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A NOTE ON THE DIOPHANTINE
EQUATION (x2 − 1)(y2 − 1) = (z2 − 1)2

BY

HUAMING WU AND MAOHUA LE (ZHANJIANG)

1. Introduction. Let Z, N be the sets of integers and positive integers
respectively. In this note we deal with the solutions (x, y, z) of the equation

(1) (x2 − 1)(y2 − 1) = (z2 − 1)2, x, y, z ∈ N, x > z > y > 1.

Schinzel and Sierpiński [3] found all solutions of (1) with x−y = 2z. Grelak
[2] proved that if (x, y, z) is a solution of (1) and satisfies 2 |x and 2 | y, then
pot2 x = pot2 y. Wang [4] and Cao [1] proved that (1) has no solutions
(x, y, z) satisfying x− y = z or x− y = kz with 2 < k ≤ 30 respectively. In
this note, using some properties of Pell’s equation, we prove the following
general result:

Theorem. Equation (1) has no solutions (x, y, z) satisfying 2 |x, 2 | y
and x− y = kz, where k ∈ N with k > 2.

2. Preliminaries. Let D ∈ N be nonsquare, and let (u, v) be a positive
integer solution of Pell’s equation

(2) u2 −Dv2 = 1, u, v ∈ Z.

For any t ∈ N, let ut, vt ∈ N satisfy

(3) ut + vt

√
D = (u + v

√
D)t.

Lemma 1. If 2 |ut, then 2 - t.

P r o o f. Since 2 |Duv by (2), we see from (3) that if 2 | t, then 2 | vt and
2 - ut. The lemma is proved.

Lemma 2. If gcd(vr, vs) = 1, then gcd(r, s) = 1.

P r o o f. Let d = gcd(r, s). By (3), we have vd | vr and vd | vs. Since
vd > 1 if d > 1, we get d = 1 if gcd(vr, vs) = 1. The lemma is proved.
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Lemma 3. If r > s, 2 - r, 2 - s, r ≡ s (mod 4) and gcd(r, s) = 1, then
gcd(u(r+s)/2, v(r−s)/2) = u1.

P r o o f. Let ε = u + v
√

D and ε = u− v
√

D. By (3), we get

ut =
εt + εt

2
, vt =

εt − εt

2
√

D
, t ∈ N.

Let d = gcd(u(r+s)/2, v(r−s)/2). Then we have

(4) ε(r+s)/2 ≡ −ε(r+s)/2 (mod 2d), ε(r−s)/2 ≡ ε(r−s)/2 (mod 2d).

Since εε = 1, we deduce from (4) that

(5) ur ≡ 0 (mod d), us ≡ 0 (mod d).

Since gcd(r, s) = 1, there exist α, β ∈ Z such that αr − βs = 1. Hence,
by (5), we get

(6) εαr−βs − (−1)α+βεαr−βs = ε− (−1)α+βε (mod 2d).

Notice that 2 - r and 2 - s. We have α + β ≡ 1 (mod 2) and

(7) u1 ≡ 0 (mod d),

by (6). On the other hand, we see from (3) that u1 |u(r+s)/2 and u1 | v(r−s)/2

if r ≡ s (mod 4). This implies that d ≡ 0 (mod u1). On combining this
with (7) we get d = u1. The lemma is proved.

3. Proof of Theorem. Let (x, y, z) be a solution of (1) which satisfies
2 |x, 2 | y and x− y = kz with k ∈ N. Then

(8) x2 − 1 = Da2, y2 − 1 = Db2,

where a, b, D ∈ N satisfy

(9) z2 − 1 = Dab, gcd(a, b) = 1.

By (8), D is not a square, and (u, v) = (x, a) and (y, b) are positive integer
solutions of Pell’s equation (2).

Let ε = u1 + v1

√
D be the fundamental solution of (2), and let ε =

u1 − v1

√
D. Since x > y, we see from (8) that

x + a
√

D = εr, x− a
√

D = εr,(10)

y + b
√

D = εs, y − b
√

D = εs,(11)

where r, s ∈ N with r > s. Notice that 2 |x, 2 | y and gcd(a, b) = 1. By
Lemmas 1 and 2, we find that 2 - r, 2 - s and gcd(r, s) = 1 respectively.

For any t ∈ N, let εt = ut+vt

√
D. Then ut, vt ∈ N satisfy εt = ut−vt

√
D

and u2
t −Dv2

t = 1. Let m = (r+s)/2 and n = (r−s)/2. From (10) and (11),
we get

(12) x = ur = umun + Dvmvn, y = us = umun −Dvmvn,
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(13) Dab = Dvrvs = 1
2 (ur+s − ur−s) = u2

m − u2
n = Dv2

m −Dv2
n.

By (9) and (13), we obtain

(14) z2 = Dv2
m −Dv2

n + 1.

On the other hand, since x− y = kz, we deduce from (12) and (14) that

(15) 2Dvmvn = kz.

Hence, by (14) and (15),

(16) k2(Dv2
m −Dv2

n + 1) = 4D2v2
mv2

n.

Since gcd(D,Dv2
m −Dv2

n + 1) = 1, we see from (16) that k = Dk1, and

(17) k2
1(Dv2

m −Dv2
n + 1) = 4v2

mv2
n, k1 ∈ N.

Since 2 |x and 2 - r, we see from (10) that 2 |u1. Let 2α ‖u1. If r 6≡ s
(mod 4), then 2 |m, 2 - n and

2 ‖Dv2
m −Dv2

n + 1 = Dv2
m − u2

n + 2.

This implies that (17) is impossible in this case. So we have r ≡ s (mod 4).
Then 2 - m, 2 |n and

(18) 22α ‖Dv2
m −Dv2

n + 1 = u2
m −Dv2

n.

Since 2 |n and 2α+1 | vn, we see from (17) and (18) that k1 = 2k2 and

(19) k2
2(Dv2

m −Dv2
n + 1) = v2

mv2
n, k2 ∈ N.

Recall that 2 - r, 2 - s, gcd(r, s) = 1 and 2 |n. By Lemma 3, we have
gcd(um, vn) = u1. Since Dv2

m−Dv2
n +1 = u2

m−Dv2
n, we see from (19) that

k2 = k3(vn/u1) and

(20) k2
3(Dv2

m −Dv2
n + 1) = v2

mu2
1, k3 ∈ N.

Further, by (20), we get

(21) k3 = vm1k4, Dv2
m −Dv2

n + 1 = v2
m2u

2
1, k4 ∈ N,

where vm1, vm2 ∈ N with vm1vm2 = vm. Since vm2 | vm, we see from (21)
that v2

m2 |Dv2
n − 1. So we have

(22) Dv2
n − 1 = u2

n − 2 = lv2
m2, l ∈ N.

Since 2 |n and 2 - u2
n, by (22), we get l ≡ lv2

m2 = u2
n − 2 ≡ 7 (mod 8). It

implies that l ≥ 7. Hence, we obtain

(23) v2
m2 ≤

Dv2
n − 1
7

.

From (21) and (23), we get

(24) Dv2
m = (Dv2

n − 1) + v2
m2u

2
1 ≤ (Dv2

n − 1)
(

1 +
u2

1

7

)
< Dv2

n

(
1 +

u2
1

7

)
.



136 H. M. WU AND M. H. LE

Since εε = 1, by (24), we deduce that

u1 + 1 < u1 + v1

√
D = ε ≤ εs = εm−n < εm−n − εm−2n − ε−m

εn − εn

=
εm − εm

εn − εn =
vm

vn
<

(
1 +

u2
1

7

)1/2

< u1 + 1,

a contradiction. The theorem is proved.
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