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A NOTE ON THE DIOPHANTINE
EQUATION (2? —1)(y* — 1) = (22— 1)2

BY

HUAMING WU ano MAOHUA LE (ZHANJIANG)

1. Introduction. Let Z, N be the sets of integers and positive integers
respectively. In this note we deal with the solutions (z,y, z) of the equation

(1) (-1 -1)=(*-132 z,92€N, 2>z>y> 1.

Schinzel and Sierpinski [3] found all solutions of (1) with  —y = 2z. Grelak
[2] proved that if (z,y, z) is a solution of (1) and satisfies 2 | z and 2 |y, then
poty x = potyy. Wang [4] and Cao [1] proved that (1) has no solutions
(z,y, z) satisfying x —y = z or x — y = kz with 2 < k < 30 respectively. In
this note, using some properties of Pell’s equation, we prove the following
general result:

THEOREM. FEquation (1) has no solutions (x,y,z) satisfying 2|z, 2|y
and x —y = kz, where k € N with k > 2.

2. Preliminaries. Let D € N be nonsquare, and let (u,v) be a positive
integer solution of Pell’s equation

(2) w?—Dv?P=1, w,vecZ.

For any t € N, let u,v; € N satisfy

(3) ur +v:V'D = (u+vVD).
LEMMA 1. If 2|u, then 24t.

Proof. Since 2| Duv by (2), we see from (3) that if 2|¢, then 2| v; and
24us. The lemma is proved.

LEMMA 2. If ged(vy,vs) =1, then ged(r, s) = 1.
Proof. Let d = ged(r,s). By (3), we have v4|v, and vg|vs. Since
vg > 1ifd > 1, we get d =1 if ged(v,, vs) = 1. The lemma is proved.

1991 Mathematics Subject Classification: 11D25, 11D09.
Supported by the National Natural Science Foundation of China and the Guandong
Provincial Natural Science Foundation.

[133]



134 H. M. WU AND M. H. LE

LEMMA 3. If r > s, 24r, 2ts, r = s (mod 4) and ged(r,s) = 1, then
ged(U(rts) /25 Vir—s)/2) = U1

Proof. Let e = u +vvVD and € = u — vv/D. By (3), we get
et + & gt —¢t

5 Vg = /D )
Let d = ged(u(r4s)/2, V(r—s)/2). Then we have
(4)  er9)/2 = _g0+9)/2 (mod 2d), e"79)/2 =2=9/2 (mod 2d).
Since €€ = 1, we deduce from (4) that
(5) u, =0 (mod d), wus=0 (mod d).

Since ged(r,s) = 1, there exist a, 3 € Z such that ar — 3s = 1. Hence,
by (5), we get

Ut = t e N.

(6) gor=hs _(—1)atlgar=0s — ¢ — (~1)**FZ (mod 2d).
Notice that 2¢7 and 2¢s. We have a + 3 =1 (mod 2) and
(7) u; =0 (mod d),

by (6). On the other hand, we see from (3) that uy | (44 /2 and u1 |v—g) /2
if r = s (mod 4). This implies that d = 0 (mod u1). On combining this
with (7) we get d = u;. The lemma is proved.

3. Proof of Theorem. Let (z,y, z) be a solution of (1) which satisfies
2|z, 2|y and x —y = kz with k € N. Then

(8) 2> —1=Da? y?>—1= Db,
where a, b, D € N satisfy
9) 2> —1= Dab, gcd(a,b) = 1.

By (8), D is not a square, and (u,v) = (x,a) and (y, b) are positive integer
solutions of Pell’s equation (2).

Let ¢ = u; + v1v/D be the fundamental solution of (2), and let =
u; —v1vV/D. Since x > y, we see from (8) that

(10) t+aVD=¢", z—aVD= &,
(11) y+b/D=¢°, y—b/D= 2,

where r,s € N with r > s. Notice that 2|z, 2|y and gcd(a,b) = 1. By
Lemmas 1 and 2, we find that 21, 2{s and ged(r, s) = 1 respectively.

For any t € N, let et = us+vV/D. Then ug, vy € N satisfy g = u—vVD
and u? — Dv? = 1. Let m = (r+s)/2 and n = (r—s)/2. From (10) and (11),
we get

(12) T = Up = Uplp + DUpnUn, Y = Us = Uy — DUy,



A DIOPHANTINE EQUATION 135

(13) Dab = Dv,vs = %(ur+5 —Up_g) = u2, —u2 = Dv2, — Dv2
By (9) and (13), we obtain
(14) 2% = Dv2, — Dv2 + 1.
On the other hand, since x — y = kz, we deduce from (12) and (14) that
(15) 2Dvy v, = kz.
Hence, by (14) and (15),
(16) k*(Dv2, — Dv2 + 1) = 4D*v2 v2.
Since ged(D, Dv2, — Dv2 + 1) = 1, we see from (16) that k = Dk, and
(17) k3(Dv?, — Dv? 4+ 1) = 40202, ki €N,

Since 2|z and 217, we see from (10) that 2|u;. Let 2% | u;. If r # s
(mod 4), then 2|m, 2¢n and

2| DvZ, — Dv? +1 = Dv?, —u? +2.

This implies that (17) is impossible in this case. So we have r = s (mod 4).
Then 2{m, 2|n and

(18) 22* || Dv2, — Dv2 + 1 = u2, — Dv2.
Since 2 |n and 2%T1 | v, we see from (17) and (18) that k; = 2ks and
(19) k3(Dv2, — Dv2 4+ 1) = v2v2, ko €N.

Recall that 217, 2ts, ged(r,s) = 1 and 2|n. By Lemma 3, we have
ged (U, vn) = ug. Since DvZ — Dv2 +1 = u2, — Dv2, we see from (19) that
k?g = k‘g(?}n/ul) and

(20) k3(DvZ, — Dv:4+1) =v2u3, kseN.
Further, by (20), we get
(21) k3 = vmiks, DvZ — Dv? +1=0v2,u?, kyeN,

where v,,1, Um2 € N with v, 10m2 = V. Since vp,2 |V, we see from (21)
that v2,, | Dv2 — 1. So we have

(22) Dv2 —1=u2—-2=1n2, 1N
Since 2|n and 2{u2, by (22), we get | = lv2, = u2 —2 =7 (mod 8). It

2 _
implies that [ > 7. Hence, we obtain

n

23 <
( ) Um2 — 7

From (21) and (23), we get

2 2
(24) D2, = (D2 — 1) + 0203 < (Dv2 — 1) (1 " “7) < Dv,z(l " “1).
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Since €€ = 1, by (24), we deduce that

u+1l<u+nvD=e<ef =" <" —

en —g"
gm —gm ) u? 1/2
—M—vm<<1+71> <'LL1+1,
n
a contradiction. The theorem is proved.
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