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GENERALIZED PROJECTIONS OF BOREL AND ANALYTIC SETS

BY

MAREK B A L C E R Z A K ( LÓDŹ)

For a σ-ideal I of sets in a Polish space X and for A ⊆ X2, we consider
the generalized projection Φ(A) of A given by Φ(A) = {x ∈ X : Ax 6∈ I},
where Ax = {y ∈ X : 〈x, y〉 ∈ A}. We study the behaviour of Φ with
respect to Borel and analytic sets in the case when I is a Σ0

2 -supported
σ-ideal. In particular, we give an alternative proof of the recent result of
Kechris showing that Φ[Σ1

1(X2)] = Σ1
1(X) for a wide class of Σ0

2 -supported
σ-ideals.

1. Introduction. Throughout the paper, X is a fixed uncountable
Polish space. We denote by P(X) the power set of X and by B(X) the
family of all Borel sets in X. Let Σ0

α(X) and Π0
α(X) (0 < α < ω1) stand for

subclasses of B(X) defined as in [Mo, 1B, 1F]. The families of all analytic
sets and of all coanalytic sets in X will be written as Σ1

1(X) and Π1
1 (X).

Denote by 2ω the Cantor space and by ωω the Baire space.
We consider proper σ-ideals of subsets of X, containing all singletons.

A σ-ideal I is called Σ0
2 -supported if each set A ∈ I is contained in a set

from I ∩ Σ0
2(X). A closed set F ⊆ X is called I-perfect if, for each open

set U ⊆ X, the condition U ∩ F 6= ∅ implies cl(U ∩ F ) 6∈ I (where cl(E)
denotes the closure of E). The family of all I-perfect sets will be written
as MI . We say that I satisfies the countable chain condition (in short ccc)
if each disjoint subfamily of B(X) \ I is countable. Following [KS], for a
family F ⊆ P(X), we define

MGR(F) = {E ⊆ X : (∀A ∈ F)(E ∩A is meager in A)}.

Let us quote two latest results on Σ0
2 -supported σ-ideals.

Theorem 1.1 [KS, Th. 2]. Let I ⊆ P(X) be a Σ0
2 -supported σ-ideal.

Then precisely one of the following possibilities holds:

(i) I = MGR(F) for a countable family F of closed subsets of X,
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(ii) there is a homeomorphic embedding h : 2ω × ωω → X such that
h[{x} × ωω] 6∈ I for each x ∈ 2ω.

Observe that (i) implies that I satisfies ccc, and (ii) implies that it does
not. Thus (i) yields a characterization of Σ0

2 -supported σ-ideals satisfying
ccc, and (ii) yields the characterization of Σ0

2 -supported σ-ideals without
ccc.

Theorem 1.2 [So]. If I ⊆ P(X) is a Σ0
2 -supported σ-ideal then, for each

A ∈ Σ1
1(X), either A ∈ I or there is an I-perfect set F ⊆ X such that A∩F

is comeager in F .

Theorem 1.2 is an equivalent version of the original formulation (cf. [So,
Th. 1; Remark (2), p. 1024]) and it generalizes the result of Petruska [P]
dealing with the σ-ideal of sets that can be covered by Fσ Lebesgue null sets
in [0, 1].

For a σ-ideal I ⊆ P(X) we consider the generalized projection ΦI :
P(X2) → P(X) (denoted further by Φ) given by

Φ(E) = {x ∈ X : Ex 6∈ I}, E ∈ P(X2),

where Ex = {y ∈ X : 〈x, y〉 ∈ E} for x ∈ X. Note that if I = {∅} then
Φ(E) is exactly the projection of E onto the first factor. If I is one of the
following σ-ideals:

• of all meager sets in X,
• of all Lebesgue null sets in R,
• of all countable sets in X,

then

(∗) Φ[Σ1
1(X2)] = Σ1

1(X).

These are classical results; compare [Ke, 29.E]. Note that the inclusion “⊇”
in (∗) is obvious since for each A ∈ Σ1

1(X) we have A ×X ∈ Σ1
1(X2) and

A = Φ(A × X). Following [Sh], if (∗) holds, I is called Σ1
1 -definable. For

the first two σ-ideals listed above, we additionally have

(∗∗) Φ[Σ0
α(X2)] = Σ0

α(X), 0 < α < ω1

(cf. e.g. [G, Th. 2.2]). For Mycielski σ-ideals [My] in X = 2ω, the behaviour
of Φ with respect to Borel and projective subclasses was studied in [BR];
then (∗) does not hold since Φ[Σ1

1(X2)] = Π1
2 (X). Further results for gener-

alized Mycielski σ-ideals are contained in [R]. For special product σ-ideals,
condition (∗) was proved in [Sh]. We are going to verify conditions (∗) and
(∗∗) for Σ0

2 -supported σ-ideals.

2. An alternative proof of a theorem of Kechris. We denote by
CL(X) the space of all closed subsets of X. It is known [Ke, Th. 12.6] that
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there exists a Polish topology τ on CL(X) such that the σ-algebra of Borel
sets with respect to τ is identical with the σ-algebra generated by the sets

W (G) = {F ∈ CL(X) : F ∩G 6= ∅},
where G varies over open subsets of X. That is the Effros Borel structure
of CL(X). We also consider the sets

V (G) = {F ∈ CL(X) : F ⊆ G}
for open sets G ⊆ X. Recall that, if X is compact, the topology generated
by the subbase consisting of the sets V (G),W (G) (where G varies over open
subsets of X) is the Vietoris topology on the hyperspace K(X) of compact
subsets of X. In that caseK(X) is compact (and metrizable by the Hausdorff
distance), and the Effros Borel structure of CL(X) is identical with B(K(X))
(cf. [Ke, 12.11]). Consequently, for a compact X, we may assume that the
above-mentioned topology τ is equal to the Vietoris topology (then we will
treat the topological spaces CL(X) and K(X) as identical). Note that, for
a general Polish space X, sets V (G) are coanalytic in τ and they need not
be Borel (cf. [Ke, 27.7]).

From a recent result of Kechris [Ke, Th. 35.38] one immediately obtains
the following theorem.

Theorem 2.1. If I ⊆ P(X) is a Σ0
2 -supported σ-ideal such that I ∩

CL(X) ∈ Π1
1 (CL(X)) then Φ[Σ1

1(X2)] = Σ1
1(X).

In this section we give an alternative proof of Theorem 2.1. Our argu-
ment uses Theorem 1.2 and some descriptive set-theoretic facts involving
CL(X) and meager sets which can be of independent interest. Our previous
version of Theorem 2.1 working with K(X) had a similar proof. At the time
we were not aware of the existence of its general version in [Ke]. We would
like to thank J. Pawlikowski who has informed us about it.

From now on, fix countable bases 〈Un〉n∈ω and 〈Vn〉n∈ω of nonempty
open sets in X and ωω, respectively. Fix also a bijection r : ω × ω → ω.

Proposition 2.1. If I ⊆ P(X) is a σ-ideal such that I ∩ CL(X) ∈
Π1

1(CL(X)) then the set MI of all I-perfect sets in X belongs to Σ1
1(CL(X)).

P r o o f. For a fixed open set U ⊆ X, consider the mapping gU :
CL(X) → CL(X) given by gU (F ) = cl(U ∩ F ) for F ∈ CL(X). Thus,
for an open set G ⊆ X, we have

g−1
U [W (G)] =W [U ∩G].

Hence gU is Borel measurable. If F ∈ CL(X) then

F ∈MI ⇔ (∀n ∈ ω)(Un ∩ F = ∅ ∨ gUn(F ) 6∈ I ∩ CL(X)).

Now, the assertion follows from the assumption and the Borelness of gUn .
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R e m a r k. In some cases the conclusion of Proposition 2.1 is not sharp.
For instance, if X is metric and compact, and I consists of all countable
sets in X then I ∩K(X) is in Π1

1 (K(X)) \Σ1
1(K(X)) [Ku, §42,III]. But MI

consists of all perfect sets in X and it forms a Gδ set in K(X) [Ku, §42,II,
Th. 3].

The next two propositions are modified versions of classical results.
For a Polish space Z and A ⊆ Z ×X, we define

A∗ = {〈z, F 〉 ∈ Z × CL(X) : Az ∩ F is nonmeager in F},
A∗∗ = {〈z, F 〉 ∈ Z × CL(X) : Az ∩ F is comeager in F}.

Proposition 2.2. If A ∈ B(Z ×X) then A∗, A∗∗ ∈ B(Z × CL(X)).

P r o o f. First let A ∈ Σ0
1(Z×X). Then for 〈z, F 〉 ∈ Z×CL(X) we have

〈z, F 〉 ∈ A∗ ⇔ (∃m,n ∈ ω)(F ∩ Um 6= ∅ & z ∈ Un & Un × Um ⊆ A).

Hence A∗ ∈ B(Z×CL(X)). Assume that 1 < α < ω1 and that the assertion
holds for sets from

⋃
β<α Σ0

β(Z ×X). For instance, let α be a successor. If
A ∈ Σ0

α(Z ×X), A =
⋃

n∈ω An and An ∈ Π0
α−1(Z ×X) for n ∈ ω, then

A∗ =
⋃
n∈ω

A∗
n

=
⋃

n,k∈ω

{〈z, F 〉 ∈ Z × CL(X) : Uk ∩ F 6= ∅

& Uk ∩ F \ (An)z is meager in F}

=
⋃

n,k∈ω

((Z ×W (Uk)) \ ((Z × Uk) \An)∗).

Hence A∗ ∈ B(Z × CL(X)), by the induction hypothesis. If α is a limit
number, the proof is similar.

The assertion for A∗∗ follows from A∗∗ = (Z×CL(X))\((Z×X)\A)∗.

Proposition 2.3. If A ∈ Σ1
1(X2) then A∗, A∗∗ ∈ Σ1

1(X × CL(X)).

P r o o f (cf. [Mo, 4F.19]). First we show the assertion for A∗∗. Assume
that A is the projection of a closed set B ⊆ X2 × ωω along ωω. Define H
as the set of all 〈ε, x, F 〉 ∈ ωω ×X × CL(X) satisfying the formula

(∀k, n ∈ ω)(((ε ◦ r)(k, n) = 1 & F ∩ Uk 6= ∅) ⇒ Bx ∩ ((F ∩ Uk)× Vn) 6= ∅).
Let D consist of all 〈ε, y〉 ∈ ωω ×X satisfying the formula

(∃k, n ∈ ω)((ε ◦ r)(k, n) = 1 & y ∈ Uk) &
(∀k, n, p ∈ ω)(((ε ◦ r)(k, n) = 1 & y ∈ Uk)
⇒ (∃k′, n′ ∈ ω)((ε ◦ r)(k′, n′) = 1 & y ∈ Uk′

& Uk′ ⊆ Uk & Vn′ ⊆ Vn & diam(Uk′) < 2−p & diam(Vn′) < 2−p)).
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(Here diam(E) denotes the diameter of a set E.)
Now, we will prove that for 〈x, F 〉 ∈ X × CL(X) we have

(4) 〈x, F 〉 ∈ A∗∗ ⇔ (∃ε ∈ ωω)(〈ε, x, F 〉 ∈ H & 〈ε, F 〉 ∈ D∗∗).

To show “⇒” in (4), consider 〈x, F 〉 ∈ A∗∗. Hence Ax ∩ F is comeager
in F . By the Jankov–von Neumann selection theorem [Mo, 4E.9] we can
find a function f : F → ωω with the Baire property which uniformizes
Bx ∩ (F × ωω). Choose a Gδ set C ⊆ F comeager in F and such that f |C
is continuous. Pick any ε ∈ ωω such that

(∀k, n ∈ ω)((ε ◦ r)(k, n) = 1 ⇔ (Uk ∩ C 6= ∅ & f [Uk ∩ C] ⊆ Vn)).

Using the fact that Ax ∩ F is comeager in F , we see that 〈ε, x, F 〉 ∈ H.
Additionally, C ⊆ Dε ∩ F by the continuity of f |C . Since C is comeager
in F , therefore Dε ∩ F is comeager in F . Hence 〈ε, F 〉 ∈ D∗∗. To show
“⇐” in (4), assume that 〈ε, x, F 〉 ∈ H and 〈ε, F 〉 ∈ D∗∗ for some ε ∈ ωω.
Let y ∈ Dε ∩ F . Thus we can define inductively subsequences 〈Uki

〉i∈ω and
〈Vni〉i∈ω such that

y ∈ F ∩ Uki , Uki+1 ⊆ Uki , Vni+1 ⊆ Vni

and

diam(Uki) < 2−i, diam(Vni) < 2−i, Bx ∩ ((F ∩ Uki)× Vni) 6= ∅
for each i ∈ ω. Hence there is a Cauchy sequence 〈yi, zi〉 ∈ Bx ∩ (F × ωω)
and it tends to 〈y, z〉 for some z ∈ ωω. Since Bx and F are closed, we
have 〈y, z〉 ∈ Bx ∩ (F × ωω) and thus y ∈ Ax ∩ F . We have shown that
Dε ∩ F ⊆ Ax ∩ F . Now, from 〈ε, F 〉 ∈ D∗∗ it follows that 〈x, F 〉 ∈ A∗∗.

Finally, observe that H∈Σ1
1(ωω ×X×CL(X)) and D∈B(ωω×X). Thus

D∗∗ ∈ B(ωω × CL(X)) by Proposition 2.2, and (4) yields the conclusion.
To show the assertion for A∗, notice that for 〈x, F 〉 ∈ X × CL(X) we

have

〈x, F 〉 ∈ A∗ ⇔ (∃n ∈ ω)(Un ∩ F 6= ∅ & 〈x, gUn(F )〉 ∈ A∗∗),

where gUn(F ) = cl(Un ∩ F ). Since gUn is Borel measurable (compare the
proof of Proposition 2.1), the proof is finished.

Now, we are ready to prove Theorem 2.1. By Theorem 1.2, for any
A ∈ Σ1

1(X2) and x ∈ X, we have

Ax 6∈ I ⇔ (∃F ∈ CL(X))(F ∈MI & 〈x, F 〉 ∈ A∗∗).

By Propositions 2.1 and 2.3, the formula F ∈MI & 〈x, F 〉 ∈ A∗∗ defines a
set in Σ1

1(X × CL(X)). Thus Φ(A) ∈ Σ1
1(X).

R e m a r k s. (a) In the case when X is metric and compact, one can
assume in Theorem 2.1 that I ∩ K(X) ∈ Σ1

1(K(X)) ∪Π1
1 (K(X)) since, by

[KLW, Th. 11], if I ∩ K(X) ∈ Σ1
1(K(X)) then I ∩ K(X) ∈ Π0

2 (K(X)).
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Note that the collection of Π1
1 σ-ideals of compact sets is quite wide (cf.

[Ke, 33.C]).
(b) Observe that there are Σ1

1 -definable σ-ideals which need not be Σ0
2 -

supported. For instance, the σ-ideal of Lebesgue null sets in R is not Σ0
2 -

supported but it satisfies the statement of Theorem 2.1. Nevertheless, the
assumption that I is Σ0

2 -supported cannot be omitted, which follows from
[BR, Th.3.1(b)], where Φ[Σ1

1(X2)] = Π1
2 (X) and I ∩ K(X) ∈ Π0

2 (K(X))
[BR, Corollary 2.2].

3. Further results

Theorem 3.1. Let I ⊆ P(X) be a Σ0
2 -supported σ-ideal.

(a) If I satisfies ccc then

Φ[Σ0
α(X2)] = Σ0

α(X) for α < ω1 and Φ[Σ1
1(X2)] = Σ1

1(X).

(b) If I does not satisfy ccc then Σ1
1(X) ⊆ Φ[Π0

3 (X2)].
(c) If I ∩ CL(X) ∈ Π1

1 (CL(X)) and I does not satisfy ccc then

Φ[Π0
3 (X2)] = Φ[Σ1

1(X2)] = Σ1
1(X).

P r o o f. (a) Since I satisfies ccc, condition (i) of Theorem 1.1 holds. Let
the F appearing there consist of closed sets Fn, n ∈ ω. For A ⊆ Fn×X put

Φn(A) = {x ∈ Fn : Ax 6∈ MGR(Fn)}.
Since

Φ(E) =
⋃
n∈ω

Φn(E ∩ (Fn ×X)) for E ⊆ X2,

the assertion follows from the analogous properties of the operators Φn.
(b) Since I does not satisfy ccc, condition (ii) of Theorem 1.1 holds.

If h : 2ω × ωω → X is the embedding appearing in that condition, the
set B = h[2ω × ωω] is of type Gδ in X [Ku, §35,III]. We can extend the
continuous function pr1 ◦ h−1 : B → 2ω to a Baire 1 function f : X → 2ω

[Ku, §35,VI]. (Here pr1 : 2ω×ωω → 2ω stands for the projection on the first
factor.) Then

f−1[{t}] ⊇ h[pr−1
1 [{t}]] = h[{t} × ωω] 6∈ I

for each t ∈ 2ω. Let A ∈ Σ1
1(X). Pick D ∈ Π0

2 (X × 2ω) so that A is the
projection of D along 2ω. Put

E = {〈x, y〉 ∈ X2 : 〈x, f(y)〉 ∈ D}.
Then E ∈ Π0

3 (X2) and A = Φ(E). (The final part of that argument is
derived from [B, Proposition 2.4].)

Assertion (c) is a consequence of (b) and Theorem 2.1.

Let us show one simple application.
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Corollary 3.1. If I is the σ-ideal of all sets in X = R that can be
covered by Fσ Lebesgue null sets then

Φ[Π0
3 (X2)] = Φ[Σ1

1(X2)] = Σ1
1(X).

P r o o f. The σ-ideal I is Σ0
2 -supported, not-ccc (cf. [B]), and I ∩

CL(X) ∈ Π1
1 (CL(X)) (cf. [Ke, p. 292]).

R e m a r k. We do not know whether Π0
3 can be replaced by Π0

2 in the
above corollary. Obviously that is possible when I = {∅} and also when I
consists of all countable sets in X (cf. [Ke, Example 29.21]).
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