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1. Introduction. Martingale transforms were first introduced and
studied by Burkholder [2] and recently by Chao and Long [7]. Singular
integral operators in the local field setting have been studied by Phillips and
Taibleson [21], and Chao and Taibleson [9], which led to the study of matrix
transforms on simple martingales by Janson [11], and Chao and Janson [6].
Fractional integral transforms and commutators with these singular integral
operators for simple martingales were discussed in Chao and Ombe [8], and
Chao, Daly and Ombe [5].

In this paper, we study the commutators with the above mentioned
operators in the simple martingale setting and obtain their compactness
and Schatten—von Neumann Sp-properties. These results extend those for
the Euclidean case which has been studied by many authors, e.g. Janson
and Wolff [14], Uchiyama [24], Janson and Peetre [12, 13], Peng [18, 19],
Rochberg and Semmes [22]. These commutators are operators of Hankel
type. For the study of Hankel operators, see Peller [16, 17]. The arguments
used to obtain our results for simple martingales are quite different due to
the nondegeneracy conditions for the singular integral operators involved.

In §2, we provide some preliminaries. Paraproducts and fractional inte-
grals are discussed in §3. In §4, we study the compactness and S,-properties
(1 < p < o0) of the commutators. Finally, S,-properties for 0 < p < 1 are
studied in §5.

2. Preliminaries. Let {2 = [0,1) and d > 2 be a fixed integer. For
each n > 0, let F,, be the o-field generated by the d-adic intervals QF =
[kd™"™, (k4 1)d=™),0 < k < d", of 2. Let F be the o-field generated by
all such intervals, and dz be the Lebesgue measure on (2. Then (2, F,dx)
is a d-adic probability space. A martingale on ({2, F,dz) is called a simple
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martingale (or d-adic martingale). For f € L'(£2), we define f,, = E(f |
Fn)s An(f) = fn — fn—1 for n > 1 and Ag(f) = fo; then f =30 A (f).

2.1. Operators on simple martingales. Now we introduce four operators
on simple martingales which have been studied by many authors.

1. Paraproduct:

(1'1) Hb(f) = ZAn(b)fn—l
n=1

In [7] Chao and Long have shown that I7j, is bounded on L? (1 < p < 00)
if and only if b € BMO.

2. Martingale transform:
(1.2) T,(f) =Y vn14a(f),
n=1

where v = {v, } is an adapted process.
In fact, T, (f) = II¢(v). In [2] Burkholder has shown that T, is bounded
on LP (1 < p < o0) if and only if ||v]|e = sup,, ||Vn || < o0.

3. Fractional integral operator 1°:
(1.3) Iof = d " Au(f).
k=0

In [8] Chao and Ombe have shown that I is bounded from H? to HY,
where 1/¢=1/p — a.

4. Singular integral operator Tx. Here we consider only the case d > 2.
When d = 2, a refinement of the arguments must be applied. See Chao [3].
For f an integrable function, we notice that on any Q* € F,,, f,, is a constant
and f, 41 has d values. Hence f, ;1 — f,, may be regarded as a vector in C%,
which will be called the local difference of f on the atom QF. It is easy to
see that every local difference actually belongs to the (d — 1)-dimensional
space V = {(z;)%, : Y x; = 0}. Given a d x d matrix A = (a;;), we can
define a linear operator A on V which gives the singular integral operator
T4 as follows:

(1.4) Ta(f) = 3 AA(S).
k=0

In [11] Janson has proved that T4 is bounded on H? (0 < p < 00) (see
also Chao [3]).

For a nice function b, let the operator of multiplication by b be denoted
also by b. For any linear operator T, we may define the commutator [b, T'] =
bT — Tb. In this paper we study three kinds of commutator: [b,T,], [b, I*]
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and [b, T'4]. They have some similar properties to the paraproduct IT,. Their
boundedness has been obtained by Chao, Daly and Ombe [5]:

e [b,T,] is bounded on L? (1 < p < o0) if and only if b € BMO, provided
that v satisfies the nondegeneracy condition (D, ):

(D,) There is an N > 0 such that if n > N and QF € F,, then there is
anm, 1 <m <n—1, such that

Vo + — Z d'vi(x) —d™ Ty, (z) #0  for 2 € QF.

e [b,I?] is bounded from H? to H? for 0 < p < q < o0, ¢ > 1 and
a=1/p—1/q if and only if b € BMO.

o [b,T4] is bounded on L? (1 < p < o0) if and only if b € BMO, provided
that A satisfies the nondegeneracy condition (D4):

(D4)  For any i, there exist j, k # i such that
a;j # a;;  (row) or aj; #ap; (column).
2.2. Schatten—von Neumann ideal S,. Let Hy, Hy be two Hilbert spaces
and L(H;, Hs) the set of all bounded linear operators from H; to Ha, and

let KC(Hy, Hs) be the set of all compact operators. For T' € L(H;, Hs), we
define the singular number s, = s,(T") by

(2.1) Sy = inf{||T — F|| : rank(F) < n},
and the Schatten—von Neumann ideal S, by

= 1/p
Sp:{TGIC(Hl,Hg):(ZSfL> <oo} for 0 < p < oo,

n=

(2.2)
Soo == £(H1,H2).
For the properties of S, see e.g. [13].

2.3. Besov spaces and Triebel-Lizorkin spaces. For s € R and 0 < p,q <
00, the Besov space B;? of simple martingales is defined by

o = { @ lan) " <o}

k=0

(23) By ={r:I/

Sometimes we adopt shorter notations By = B;F and B), = B;/ P
For s € R and 0 < p,q < oo, the Triebel-Lizorkin space Fj9 of simple
martingales is defined by

ea) B ={f: 10l = (B[S @ an] ") < ).
k=0
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B,? and F;9 on simple martingales have the same properties as those on
R™ (for the latter, see Bergh and Lofstrom [1], Peetre [15] and Triebel [23]).
In particular, we have

(1) B;? and F;¢ are Banach spaces for 1 < p,q < oo and Fréchet spaces
for 0 < p,q < 1.

(2) Co = {finite martingales} is dense in B;? and F;¢ for 0 < p,q < oo.

(3) B5?2 = F3? = H? = I*(H?) and Fps2 = HP = I*(HP) for 0 < p < o0.
(4) [Bgo®o, Bst ]y = By.9 and [Fo®, Fs19]y = Fp. 9 where 0 < 6 < 1,
50,51 € R, 1 < po,p1,q0,q1 < 00, s = (1 —0)so + 051 and
1 1—-6 40 1 1-6 0
* = + o * +—.
p Po p1 q q0 q1
(There are also results about real interpolation.)

sq\* __ *Sql sq\* __ *Sql

(5) (B9)* = B,™ and (Fp0)* = F,™ for s € R, 1 < p,g < o0,
lp+1/p'=1,1/qg+1/¢ =1.

Let b5 = b%, be the closure of Cp in BS -norm and f32 be the closure
of Cp in F32-norm. Then

(%) = Br®, (f2)*=F""? BMO=F2, VMO=f%

(6) I is an isometric isomorphism from B,? to BI(,Ha)q and from Fj?
to FyTte,

2.4. Orthonormal, weakly orthonormal and nearly weakly orthonormal
sequences (see Rochberg and Semmes [22]). Let P = {QF :n >0, 0 <k <
d"} and L*(A,) = {f : f € L?, F,-measurable and E,,_1(f) = 0}. Then

L*(2) =P r*an).

Let {e!,...,e?" 1} be an orthonormal basis of V, i.e. {e! = (c,...,c%)}
satisfies

eyt +cy=0,
AT+ he) .. e =0y forij=1,...,d—1.
For Q = QF € P, let
1/}ZQ (x) = dn/Q{CZiXQﬁd (x) + CéXQde-H (x)+...+ CZXQich-Q—d—l (z)}.
Then {1/122}@67:7ie{17.,,7d_1} is an orthonormal basis of L?(£2), and
L*(Ay) =span{yy : Q| =d "V, i=1,....d—1}.

Let A,, denote also the projection of L?(§2) onto L?(4A,), and E,, the
projection of L?(£2) onto @, _, L*(Ax). Then E,(f) = f, is just the con-
ditional expectation of f, and A, (f) is the martingale difference of f.
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It should be pointed out that {wég}QeP,ie{l,...,d—l} is the universal un-
conditional basis for all B;? and FJ9.

Now we introduce a frame of L?(2). (For the notion of frames, see e.g.
Peng [20].) For QF € P, let QF denote its mother interval, i.e. the smallest
interval properly containing Q*. Let

1
b (x) = d/? <XQ’; () = —xax (93)>-
Then {¢¢r } becomes a tight frame. So for every f € L?(£2), we have
Au(f)= Y (fdau)dxgy (@),

Q% |=d—n

f@) =D {f, d0r)d"*xox (@) and |IfI5: =D I(f, éo)
Qk Qk
Again {¢q} is also a universal unconditional basis for B;? and F;? (see
also [20]). Moreover, both {5} and {¢q} are bases of BMO and VMO.
We have:

e f € BMO(£) if and only if {\o} € BMO(P), i.e.
1 2
sup g Aol?lQ| < oo,
pep | P ’ Q’ ’ ‘

P
e f € VMO(#?) if and only if {\g} € VMO(P), i.e.
{Ao} € BMO(P) and |\g|—0as|Q|—0,

for /\Q = <f7 Qj)Q> or <f7 ¢Q>
Let H be a Hilbert space. A sequence {e;} C H is called weakly orthonor-

mal (WO) if || 32 Nies|| < C(3 [Ni|?)Y2. In fact, {e;} is a WO sequence if
and only if it is the image of an orthonormal sequence under a bounded
linear map. (See Rochberg and Semmes [22].)

A nearly weakly orthonormal (NWO) sequence {eg}gep is a sequence
in L?(£2) indexed by P such that the following maximal operator estimate
holds. Set

7o) = SR, eq)}-
€@
Then

1f*]l2 < C|l f]l2-
For example, if supp(eg) C Q and [legllee < Q|72 or |egll, <
|Q[}/P=1/2 for some p > 2, then {eg} is a NWO sequence. (See again
Rochberg and Semmes [22].)

LEMMA 2.1. Suppose that there exist two NWO sequences {eq} and {fq}
such that T =3 5cp Aq (- €q) fq- Then
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(1) {Ao} € BMO(P) implies that T € S and ||T|| < C|{ ¢} IBMmO-

(2) {A@} € VMO(P) implies that T is compact.

(3) {Aq} € IP(P) implies that T € S, and ||T||s, < Cp(zer \)\Q]p)l/p,
0<p<oo.

LEMMA 2.2. If {eg}, {fo} are two NWO sequences, then

1/p
(" (Tequfll?) " < CylITlls,  Jor1 <p<oc.
QeP

LEMMA 2.3. If T is a compact operator on L*(§2) and e; — 0 weakly as
i — 00, then ||Te;||2 — 0.

3. Paraproducts and fractional integrals
3.1. Paraproducts

THEOREM 3.1. (1) For 1 < p < oo, I}, is bounded on LP(£2) if and only

(2) For 1 < p < oo, Iy, is compact on LP(§2) if and only if b € VMO.

(3) For 0 < p < oo, II, € Sp(L?, L?) if and only if b € By and ||II||s, =
16]l5, -

Proof. (1) is known (see Chao and Long [7]). It can also be obtained
from Lemma 2.1. Here we give the proofs of (2) and the main result of (3).
We postpone the proof for the converse result of (3) (II, € S, implies b € B,
for 0 <p<1) to §5.

Instead of the operator I, we consider the equivalent associated bilinear
form IT,(f,g9) = E(IIyf,g). Then we have

(3.1) 10(£,9) = B( Y Au(b) fa-124(9))

= (b, b ){f, X0k ) [k (g, br )
Qk

If b= >} _, Ag(b) is a finite martingale, it is easy to see that IT} is of
finite rank, and therefore compact on LP({2). The set of all finite martingales
is dense in VMO, so if b € VMO, then II, is compact.

Conversely, if IT, is compact on LP(§2), let us show that b € VMO. By
Lemma 2.3, it suffices to show that [(b, ¢g)| — 0 as |Q] — 0, where {¢¢}
is the frame of §2.4. If that is not true, then there exists a subsequence Q;
such that [(b, ;)| > C > 0; we may assume that [(b, ¢q)| > C > 0. Note
that
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C < [(b,6Q)] = (ITy(xQ) ¢}l < d"/*7/P) sup  E(ITy(xq)9)

gl <1
= "2 (x) = CIT(IQIM™ ™ xQ) -
But |Q[Y/?'~/2x5 — 0 weakly in LP(£2) as |Q| — 0 by Lemma 2.3, and the
compactness of IT,, implies that ||IT,(|Q|/? ~'/2xq)||P? — 0. This contradic-

tion shows that b € VMO.
If b € By, then

1/
1ols, = { 3= 1QI721b.00)} " < o0

QeP
By Lemma 2.1 and (3.1), we have
p —1/2 _ P
ITIE, < ¢S 1QI 21, 6))? = ClbIL, .
Q
Conversely, if 1 < p < oo and II, € S, then by Lemma 2.2 we have

Ibll, < C Y 1QITP21(b, ¢o)”

QeEP

=0 _1QI7P[(I(xq), 9Q)" < CIIL]S,
Q

3.2. Fractional integrals. Let o > 0 and f € L?*(f2). The fractional
integral I“ can be written as

If = Z:ldnmn(f) = ;d“””“(f, YoIvh,

where {wb} is the orthonormal basis of §2.3. This means that I/ has a
Schmidt decomposition, so

I7os, = > d=0er = (d = 1) Yoo,
Q,i n

Thus we get
THEOREM 3.2. If a > 0, then I* € S,(L? L?) if and only if p > 1/«,

and
15, = {(d—1) Y ar-trsver]

n

1/p

Remark. Theorem 3.2 says that I* has a cut off at p = 1/a.

4. Commutators. Now we return to the commutators [b,T,], [b, [¢]
and [b, T4]. The main results for them are the following three theorems.
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THEOREM 4.1. (1) For 1 < p < oo, [b,T,] is bounded on LP if and only
if b € BMO.

(2) For 1 < p < o0, [b,T,] is compact on L? if and only if b € VMO.

(3) For 0 < p < oo, [b,T,] € S,(L?, L?) if and only if b € B,.

THEOREM 4.2. Let av # 0.

(1) For 1 < p < o0, [b,I?] is bounded on LP if and only if b € BMO.
(2) For 1< p < oo, [b,I%) is compact on LP if and only if I*b € VMO.
(3) For 0 < p < oo, [b,1%] € S,(L?, L?) if and only if b € By/"™.

THEOREM 4.3. (1) For 1 < p < 00, [b,T4] is bounded on LP if and only
if b € BMO.

(2) For 1 <p < o0, [b,T4] is compact on LP if and only if b € VMO.

(3) For 0 < p < oo, [b,Ta] € Sp(L? L?) if and only if b € B,,.

We postpone the proof of the partial converse results in part (3) of these
theorems for 0 < p < 1 to §5. Now we give the proofs of the rest of the
theorems.

The boundedness results in part (1) of the above three theorems are
known. Theorems 4.1(1) and 4.3(1) are due to Chao, Daly and Ombe [5].
Theorem 4.2(1) can be proved in the same way. It can also be obtained from
the proof of the Sp,-estimates given below.

4.1. Compactness. We start with a general linear operator T on L?(2).
Let T' denote again its associate bilinear form, 7" denote its adjoint in the

sense F(gT"(h)) = E(T(g)h) and T}, denote the commutator [b, T']. Formally
we have (see [5], p. 63)

(4.1) E([b, T1(f)g) = EO(T(f)g — FT'(9)))-

Now we prove the compactness results in part (2) of Theorems 4.1, 4.2
and 4.3. Let b be a finite martingale. Then [b,T,], [b, 1] and [b,T4] are
of finite rank; this implies that if b € VMO (for Theorems 4.1 and 4.3) or
I*b € VMO (for Theorem 4.2), then [b,T,], [b, ] and [b, T4] are compact.

To get the converse results we need the following fact, which is easily
shown from the proof of Theorems 4, 6, 8 in [4].

Let {44} be an orthonormal basis in L? of §2.3. Then there exists {h¢,}
with supp(hg;) C Q and ||h{|lee < 1 such that

Vo = Tu(hg)gg — T, (95),
where g¢, = Cig. Similarly we have

I = 1°(h)gg — hig1°(95). v = Talhy)dg — hgThlg).
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From this fact and (4.1) we have
(b, 0] = [E(O(T,(hy) gt — hiyTh(gh))| = |E([b, T (hi))76)]
< |6, T QM =2 ).
(19D, )| = |(b, 1) | = [E(bI*(hy)Te — hig1*(g))))]
= |E([b, I°)(hiy)gi)| < b, 1°1(1QIM™ =/2hy) |,
(b, )| = |E(b(Ta(hiy)Th — hyTh(95)))]
= |B([b, Ta)(hiy)3)| < [I[b, Tal(1QI™ /21) -

If [b,T,], [b, I*] or [b, Ta] is compact, then [(b,1g)| — 0 or [(I*b,v5)| —
0 as |@Q| — 0, and therefore b € VMO (for Theorem 4.1 and 4.3) or I*b €
VMO (for Theorem 4.2).

4.2. Sy-direct estimates. For Ty, = [b, T, let

;"™ (f, 9) = E(To(An(f))Am(g))-

Then
(4.2) T, =T + 12 + 1P,
where
oo n—1 oo m-—1
ZEE 9 WENETEED 9D SE LRI AR ol
n=1m=1 m=1 n=1
Note that

E.T,=T,E,, FE,*=1I°E, and E,Tx=TusFE,.

Then we have

(4.3) E([b, T, fg) = E(T.(/)11,(9)) — E(f11,(1}9))
+ E(Iy(T,, f)g) — E(11,(f)T)9),
(4.4) E([b, 1% fg) = E(I*(f)11,(9)) — E(f1I,(1*g))
+ E(II,(I* f)g) — E(IIy(f)I%g),
and

(4.5)  E([b, Alfg) = E(Ta(f)I1,(3)) — E(fIT,(T’,g))
+ E(I(Ta f)g) — E(IL,(/)Thg) + T (1, 9),

where

T (f, g) Z W(Taln(f)An(g) — An(f)TaAn(9)))
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d—1d—1 d

_ B((b—bg) Y (asiciet - asciel )xo)
QEP i=14i'=1 s=1
X d"(f, o) {9, V)
d—1d—-1 d
— Z D Aiis An(D)xQf 46 (g, 1)

Then Theorem 3.1 gives us

”[b,Ty]HLPHLP < CHbHBMO for 1 < p < 00,
116, T, < C|lbll, for 0 < p < o0,
16, 1%\l Lo — e < C|II%b||BMO for 1 < p < o0,
116, 1%lls, < ClHbllp = Clb] rrv—o for 0 <p < o0,
and
T2 | oo < CllblBMo  for 1 < p < oo,
1T s, < C|lbll, for 0 < p < 0.
Therefore

16, Tall s 10 < Clbllno for 1< p < o0,
116, Tallls, < C|b|lp for 0 < p < oo.

4.3. Sp,-converse estimates for 1 < p < oo. If an operator S has the
Schmidt decomposition S = > \;(-, ;) fi, then tr(ST*) = > AN (T(f:),ei)-
By this fact and Theorem 4.1, for g € B;l/p, we have

bgr—\E(bZrsz (hiy)gly — Wy Ty lgio)) . 0|

—\DQW OQIE(b. T1(h)al)| = (516,17

where
S =Y 1QI"*(g,9%5) (-, go) iy
Qi
and {g¢,} and {h{,} are NWO. Therefore

/

VA ¥
E(bg)| < 6. T ls, IS, < 116, Tollls, { 3 1@, v }
Q,i

< b, Tls,llgll g=1/0-

So we get [|b]|p, < C|[b,T.]|s, for 1 <p < oo.
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Similarly we have

E(I*(0)3)] = \E(b; QI (hy)gly — By I (91)) (9,05 )|
= | 2 QI"* g, Q) E(b. 1°)(hg)gl)| = lex(S[b. 1)),
where S, {g},} and {Qi;Q} are as before. Therefore
E(*®)9)] < 115, 115, ISlls,, < 16, 7°]lls, { ; Qg i)'} "

< CH[b7 IQ]HSPHQHB—/UP.

Thus [[1?b]| g, < C||[b,I¢]||s, for 1 < p < cc.
Finally, we have

B@®g)| = | B (63 1012 (Talhy)gl — hiyTalsh))s, 03|
Q,i

= | 371012, 0 (b, Tal (hiy)gly) | = lex(S[b, Ta]")],
Qi
where S, {g6,} and {h{,} are as before. Hence

; ’ 1/17/
[B(bg)| < II1b. Talls, I1S1ls,, <1116, Tallls, { - 101" I{g, wi) ' }
Qi
< o, Tallls, llgl -

Therefore [|b||p, < C||[b, Tal||s, for 1 < p < oc.
We can also get the BMO-estimates for these three commutators by
using g € H' as in [5].

5. S,-converse estimates for 0 < p < 1. Here we just follow the
argument in Peng [19].

LEMMA 5.1. Suppose that b — Ty is a linear map from BMO to
Soo(L?, L?), define T,"™ = A, Ty A, and suppose that
(1) EnTb — Tbn7
2) [T, s, = CAD/2) AL (D),
(or | T, s, > CAHD/P|| AL (b)]1),
3) 1021 AnToB-nlls, < CAN2|bllp, and || 302, En-nTpAulls,
< CdN2||b||, .
Then Ty, € Sy, implies b € B, and
(5.1) 1bllB, < Cl|T]|s,-
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Proof. It suffices to show (5.1) for b € B,. Since any finite martingale
b € By, by (1) we have

lon B, < Cl|Toylls, < CllENT|s, < Cl|Ths,-

Letting N — oo, we get (5.1) for general b.
Now assume b € B),, and let us show (5.1). For N large enough, let

Thp=Y Y TNWHHLNTEE for p=0,1,...,N - 1.

n=0m=0

Then HTb,kHSP < HTbHSp' Define

oo
0) Nn+k+1,Nn+k
Tb,k: = Z T, )

n=0
oo n—1
(1) Nn+k+1,Nm+k
L= > T )
n=0m=0
oo m—1

Tb(Zk) _ Z Z Tan—&-k—&-l,Nn—i-k‘

m=0 n=0

Then
- O & (2)
p p 0y Dyp 2)p
NITIE > STl = STUTQIE — 178005 — 11215 ),
k=0 k=0

o0
TR0, = D N7y BN g > CaNm T Ay ()15 (by (2),
k=0
1 - 2 _
1T < ca=Ner2 bl T 30E < caNPR |, .
Thus we get
NITyIE, = Cillblt, — CaNa=Ye/2p|, .
Choosing N so large that C; — Cy,Nd~NP/2 = C' > 0, we obtain (5.1).
Now we check that 1y, [b,T,], [I~%, %] and [b, T'4] satisfy the conditions

of Lemma 5.1. In fact our main task is to verify (2) and (3), the others are
trivial.

For Iy,
d" " 14+1d—1 (k+1)d—1d—1

I = S0 3 S St v W
k=0 =1 k'=kd

/=1

Sp

) 1/p
>ca2l S (b} = carja,ml,
Ql=d-

n,n+1 __
Tt — o,
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— ] 1 n— i
> AnllyBn-y = Z<bv%zl><" \Q’f’ll/?XQ':;’N>d( i
n=1 Qi n—N '

By Lemma 3.2, we have
o0 oo
AL B, H < Cd=N/|p|| 5., B, Iy A, = 0,

The verifications of (3) for [b,T,], [[~*b, I*] and [b, T4] are similar: just
use Lemma 3.2 and (4.3)-(4.5).

Now we verify (2) for the three commutators. First we consider [b,T,].
Suppose that v satisfies the nondegeneracy condition (D,). Then for any

Q" there exists Q¥ # QF such that T, (xgr) = C # 0 for z € QJ; (see [5]).
Thus !

T (f,9) = BO(T Awir (£ B0(9) = Ansa ()T ,(9)))
d"—1d—1
= N ST BTt Anlg) — Vi ToAn (gD 1)
k=0 =1
d"—1d-1
=C Z Z ¢Qk wak> ( )|Qk
k=0 i=1
d"—1d-1
ITSTH7E, = € 3 D b wige ) lPd™? = Cam | Aua (O)]

k=0 i=1

The verification for [I~“b, [?] is similar.

Finally, we verify [b,Ta]. Suppose that A satisfies the nondegeneracy
condition (D4). Then for any k, there exist i and j such that ag; # ax;.
Thus

T (,9) = BO(Taduar(£)An(9) = Auir (HThA0(9)))

d"—1d—1
= > > EM(Tavi Anlg) — vor Tadn(9)))(f, ¥ir)-
k=0 =1
Notice that
d—1d-1
Z Z b TA |Qk Png>
k=0 i=1
d*—1d-1

= Z Z(ak (mod d)i — @k (mod d);) (b WQI;)(QQ; — 9o /[, W@ﬁ)-

k=0 =1
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Therefore
d"—1d-1 '
T > O S (b, i) [Pd™ 2 = CbllY,
k=0 =1

This completes the proof.
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