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AN EXTENSION OF AN INEQUALITY
DUE TO STEIN AND LEPINGLE

BY

FERENC WEISZ (BUDAPEST)

Hardy spaces consisting of adapted function sequences and generated
by the q-variation and by the conditional q-variation are considered. Their
dual spaces are characterized and an inequality due to Stein and Lepingle
is extended.

1. Introduction. It is known that the dual of the martingale Hardy
space HS2

1 generated by the quadratic variation is BMO−2 and that of the
Hardy space Hs2

1 generated by the conditional quadratic variation is BMO2

(see Garsia [4], Herz [5]). The first result is extended by Dellacherie and
Meyer [3] to the space hS2

1 containing adapted function sequences. The
inequality

(1)
∥∥∥( ∞∑

n=0

|EFn−1Xn|q
)1/q∥∥∥

p
≤ Cp

∥∥∥( ∞∑
n=0

|Xn|q
)1/q∥∥∥

p
(1 < p < ∞)

was proved by Stein [9] for q = 2 and by Asmar and Montgomery-Smith
[1] for 1 ≤ q ≤ ∞, where Xn (n ∈ N) are arbitrary measurable functions.
Using the latter duality result Lepingle [8] verified (1) for p = 1, q = 2 and
for adapted functions. The two-parameter analogue of Lepingle’s result can
be found in Weisz [10].

Lepingle [7] proved that the dual of the martingale Hardy space H
sq

1 is
BMOq′ and more recently the author [12] verified that the dual of H

Sq

1 is
BMO−q′ , where 1 ≤ q < ∞, 1/q + 1/q′ = 1 and sq (resp. Sq) denotes the
conditional q-variation (resp. the q-variation).

In this paper the Hardy spaces of adapted function sequences are em-
bedded isometrically in martingale Hardy spaces and so the dual of h

Sq
p

generated by the q-variation and, moreover, the dual of h
sq
p generated by

the conditional q-variation are characterized (1 ≤ p, q < ∞). Applying the
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duality result with respect to h
Sq

1 we extend inequality (1) to 1 = p ≤ q < ∞.
Moreover, if (Fn) is regular then (1) holds also for 0 < p < 1 ≤ q < ∞.

2. Preliminaries and notations. Let (Ω,A, P ) be a probability
space and let (Fn, n ∈ N) be a non-decreasing sequence of σ-algebras. For
simplicity, we suppose that

σ
( ∞⋃

n=0

Fn

)
:=

∞∨
n=0

Fn = A.

The expectation operator and the conditional expectation operator relative
to a σ-algebra C are denoted by E and EC , respectively. We briefly write Lp

for the Lp(Ω,A, P ) space with the norm (or quasinorm) ‖f‖p := (E|f |p)1/p

(0 < p ≤ ∞).
In this paper we consider sequences X = (Xn, n ∈ N) of integrable

and adapted (i.e. Xn is Fn-measurable for all n ∈ N) functions. We always
suppose that X0 = 0. The q-variation Sq(X) and the conditional q-variation
sq(X) (0 < q < ∞) of X are defined by

Sq(X) :=
( ∞∑

n=0

|Xn|q
)1/q

and sq(X) :=
( ∞∑

n=0

EFn−1 |Xn|q
)1/q

,

respectively, while for q = ∞ we let

S∞(X) := s∞(X) := sup
n∈N

|Xn|.

Let us introduce the Hardy spaces h
Sq
p and h

sq
p (0 < p, q ≤ ∞) consisting of

the sequences X = (Xn) of adapted functions for which

‖X‖
h

Sq
p

:= ‖Sq(X)‖p < ∞ and ‖X‖h
sq
p

:= ‖sq(X)‖p < ∞,

respectively. Note that h
Sq
p is a subspace of the well-known space Lp(lq)

that contains sequences ξ = (ξn, n ∈ N) of A-measurable functions and is
equipped with the norm

‖ξ‖Lp(lq) :=
[
E

( ∞∑
n=0

|ξn|q
)p/q]1/p

.

Now we introduce the corresponding bmo spaces. For 1 ≤ q < ∞, bmoq

and bmo−q consist of all sequences X = (Xn) of adapted functions for which

‖X‖bmoq
=

∥∥∥ sup
n∈N

(
EFn

∞∑
k=n+1

|Xk|q
)1/q∥∥∥

∞
< ∞

and

‖X‖bmo−q
=

∥∥∥ sup
n∈N

(
EFn

∞∑
k=n

|Xk|q
)1/q∥∥∥

∞
< ∞,

respectively. Furthermore, let bmo∞ = bmo−∞ = hS∞
∞ .
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Dellacherie and Meyer [3] showed that the dual of hS2
1 is bmo−2 . It will be

proved that the dual of h
Sq

1 is bmo−q′ and the one of h
sq

1 is bmoq′ (1 ≤ q < ∞,
1/q + 1/q′ = 1).

3. Duality results. We shall embed the spaces h
Sq
p and h

sq
p in Hardy

spaces of martingales, the duals of which are known. Let

Dk := σ(r0, . . . , rk−1) = σ{[l2−k, (l + 1)2−k) : 0 ≤ l < 2k}
be the dyadic σ-algebras (see Weisz [11]), where rk is the Rademacher func-
tion on [0, 1), i.e.

rk(x) :=
{

1 if x ∈ [2l/2k+1, (2l + 1)/2k+1) (0 ≤ l < 2k),
−1 if x ∈ [(2l + 1)/2k+1, (2l + 2)/r2k+1) (0 ≤ l < 2k).

Set
An := σ(Fn ×Dn) (n ∈ N).

Consider the probability space (Ω×[0, 1), σ(A×B), P×λ) and the stochastic
basis (An, n ∈ N), where B denotes the Borel measurable sets and λ is
Lebesgue measure.

We investigate the martingales relative to (An), i.e. the sequences f =
(dnf, n ∈ N) of adapted functions relative to (An) for which EAn−1dnf = 0
(n ∈ N). The q-variation and conditional q-variation (0 < q < ∞) of a
martingale f is given by

Sq(f) :=
( ∞∑

n=0

|dnf |q
)1/q

and sq(f) :=
( ∞∑

n=0

EAn−1 |dnf |q
)1/q

,

respectively, and for q = ∞ we let

S∞(f) := s∞(f) := sup
k∈N

|dkf |.

The martingale Hardy spaces H
Sq
p and H

sq
p (0 < p, q ≤ ∞) containing

martingales relative to (An) are defined with the help of the norms

‖f‖
H

Sq
p

:=
( \

Ω

1\

0

Sq(f)p dP dλ
)1/p

and ‖f‖H
sq
p

:=
( \

Ω

1\

0

sq(f)p dP dλ
)1/p

,

respectively. The corresponding dual spaces are equipped with the norms

‖f‖BMOq
=

∥∥∥ sup
n∈N

(
EAn

∞∑
k=n+1

|dkf |q
)1/q∥∥∥

∞

and

‖f‖BMO−q =
∥∥∥ sup

n∈N

(
EAn

∞∑
k=n

|dkf |q
)1/q∥∥∥

∞
.
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Set
BMO∞ = BMO−∞ = HS∞

∞ .

It is easy to see that the operator

(2) X 7→ fX := (Xnrn−1, n ∈ N)

maps h
Sq
p in H

Sq
p isometrically (0 < p ≤ ∞, 1 ≤ q ≤ ∞). Indeed, the

function dnfX := Xnrn−1 is An-measurable and integrable, of course. On
the other hand,

EAn−1(dnfX) = EFn−1(Xn)EDn−1(rn−1) = 0

because the Rademacher functions are independent. Since Sq(fX) = Sq(X),
our statement is proved. As EAn−1 |dnfX |q =EFn−1 |Xn|q, we have sq(fX)=
sq(X), and so (2) is isometric from h

sq
p to H

sq
p (0 < p ≤ ∞, 1 ≤ q ≤ ∞).

Similarly, we can show that (2) is an isometry from bmoq to BMOq and
from bmo−q to BMO−q (1 ≤ q ≤ ∞).

We can prove in the same way as Theorem 14 in Weisz [12] that the dual
of h

Sq
p is h

Sq′

p′ , where 1 < p, q < ∞ or 1 = q ≤ p < ∞ and 1/p + 1/p′ =
1/q + 1/q′ = 1. The following result, due to Dellacherie and Meyer [3] for
q = 2, extends this result to p = 1.

Theorem 1. The dual of h
Sq

1 is bmo−q′ whenever 1 ≤ q < ∞ and 1/q +
1/q′ = 1.

P r o o f. Since the proof is similar to that of Theorem 1 in Weisz [10],
we sketch it only. For Y ∈ bmo−q′ consider the functional

lY (X) := E
( ∞∑

n=0

XnYn

)
(X ∈ hSq

q ).

Notice that h
Sq
q is dense in h

Sq

1 . We verified in [12] that the dual of H
Sq

1

is BMO−q′ with the same assumption on q and q′ as in the theorem. Using
this we conclude that

|lY (X)| =
∣∣∣ \

Ω

1\

0

∞∑
n=0

dnfXdnfY dP dλ
∣∣∣

≤ C‖fX‖
H

Sq
1
‖fY ‖BMO−

q′
= C‖X‖

h
Sq
1
‖Y ‖bmo−

q′
,

which yields that lY is bounded on h
Sq

1 .
Conversely, if l is in the dual of h

Sq

1 then it is also in the dual of h
Sq
q .

Consequently, there exists Y ∈ h
Sq′

q′ such that

(3) l(X) = E
( ∞∑

n=0

XnYn

)
(X ∈ hSq

q ).
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On the other hand, l can be extended preserving its norm onto H
Sq

1 . There-
fore there exists g ∈ BMO−q′ such that

(4) l(X) = l(fX) =
\

Ω

1\

0

∞∑
n=0

Xnrn−1dng dP dλ (X ∈ hSq
q )

and

‖g‖BMO−
q′
≤ C‖l‖.

It follows from (3) and (4) that

Yn(ω) =
1\

0

rn−1(x)dng(ω, x) dλ(x).

Applying this we obtain

‖Y ‖bmo−
q′

=
∥∥∥ sup

n∈N

(
EFn

∞∑
k=n

|Yk|q
′
)1/q′∥∥∥

∞

≤
∥∥∥ sup

n∈N

(
EAn

∞∑
k=n

|dkg|q
′
)1/q′∥∥∥

∞
= ‖g‖BMO−

q′

and the theorem is proved.

The following theorem can be proved similarly.

Theorem 2. The dual of h
sq
p is h

sq′

p′ , where 1 < p ≤ q < ∞ or p ≥ q ≥ 2
and 1/p+1/p′ = 1/q+1/q′ = 1. Moreover , the dual of h

sq

1 is bmoq′ provided
that 1 ≤ q < ∞ and 1/q + 1/q′ = 1.

It is interesting to note that the duals of bmoq′ and bmo−q′ are not h
sq

1

and h
Sq

1 , respectively. However, a kind of special subspaces of bmoq′ and
bmo−q′ can be defined, having duals h

sq

1 and h
Sq

1 , respectively.
Let vmoq (resp. vmo−q ) contain all elements X ∈ bmoq (resp. X ∈

bmo−q ) for which

lim
n→∞

∥∥∥(
EFn

∞∑
k=n+1

|Xk|q
)1/q∥∥∥

∞
= 0

(
resp. lim

n→∞

∥∥∥(
EFn

∞∑
k=n

|Xk|q
)1/q∥∥∥

∞
= 0

)
.

With the method used in Weisz [12] one can show that if every σ-algebra
Fn is generated by finitely many atoms then the dual of vmoq′ is h

sq

1 and
the dual of vmo−q′ is h

Sq

1 whenever 1 < q′ < ∞ and 1/q + 1/q′ = 1.
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4. Inequalities. It follows from the convexity and concavity lemma
(see Garsia [4], pp. 113–114) that

(5)
∥∥∥( ∞∑

n=0

EFn−1 |Xn|q
)1/q∥∥∥

p
≤ Cp

∥∥∥( ∞∑
n=0

|Xn|q
)1/q∥∥∥

p
(q ≤ p < ∞),

and ∥∥∥( ∞∑
n=0

|Xn|q
)1/q∥∥∥

p
≤ Cp

∥∥∥( ∞∑
n=0

EFn−1 |Xn|q
)1/q∥∥∥

p
(0 < p ≤ q),

where (Xn) is a sequence of A-measurable functions. Note that by Hölder’s
inequality (1) follows from (5) for q ≤ p < ∞.

In case there exists a constant R > 0 such that for all f ∈ L1 one has
EFn |f | ≤ REFn−1 |f | (n ∈ N), the stochastic basis (Fn) is said to be regular .
Since the sequence of dyadic σ-algebras is regular, it can easily be seen that
whenever (Fn) is regular, so is (An). It is proved in [12] that in this case
the spaces H

sq
p and H

Sq
p are equivalent (0 < p < ∞, 1 ≤ q < ∞). Hence h

sq
p

and h
Sq
p are also equivalent. This means, amongst other things, that if (Fn)

is regular then (5) also holds for 0 < p < ∞ and 1 ≤ q < ∞ when (Xn)
is an adapted function sequence. Consequently, under these conditions we
obtain (1) for the parameters 0 < p < ∞ and 1 ≤ q < ∞.

If (Fn) is not regular then (1) is not true for p = 1 (see Lepingle [8]).
However, if we take again adapted sequences then it holds for p = 1, too.
The case q = 2 can also be found in Lepingle [8].

Theorem 3. If (Xn, n ∈ N) is a sequence of adapted functions and
1 ≤ q < ∞ then∥∥∥( ∞∑

n=0

|EFn−1Xn|q
)1/q∥∥∥

1
≤ C

∥∥∥( ∞∑
n=0

|Xn|q
)1/q∥∥∥

1
.

P r o o f. Since the dual of L1(lq) is L∞(lq′) (1 ≤ q < ∞, 1/q + 1/q′ = 1)
we have

E
( ∞∑

n=0

|EFn−1Xn|q
)1/q

= sup
Y ∈L∞(lq′ )

‖Y ‖L∞(l
q′ )
≤1

∣∣∣E[ ∞∑
n=0

(EFn−1Xn)Yn

]∣∣∣.
By Theorem 1,∣∣∣E[ ∞∑

n=0

(EFn−1Xn)Yn

]∣∣∣ ≤ C‖X‖
h

Sq
1
‖(EFn−1Yn, n ∈ N)‖bmo−

q′
.
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The inequality ‖Y ‖L∞(lq′ )
≤ 1 implies

EFn

∞∑
k=n

|EFk−1Yk|q
′
≤ |EFn−1Yn|q

′
+ EFn

∞∑
k=n+1

|Yk|q
′
≤ 2,

which shows that

‖(EFn−1Yn, n ∈ N)‖bmo−
q′
≤ 21/q′ .

The proof of the theorem is complete.
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