COLLOQUIUM MATHEMATICUM

VOL. 71

GENERALIZED PROJECTIONS OF BOREL AND ANALYTIC SETS

BY

MAREK BALCERZAK (ŁÓDŹ)

For a σ -ideal \mathcal{I} of sets in a Polish space X and for $A \subseteq X^2$, we consider the generalized projection $\Phi(A)$ of A given by $\Phi(A) = \{x \in X : A_x \notin \mathcal{I}\}$, where $A_x = \{y \in X : \langle x, y \rangle \in A\}$. We study the behaviour of Φ with respect to Borel and analytic sets in the case when \mathcal{I} is a Σ_2^0 -supported σ -ideal. In particular, we give an alternative proof of the recent result of Kechris showing that $\Phi[\Sigma_1^1(X^2)] = \Sigma_1^1(X)$ for a wide class of Σ_2^0 -supported σ -ideals.

1. Introduction. Throughout the paper, X is a fixed uncountable Polish space. We denote by $\mathcal{P}(X)$ the power set of X and by $\mathcal{B}(X)$ the family of all Borel sets in X. Let $\Sigma^0_{\alpha}(X)$ and $\Pi^0_{\alpha}(X)$ ($0 < \alpha < \omega_1$) stand for subclasses of $\mathcal{B}(X)$ defined as in [Mo, 1B, 1F]. The families of all analytic sets and of all coanalytic sets in X will be written as $\Sigma^1_1(X)$ and $\Pi^1_1(X)$. Denote by 2^{ω} the Cantor space and by ω^{ω} the Baire space.

We consider proper σ -ideals of subsets of X, containing all singletons. A σ -ideal \mathcal{I} is called Σ_2^0 -supported if each set $A \in \mathcal{I}$ is contained in a set from $\mathcal{I} \cap \Sigma_2^0(X)$. A closed set $F \subseteq X$ is called \mathcal{I} -perfect if, for each open set $U \subseteq X$, the condition $U \cap F \neq \emptyset$ implies $\operatorname{cl}(U \cap F) \notin \mathcal{I}$ (where $\operatorname{cl}(E)$ denotes the closure of E). The family of all \mathcal{I} -perfect sets will be written as $\mathcal{M}_{\mathcal{I}}$. We say that \mathcal{I} satisfies the countable chain condition (in short ccc) if each disjoint subfamily of $\mathcal{B}(X) \setminus \mathcal{I}$ is countable. Following [KS], for a family $\mathcal{F} \subseteq \mathcal{P}(X)$, we define

 $MGR(\mathcal{F}) = \{ E \subseteq X : (\forall A \in \mathcal{F}) (E \cap A \text{ is meager in } A) \}.$

Let us quote two latest results on Σ_2^0 -supported σ -ideals.

THEOREM 1.1 [KS, Th. 2]. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be a Σ_2^0 -supported σ -ideal. Then precisely one of the following possibilities holds:

(i) $\mathcal{I} = \mathrm{MGR}(\mathcal{F})$ for a countable family \mathcal{F} of closed subsets of X,

[47]

¹⁹⁹¹ Mathematics Subject Classification: 54H05, 04A05, 54E45.

Key words and phrases: analytic set, $\sigma\text{-ideal},$ Effros Borel structure, meager set.

(ii) there is a homeomorphic embedding $h : 2^{\omega} \times \omega^{\omega} \to X$ such that $h[\{x\} \times \omega^{\omega}] \notin \mathcal{I}$ for each $x \in 2^{\omega}$.

Observe that (i) implies that \mathcal{I} satisfies ccc, and (ii) implies that it does not. Thus (i) yields a characterization of Σ_2^0 -supported σ -ideals satisfying ccc, and (ii) yields the characterization of Σ_2^0 -supported σ -ideals without ccc.

THEOREM 1.2 [So]. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is a Σ_2^0 -supported σ -ideal then, for each $A \in \Sigma_1^1(X)$, either $A \in \mathcal{I}$ or there is an \mathcal{I} -perfect set $F \subseteq X$ such that $A \cap F$ is comeager in F.

Theorem 1.2 is an equivalent version of the original formulation (cf. [So, Th. 1; Remark (2), p. 1024]) and it generalizes the result of Petruska [P] dealing with the σ -ideal of sets that can be covered by F_{σ} Lebesgue null sets in [0, 1].

For a σ -ideal $\mathcal{I} \subseteq \mathcal{P}(X)$ we consider the generalized projection $\Phi_{\mathcal{I}} : \mathcal{P}(X^2) \to \mathcal{P}(X)$ (denoted further by Φ) given by

$$\Phi(E) = \{ x \in X : E_x \notin \mathcal{I} \}, \quad E \in \mathcal{P}(X^2),$$

where $E_x = \{y \in X : \langle x, y \rangle \in E\}$ for $x \in X$. Note that if $\mathcal{I} = \{\emptyset\}$ then $\Phi(E)$ is exactly the projection of E onto the first factor. If \mathcal{I} is one of the following σ -ideals:

- of all meager sets in X,
- of all Lebesgue null sets in \mathbb{R} ,
- of all countable sets in X,

then

(*)
$$\Phi[\Sigma_1^1(X^2)] = \Sigma_1^1(X).$$

These are classical results; compare [Ke, 29.E]. Note that the inclusion " \supseteq " in (*) is obvious since for each $A \in \Sigma_1^1(X)$ we have $A \times X \in \Sigma_1^1(X^2)$ and $A = \Phi(A \times X)$. Following [Sh], if (*) holds, \mathcal{I} is called Σ_1^1 -definable. For the first two σ -ideals listed above, we additionally have

(**)
$$\Phi[\Sigma^0_{\alpha}(X^2)] = \Sigma^0_{\alpha}(X), \quad 0 < \alpha < \omega_1$$

(cf. e.g. [G, Th. 2.2]). For Mycielski σ -ideals [My] in $X = 2^{\omega}$, the behaviour of Φ with respect to Borel and projective subclasses was studied in [BR]; then (*) does not hold since $\Phi[\Sigma_1^1(X^2)] = \Pi_2^1(X)$. Further results for generalized Mycielski σ -ideals are contained in [R]. For special product σ -ideals, condition (*) was proved in [Sh]. We are going to verify conditions (*) and (**) for Σ_2^0 -supported σ -ideals.

2. An alternative proof of a theorem of Kechris. We denote by CL(X) the space of all closed subsets of X. It is known [Ke, Th. 12.6] that

there exists a Polish topology τ on CL(X) such that the σ -algebra of Borel sets with respect to τ is identical with the σ -algebra generated by the sets

$$W(G) = \{ F \in CL(X) : F \cap G \neq \emptyset \},\$$

where G varies over open subsets of X. That is the *Effros Borel structure* of CL(X). We also consider the sets

$$V(G) = \{F \in \mathrm{CL}(X) : F \subseteq G\}$$

for open sets $G \subseteq X$. Recall that, if X is compact, the topology generated by the subbase consisting of the sets V(G), W(G) (where G varies over open subsets of X) is the Vietoris topology on the hyperspace $\mathcal{K}(X)$ of compact subsets of X. In that case $\mathcal{K}(X)$ is compact (and metrizable by the Hausdorff distance), and the Effros Borel structure of CL(X) is identical with $\mathcal{B}(\mathcal{K}(X))$ (cf. [Ke, 12.11]). Consequently, for a compact X, we may assume that the above-mentioned topology τ is equal to the Vietoris topology (then we will treat the topological spaces CL(X) and $\mathcal{K}(X)$ as identical). Note that, for a general Polish space X, sets V(G) are coanalytic in τ and they need not be Borel (cf. [Ke, 27.7]).

From a recent result of Kechris [Ke, Th. 35.38] one immediately obtains the following theorem.

THEOREM 2.1. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is a Σ_2^0 -supported σ -ideal such that $\mathcal{I} \cap \operatorname{CL}(X) \in \Pi_1^1(\operatorname{CL}(X))$ then $\Phi[\Sigma_1^1(X^2)] = \Sigma_1^1(X)$.

In this section we give an alternative proof of Theorem 2.1. Our argument uses Theorem 1.2 and some descriptive set-theoretic facts involving CL(X) and meager sets which can be of independent interest. Our previous version of Theorem 2.1 working with $\mathcal{K}(X)$ had a similar proof. At the time we were not aware of the existence of its general version in [Ke]. We would like to thank J. Pawlikowski who has informed us about it.

From now on, fix countable bases $\langle U_n \rangle_{n \in \omega}$ and $\langle V_n \rangle_{n \in \omega}$ of nonempty open sets in X and ω^{ω} , respectively. Fix also a bijection $r : \omega \times \omega \to \omega$.

PROPOSITION 2.1. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is a σ -ideal such that $\mathcal{I} \cap \mathrm{CL}(X) \in \Pi^1_1(\mathrm{CL}(X))$ then the set $\mathcal{M}_{\mathcal{I}}$ of all \mathcal{I} -perfect sets in X belongs to $\Sigma^1_1(\mathrm{CL}(X))$.

Proof. For a fixed open set $U \subseteq X$, consider the mapping g_U : $\operatorname{CL}(X) \to \operatorname{CL}(X)$ given by $g_U(F) = \operatorname{cl}(U \cap F)$ for $F \in \operatorname{CL}(X)$. Thus, for an open set $G \subseteq X$, we have

$$g_U^{-1}[\boldsymbol{W}(G)] = \boldsymbol{W}[U \cap G].$$

Hence g_U is Borel measurable. If $F \in CL(X)$ then

$$F \in \mathcal{M}_{\mathcal{I}} \Leftrightarrow (\forall n \in \omega) (U_n \cap F = \emptyset \lor g_{U_n}(F) \notin \mathcal{I} \cap \mathrm{CL}(X))$$

Now, the assertion follows from the assumption and the Borelness of g_{U_n} .

R e m a r k. In some cases the conclusion of Proposition 2.1 is not sharp. For instance, if X is metric and compact, and \mathcal{I} consists of all countable sets in X then $\mathcal{I} \cap \mathcal{K}(X)$ is in $\Pi_1^1(\mathcal{K}(X)) \setminus \Sigma_1^1(\mathcal{K}(X))$ [Ku, §42,III]. But $\mathcal{M}_{\mathcal{I}}$ consists of all perfect sets in X and it forms a G_{δ} set in $\mathcal{K}(X)$ [Ku, §42,II, Th. 3].

The next two propositions are modified versions of classical results. For a Polish space Z and $A \subseteq Z \times X$, we define

$$A^* = \{ \langle z, F \rangle \in Z \times \operatorname{CL}(X) : A_z \cap F \text{ is nonmeager in } F \}, A^{**} = \{ \langle z, F \rangle \in Z \times \operatorname{CL}(X) : A_z \cap F \text{ is comeager in } F \}.$$

PROPOSITION 2.2. If $A \in \mathcal{B}(Z \times X)$ then $A^*, A^{**} \in \mathcal{B}(Z \times CL(X))$.

Proof. First let $A \in \Sigma_1^0(Z \times X)$. Then for $\langle z, F \rangle \in Z \times CL(X)$ we have

$$\langle z, F \rangle \in A^* \Leftrightarrow (\exists m, n \in \omega) (F \cap U_m \neq \emptyset \& z \in U_n \& U_n \times U_m \subseteq A).$$

Hence $A^* \in \mathcal{B}(Z \times \mathrm{CL}(X))$. Assume that $1 < \alpha < \omega_1$ and that the assertion holds for sets from $\bigcup_{\beta < \alpha} \Sigma^0_\beta(Z \times X)$. For instance, let α be a successor. If $A \in \Sigma^0_\alpha(Z \times X), A = \bigcup_{n \in \omega} A_n$ and $A_n \in \Pi^0_{\alpha-1}(Z \times X)$ for $n \in \omega$, then

$$A^* = \bigcup_{n \in \omega} A_n^*$$

=
$$\bigcup_{n,k \in \omega} \{ \langle z, F \rangle \in Z \times \operatorname{CL}(X) : U_k \cap F \neq \emptyset$$

&
$$U_k \cap F \setminus (A_n)_z \text{ is meager in } F \}$$

$$= \bigcup_{n,k\in\omega} ((Z \times \boldsymbol{W}(U_k)) \setminus ((Z \times U_k) \setminus A_n)^*).$$

Hence $A^* \in \mathcal{B}(Z \times CL(X))$, by the induction hypothesis. If α is a limit number, the proof is similar.

The assertion for A^{**} follows from $A^{**} = (Z \times \operatorname{CL}(X)) \setminus ((Z \times X) \setminus A)^*$. **PROPOSITION 2.3.** If $A \in \Sigma_1^1(X^2)$ then $A^*, A^{**} \in \Sigma_1^1(X \times \operatorname{CL}(X))$.

Proof (cf. [Mo, 4F.19]). First we show the assertion for A^{**} . Assume that A is the projection of a closed set $B \subseteq X^2 \times \omega^{\omega}$ along ω^{ω} . Define H as the set of all $\langle \varepsilon, x, F \rangle \in \omega^{\omega} \times X \times CL(X)$ satisfying the formula

 $(\forall k, n \in \omega)(((\varepsilon \circ r)(k, n) = 1 \& F \cap U_k \neq \emptyset) \Rightarrow B_x \cap ((F \cap U_k) \times V_n) \neq \emptyset).$

Let D consist of all $\langle \varepsilon,y\rangle\in\omega^\omega\times X$ satisfying the formula

 $(\exists k, n \in \omega)((\varepsilon \circ r)(k, n) = 1 \& y \in U_k) \&$ $(\forall k, n, p \in \omega)(((\varepsilon \circ r)(k, n) = 1 \& y \in U_k))$ $\Rightarrow (\exists k', n' \in \omega)((\varepsilon \circ r)(k', n') = 1 \& y \in U_{k'})$ $\& U_{k'} \subseteq U_k \& V_{n'} \subseteq V_n \& \operatorname{diam}(U_{k'}) < 2^{-p} \& \operatorname{diam}(V_{n'}) < 2^{-p})).$ (Here $\operatorname{diam}(E)$ denotes the diameter of a set E.)

Now, we will prove that for $\langle x, F \rangle \in X \times CL(X)$ we have

$$(\triangle) \qquad \langle x,F\rangle \in A^{**} \Leftrightarrow (\exists \varepsilon \in \omega^{\omega})(\langle \varepsilon,x,F\rangle \in H \& \langle \varepsilon,F\rangle \in D^{**}).$$

To show " \Rightarrow " in (\triangle), consider $\langle x, F \rangle \in A^{**}$. Hence $A_x \cap F$ is comeager in F. By the Jankov-von Neumann selection theorem [Mo, 4E.9] we can find a function $f : F \to \omega^{\omega}$ with the Baire property which uniformizes $B_x \cap (F \times \omega^{\omega})$. Choose a G_{δ} set $C \subseteq F$ comeager in F and such that $f|_C$ is continuous. Pick any $\varepsilon \in \omega^{\omega}$ such that

$$(\forall k, n \in \omega)((\varepsilon \circ r)(k, n) = 1 \Leftrightarrow (U_k \cap C \neq \emptyset \& f[U_k \cap C] \subseteq V_n))$$

Using the fact that $A_x \cap F$ is comeager in F, we see that $\langle \varepsilon, x, F \rangle \in H$. Additionally, $C \subseteq D_{\varepsilon} \cap F$ by the continuity of $f|_C$. Since C is comeager in F, therefore $D_{\varepsilon} \cap F$ is comeager in F. Hence $\langle \varepsilon, F \rangle \in D^{**}$. To show " \Leftarrow " in (Δ) , assume that $\langle \varepsilon, x, F \rangle \in H$ and $\langle \varepsilon, F \rangle \in D^{**}$ for some $\varepsilon \in \omega^{\omega}$. Let $y \in D_{\varepsilon} \cap F$. Thus we can define inductively subsequences $\langle U_{k_i} \rangle_{i \in \omega}$ and $\langle V_{n_i} \rangle_{i \in \omega}$ such that

$$y\in F\cap U_{k_i},\ U_{k_{i+1}}\subseteq U_{k_i},\ V_{n_{i+1}}\subseteq V_{n_i}$$

and

diam
$$(U_{k_i}) < 2^{-i}$$
, diam $(V_{n_i}) < 2^{-i}$, $B_x \cap ((F \cap U_{k_i}) \times V_{n_i}) \neq \emptyset$

for each $i \in \omega$. Hence there is a Cauchy sequence $\langle y_i, z_i \rangle \in B_x \cap (F \times \omega^{\omega})$ and it tends to $\langle y, z \rangle$ for some $z \in \omega^{\omega}$. Since B_x and F are closed, we have $\langle y, z \rangle \in B_x \cap (F \times \omega^{\omega})$ and thus $y \in A_x \cap F$. We have shown that $D_{\varepsilon} \cap F \subseteq A_x \cap F$. Now, from $\langle \varepsilon, F \rangle \in D^{**}$ it follows that $\langle x, F \rangle \in A^{**}$.

Finally, observe that $H \in \Sigma_1^1(\omega^{\omega} \times X \times \operatorname{CL}(X))$ and $D \in \mathcal{B}(\omega^{\omega} \times X)$. Thus $D^{**} \in \mathcal{B}(\omega^{\omega} \times \operatorname{CL}(X))$ by Proposition 2.2, and (\triangle) yields the conclusion.

To show the assertion for A^* , notice that for $\langle x, F \rangle \in X \times CL(X)$ we have

$$\langle x, F \rangle \in A^* \Leftrightarrow (\exists n \in \omega) (U_n \cap F \neq \emptyset \& \langle x, g_{U_n}(F) \rangle \in A^{**})$$

where $g_{U_n}(F) = \operatorname{cl}(U_n \cap F)$. Since g_{U_n} is Borel measurable (compare the proof of Proposition 2.1), the proof is finished.

Now, we are ready to prove Theorem 2.1. By Theorem 1.2, for any $A \in \Sigma_1^1(X^2)$ and $x \in X$, we have

$$A_x \notin \mathcal{I} \Leftrightarrow (\exists F \in \mathrm{CL}(X)) (F \in \mathcal{M}_\mathcal{I} \& \langle x, F \rangle \in A^{**}).$$

By Propositions 2.1 and 2.3, the formula $F \in \mathcal{M}_{\mathcal{I}}$ & $\langle x, F \rangle \in A^{**}$ defines a set in $\Sigma_1^1(X \times CL(X))$. Thus $\Phi(A) \in \Sigma_1^1(X)$.

Remarks. (a) In the case when X is metric and compact, one can assume in Theorem 2.1 that $\mathcal{I} \cap \mathcal{K}(X) \in \Sigma_1^1(\mathcal{K}(X)) \cup \Pi_1^1(\mathcal{K}(X))$ since, by [KLW, Th. 11], if $\mathcal{I} \cap \mathcal{K}(X) \in \Sigma_1^1(\mathcal{K}(X))$ then $\mathcal{I} \cap \mathcal{K}(X) \in \Pi_2^0(\mathcal{K}(X))$. Note that the collection of Π_1^1 σ -ideals of compact sets is quite wide (cf. [Ke, 33.C]).

(b) Observe that there are Σ_1^1 -definable σ -ideals which need not be Σ_2^0 supported. For instance, the σ -ideal of Lebesgue null sets in \mathbb{R} is not Σ_2^0 supported but it satisfies the statement of Theorem 2.1. Nevertheless, the assumption that \mathcal{I} is Σ_2^0 -supported cannot be omitted, which follows from [BR, Th.3.1(b)], where $\Phi[\Sigma_1^1(X^2)] = \Pi_2^1(X)$ and $\mathcal{I} \cap \mathcal{K}(X) \in \Pi_2^0(\mathcal{K}(X))$ [BR, Corollary 2.2].

3. Further results

THEOREM 3.1. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be a Σ_2^0 -supported σ -ideal.

(a) If \mathcal{I} satisfies ccc then

$$\Phi[\Sigma^0_{\alpha}(X^2)] = \Sigma^0_{\alpha}(X) \quad for \ \alpha < \omega_1 \quad and \quad \Phi[\Sigma^1_1(X^2)] = \Sigma^1_1(X).$$

- (b) If \mathcal{I} does not satisfy ccc then $\Sigma_1^1(X) \subseteq \Phi[\Pi_3^0(X^2)]$.
- (c) If $\mathcal{I} \cap \operatorname{CL}(X) \in \Pi_1^1(\operatorname{CL}(X))$ and \mathcal{I} does not satisfy ccc then $\Phi[\Pi_3^0(X^2)] = \Phi[\Sigma_1^1(X^2)] = \Sigma_1^1(X).$

Proof. (a) Since \mathcal{I} satisfies ccc, condition (i) of Theorem 1.1 holds. Let the \mathcal{F} appearing there consist of closed sets F_n , $n \in \omega$. For $A \subseteq F_n \times X$ put

$$\Phi_n(A) = \{ x \in F_n : A_x \notin \mathrm{MGR}(F_n) \}.$$

Since

$$\Phi(E) = \bigcup_{n \in \omega} \Phi_n(E \cap (F_n \times X)) \quad \text{for } E \subseteq X^2,$$

the assertion follows from the analogous properties of the operators Φ_n .

(b) Since \mathcal{I} does not satisfy ccc, condition (ii) of Theorem 1.1 holds. If $h : 2^{\omega} \times \omega^{\omega} \to X$ is the embedding appearing in that condition, the set $B = h[2^{\omega} \times \omega^{\omega}]$ is of type G_{δ} in X [Ku, §35,III]. We can extend the continuous function $\operatorname{pr}_1 \circ h^{-1} : B \to 2^{\omega}$ to a Baire 1 function $f : X \to 2^{\omega}$ [Ku, §35,VI]. (Here $\operatorname{pr}_1 : 2^{\omega} \times \omega^{\omega} \to 2^{\omega}$ stands for the projection on the first factor.) Then

$$f^{-1}[\{t\}] \supseteq h[\mathrm{pr}_1^{-1}[\{t\}]] = h[\{t\} \times \omega^{\omega}] \not\in \mathcal{I}$$

for each $t \in 2^{\omega}$. Let $A \in \Sigma_1^1(X)$. Pick $D \in \Pi_2^0(X \times 2^{\omega})$ so that A is the projection of D along 2^{ω} . Put

$$E = \{ \langle x, y \rangle \in X^2 : \langle x, f(y) \rangle \in D \}$$

Then $E \in \Pi_3^0(X^2)$ and $A = \Phi(E)$. (The final part of that argument is derived from [B, Proposition 2.4].)

Assertion (c) is a consequence of (b) and Theorem 2.1. \blacksquare

Let us show one simple application.

COROLLARY 3.1. If \mathcal{I} is the σ -ideal of all sets in $X = \mathbb{R}$ that can be covered by F_{σ} Lebesgue null sets then

$$\Phi[\Pi_3^0(X^2)] = \Phi[\Sigma_1^1(X^2)] = \Sigma_1^1(X).$$

Proof. The σ -ideal \mathcal{I} is Σ_2^0 -supported, not-ccc (cf. [B]), and $\mathcal{I} \cap CL(X) \in \Pi_1^1(CL(X))$ (cf. [Ke, p. 292]).

R e m a r k. We do not know whether Π_3^0 can be replaced by Π_2^0 in the above corollary. Obviously that is possible when $\mathcal{I} = \{\emptyset\}$ and also when \mathcal{I} consists of all countable sets in X (cf. [Ke, Example 29.21]).

Acknowledgements. I would like to thank Janusz Pawlikowski for his stimulating questions and comments, and Sławek Solecki who has helped me in completing the references.

REFERENCES

- [B] M. Balcerzak, Can ideals without ccc be interesting? Topology Appl. 55 (1994), 251–260.
- [BR] M. Balcerzak and A. Rosłanowski, On Mycielski ideals, Proc. Amer. Math. Soc. 110 (1990), 243–250.
- [G] M. Gavalec, Iterated products of ideals of Borel sets, Colloq. Math. 50 (1985), 39-52.
- [Ke] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994.
- $[\text{KLW}] \quad \text{A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263–288. }$
 - [KS] A. S. Kechris and S. Solecki, Approximation of analytic by Borel sets and definable chain conditions, Israel J. Math. 89 (1995), 343-356.
 - [Ku] K. Kuratowski, Topology, Vols. 1, 2, PWN and Academic Press, Warszawa and New York, 1966, 1968.
 - [Mo] Y. N. Moschovakis, *Descriptive Set Theory*, North-Holland, Amsterdam, 1980.
 - [My] J. Mycielski, Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71–76.
 - [P] Gy. Petruska, On Borel sets with small covers: a problem of M. Laczkovich, Real Anal. Exchange 18 (1992–93), 330–338.
 - [R] A. Rosłanowski, Mycielski ideals generated by uncountable systems, Colloq. Math. 66 (1994), 187–200.
 - [Sh] R. M. Shortt, Product sigma-ideals, Topology Appl. 23 (1986), 279-290.
 - [So] S. Solecki, Covering analytic sets by families of closed sets, J. Symbolic Logic 59 (1994), 1022–1031.

Institute of Mathematics Lódź Technical University al. Politechniki 11 90-924 Łódź, Poland E-mail: mbalce@krysia.uni.lodz.pl

Received 30 August 1995