \in \mathbb{N}$, $x>z>y>1$.

Schinzel and Sierpiński [3] found all solutions of (1) with x-y=2z. Grelak [2] proved that if (x,y,z) is a solution of (1) and satisfies $2 \mid x$ and $2 \mid y$, then $\operatorname{pot}_2 x = \operatorname{pot}_2 y$. Wang [4] and Cao [1] proved that (1) has no solutions (x,y,z) satisfying x-y=z or x-y=kz with $2 < k \le 30$ respectively. In this note, using some properties of Pell's equation, we prove the following general result:

THEOREM. Equation (1) has no solutions (x, y, z) satisfying $2 \mid x, 2 \mid y$ and x - y = kz, where $k \in \mathbb{N}$ with k > 2.

2. Preliminaries. Let $D \in \mathbb{N}$ be nonsquare, and let (u, v) be a positive integer solution of Pell's equation

(2)
$$u^2 - Dv^2 = 1, \quad u, v \in \mathbb{Z}.$$

For any $t \in \mathbb{N}$, let $u_t, v_t \in \mathbb{N}$ satisfy

$$(3) u_t + v_t \sqrt{D} = (u + v\sqrt{D})^t.$$

LEMMA 1. If $2 \mid u_t$, then $2 \nmid t$.

Proof. Since $2 \mid Duv$ by (2), we see from (3) that if $2 \mid t$, then $2 \mid v_t$ and $2 \nmid u_t$. The lemma is proved.

LEMMA 2. If
$$gcd(v_r, v_s) = 1$$
, then $gcd(r, s) = 1$.

Proof. Let $d = \gcd(r, s)$. By (3), we have $v_d | v_r$ and $v_d | v_s$. Since $v_d > 1$ if d > 1, we get d = 1 if $\gcd(v_r, v_s) = 1$. The lemma is proved.

 $^{1991\} Mathematics\ Subject\ Classification {:}\ 11D25,\ 11D09.$

Supported by the National Natural Science Foundation of China and the Guandong Provincial Natural Science Foundation.

LEMMA 3. If r > s, $2 \nmid r$, $2 \nmid s$, $r \equiv s \pmod{4}$ and $\gcd(r, s) = 1$, then $\gcd(u_{(r+s)/2}, v_{(r-s)/2}) = u_1$.

Proof. Let $\varepsilon = u + v\sqrt{D}$ and $\overline{\varepsilon} = u - v\sqrt{D}$. By (3), we get

$$u_t = \frac{\varepsilon^t + \overline{\varepsilon}^t}{2}, \quad v_t = \frac{\varepsilon^t - \overline{\varepsilon}^t}{2\sqrt{D}}, \quad t \in \mathbb{N}.$$

Let $d = \gcd(u_{(r+s)/2}, v_{(r-s)/2})$. Then we have

(4)
$$\varepsilon^{(r+s)/2} \equiv -\overline{\varepsilon}^{(r+s)/2} \pmod{2d}, \quad \varepsilon^{(r-s)/2} \equiv \overline{\varepsilon}^{(r-s)/2} \pmod{2d}.$$

Since $\varepsilon \overline{\varepsilon} = 1$, we deduce from (4) that

(5)
$$u_r \equiv 0 \pmod{d}, \quad u_s \equiv 0 \pmod{d}.$$

Since gcd(r, s) = 1, there exist $\alpha, \beta \in \mathbb{Z}$ such that $\alpha r - \beta s = 1$. Hence, by (5), we get

(6)
$$\varepsilon^{\alpha r - \beta s} - (-1)^{\alpha + \beta} \overline{\varepsilon}^{\alpha r - \beta s} = \varepsilon - (-1)^{\alpha + \beta} \overline{\varepsilon} \pmod{2d}.$$

Notice that $2 \nmid r$ and $2 \nmid s$. We have $\alpha + \beta \equiv 1 \pmod{2}$ and

$$(7) u_1 \equiv 0 \pmod{d},$$

by (6). On the other hand, we see from (3) that $u_1 \mid u_{(r+s)/2}$ and $u_1 \mid v_{(r-s)/2}$ if $r \equiv s \pmod{4}$. This implies that $d \equiv 0 \pmod{u_1}$. On combining this with (7) we get $d = u_1$. The lemma is proved.

3. Proof of Theorem. Let (x, y, z) be a solution of (1) which satisfies $2 \mid x, 2 \mid y$ and x - y = kz with $k \in \mathbb{N}$. Then

(8)
$$x^2 - 1 = Da^2, \quad y^2 - 1 = Db^2,$$

where $a, b, D \in \mathbb{N}$ satisfy

(9)
$$z^2 - 1 = Dab, \quad \gcd(a, b) = 1.$$

By (8), D is not a square, and (u, v) = (x, a) and (y, b) are positive integer solutions of Pell's equation (2).

Let $\varepsilon = u_1 + v_1 \sqrt{D}$ be the fundamental solution of (2), and let $\overline{\varepsilon} = u_1 - v_1 \sqrt{D}$. Since x > y, we see from (8) that

(10)
$$x + a\sqrt{D} = \varepsilon^r, \quad x - a\sqrt{D} = \overline{\varepsilon}^r,$$

(11)
$$y + b\sqrt{D} = \varepsilon^s, \quad y - b\sqrt{D} = \overline{\varepsilon}^s,$$

where $r, s \in \mathbb{N}$ with r > s. Notice that $2 \mid x, 2 \mid y$ and gcd(a, b) = 1. By Lemmas 1 and 2, we find that $2 \nmid r, 2 \nmid s$ and gcd(r, s) = 1 respectively.

For any $t \in \mathbb{N}$, let $\varepsilon^t = u_t + v_t \sqrt{D}$. Then $u_t, v_t \in \mathbb{N}$ satisfy $\overline{\varepsilon}^t = u_t - v_t \sqrt{D}$ and $u_t^2 - Dv_t^2 = 1$. Let m = (r+s)/2 and n = (r-s)/2. From (10) and (11), we get

(12)
$$x = u_r = u_m u_n + D v_m v_n, \quad y = u_s = u_m u_n - D v_m v_n,$$

(13)
$$Dab = Dv_r v_s = \frac{1}{2}(u_{r+s} - u_{r-s}) = u_m^2 - u_n^2 = Dv_m^2 - Dv_n^2$$

By (9) and (13), we obtain

(14)
$$z^2 = Dv_m^2 - Dv_n^2 + 1.$$

On the other hand, since x - y = kz, we deduce from (12) and (14) that

$$(15) 2Dv_m v_n = kz.$$

Hence, by (14) and (15),

(16)
$$k^2(Dv_m^2 - Dv_n^2 + 1) = 4D^2v_m^2v_n^2.$$

Since $gcd(D, Dv_m^2 - Dv_n^2 + 1) = 1$, we see from (16) that $k = Dk_1$, and

(17)
$$k_1^2(Dv_m^2 - Dv_n^2 + 1) = 4v_m^2 v_n^2, \quad k_1 \in \mathbb{N}.$$

Since $2 \mid x$ and $2 \nmid r$, we see from (10) that $2 \mid u_1$. Let $2^{\alpha} \parallel u_1$. If $r \not\equiv s \pmod{4}$, then $2 \mid m$, $2 \nmid n$ and

$$2 \| Dv_m^2 - Dv_n^2 + 1 = Dv_m^2 - u_n^2 + 2.$$

This implies that (17) is impossible in this case. So we have $r \equiv s \pmod 4$. Then $2 \nmid m, 2 \mid n$ and

(18)
$$2^{2\alpha} \| Dv_m^2 - Dv_n^2 + 1 = u_m^2 - Dv_n^2.$$

Since $2 \mid n$ and $2^{\alpha+1} \mid v_n$, we see from (17) and (18) that $k_1 = 2k_2$ and

(19)
$$k_2^2(Dv_m^2 - Dv_n^2 + 1) = v_m^2 v_n^2, \quad k_2 \in \mathbb{N}.$$

Recall that $2 \nmid r$, $2 \nmid s$, $\gcd(r,s) = 1$ and $2 \mid n$. By Lemma 3, we have $\gcd(u_m,v_n) = u_1$. Since $Dv_m^2 - Dv_n^2 + 1 = u_m^2 - Dv_n^2$, we see from (19) that $k_2 = k_3(v_n/u_1)$ and

(20)
$$k_3^2(Dv_m^2 - Dv_n^2 + 1) = v_m^2 u_1^2, \quad k_3 \in \mathbb{N}.$$

Further, by (20), we get

(21)
$$k_3 = v_{m1}k_4$$
, $Dv_m^2 - Dv_n^2 + 1 = v_{m2}^2u_1^2$, $k_4 \in \mathbb{N}$,

where $v_{m1}, v_{m2} \in \mathbb{N}$ with $v_{m1}v_{m2} = v_m$. Since $v_{m2} \mid v_m$, we see from (21) that $v_{m2}^2 \mid Dv_n^2 - 1$. So we have

(22)
$$Dv_n^2 - 1 = u_n^2 - 2 = lv_{m2}^2, \quad l \in \mathbb{N}.$$

Since $2 \mid n$ and $2 \nmid u_n^2$, by (22), we get $l \equiv lv_{m2}^2 = u_n^2 - 2 \equiv 7 \pmod{8}$. It implies that $l \geq 7$. Hence, we obtain

$$(23) v_{m2}^2 \le \frac{Dv_n^2 - 1}{7}.$$

From (21) and (23), we get

$$(24) Dv_m^2 = (Dv_n^2 - 1) + v_{m2}^2 u_1^2 \le (Dv_n^2 - 1) \left(1 + \frac{u_1^2}{7}\right) < Dv_n^2 \left(1 + \frac{u_1^2}{7}\right).$$

Since $\varepsilon \overline{\varepsilon} = 1$, by (24), we deduce that

$$u_1 + 1 < u_1 + v_1 \sqrt{D} = \varepsilon \le \varepsilon^s = \varepsilon^{m-n} < \varepsilon^{m-n} - \frac{\varepsilon^{m-2n} - \varepsilon^{-m}}{\varepsilon^n - \overline{\varepsilon}^n}$$
$$= \frac{\varepsilon^m - \overline{\varepsilon}^m}{\varepsilon^n - \overline{\varepsilon}^n} = \frac{v_m}{v_n} < \left(1 + \frac{u_1^2}{7}\right)^{1/2} < u_1 + 1,$$

a contradiction. The theorem is proved.

REFERENCES

- Z.-F. Cao, A generalization of the Schinzel-Sierpiński system of equations, J. Harbin
- Inst. Tech. 23 (5) (1991), 9–14 (in Chinese). A. Grelak, On the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$, Discuss. Math.
- A. Schinzel and W. Sierpiński, Sur l'équation diophantienne $(x^2 1)(y^2 1) = [((y x)/2)^2 1]^2$, Elem. Math. 18 (1963), 132–133. Y.-B. Wang, On the diophantine equation $(x^2 1)(y^2 1) = (z^2 1)^2$, Heilongjiang
- Daxue Ziran Kexue Xuebao 1989, (4), 84–85 (in Chinese).

Department of Mathematics Zhanjiang Teachers' College P.O. Box 524048 Zhanjiang, Guangdong P.R. China

Received 6 December 1995